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Abstract 
Modular Multilevel Converter MMCs are an advanced power electronics topology that has many 

advantages, including high efficiency, scalability, and superior harmonic performance. However, 

as with any complex system, MMC devices are susceptible ti errors that can affect their operation 

and reliability. Machine learning is one of the most important technologies to enhance fault 

diagnosis in MMC, enabling rapid identification and remediation of problems to reliability of 

power conversion systems. 

Key word: Modular Multilevel Converter, Machine learning, power conversion systems. 

Résumé 
Les convertisseurs multiniveaux modulaires (MMC) constituent une topologie électronique de puissance 

avancée qui présente de nombreux avantages, notamment un rendement élevé, une évolutivité et des 

performances harmoniques supérieures. Cependant, comme pour tout système complexe, les appareils 

MMC sont sensibles aux erreurs qui peuvent affecter leur fonctionnement et leur fiabilité. 

L'apprentissage automatique est l'une des technologies les plus importantes pour améliorer le diagnostic des 

pannes dans les MMC, permettant une identification et une résolution rapides des problèmes afin de garantir 

des performances et une fiabilité continues des systèmes de conversion de puissance. 

Les mots clé : Les convertisseurs multiniveaux modulaires , L'apprentissage automatique , systèmes de 

conversion de puissance . 

 ملخص
بما في ذلك الكفاءة العالية وقابلية عبارة عن طوبولوجيا متطورة لإلكترونيات الطاقة تتمتع بالعديد من المزايا،  المحولات المعيارية متعددة المستويات

عرضة للأخطاء التي يمكن أن تؤثر على تشغيلها ةةؤ  ومع ذلك، كما هو الحال مع أي نظام معقد، تكون أجهزة التوافقي الفائق. التوسع والأداء

ريع على المشكلات ومعالجتها لضمان استمرار ، مما يتيح التعرف السي يعد  التعلم الآلي أحد أهم التقنيات لتعزيز تشخيص الأخطاء ف .وموثوقيتها

. الطاقة تحويل الأداء و الموثوقية لأنظمة      

.الطاقة تحويل أنظمة, التعلم الآلي , المحولات المعيارية متعددة المستوياتالكلمات المفتاحية :   
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Notation 
 

 
P, Q, S 

 
Active, reactive, and apparent power 

R, L, C Resistance, inductance, and capacitance 

v, i, ψ Voltage, current, and ux linkage (Peak values) 

V , I, Ψ Voltage, current, and ux linkage (RMS values) 

x Phase variable ∈ {a, b, c} 

y Arm variable ∈ {u, l} 
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General introduction 

In recent years, the utilization of power electronic converters has surged across various sectors, 

ranging from renewable energy systems to electric vehicles and industrial automation. These 

converters play a pivotal role in controlling the flow of electrical energy, converting it from one to 

another, and facilitating efficient power distribution. However, with the increasing complexity and 

criticality of these systems, the need for effective fault diagnosis methods has become paramount. 

Traditional fault diagnosis approaches for power electronic converters often rely on rule-based 

systems or model-based techniques, which may struggle to accommodate the diverse and dynamic 

nature of faults in real-world scenarios. As a result, there is a growing interest in leveraging 

machine learning (ML) classification algorithms for fault diagnosis in power electronic converters. 

ML classification techniques offer a data-driven approach to fault detection and diagnosis, capable 

of learning complex patterns and relationships from large datasets of historical operational data 

and fault signatures. By employing algorithms such as decision trees, support vector machines, 

random forests, or neural networks, ML-based fault diagnosis systems can accurately identify and 

classify various types of faults in power electronic converters. 

In references[1-3] a machine learning approach used for multilevel converter in renewable energy, 

The purpose of our work is exploring the application of ML classification in fault diagnosis of 

modular multilevel converter (MMC). Throughout this memoir we will delve into the principles 

of ML classification, examine the challenges and opportunities specific to fault diagnosis in power 

electronic systems, and investigate the performance and effectiveness of different ML algorithms 

in detecting and classifying faults. Additionally, we will explore the implications of integrating 

ML-based fault diagnosis systems into practical applications, aiming to enhance reliability, 

mitigate downtime, and optimize maintenance strategies in power electronic converter systems. 

This dissertation is organized as follow: 

In chapter one, we gave general information on the Power Converter and the Multi-level 

Converter. Then, in chapter two, machine learning classification methods are presented. Next, in 

the third chapter, simulation results, analysis, and discussion of modular multilevel converter are 

detailed. Finally a conclusion section summarizes the findings of our work 
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I. Power electronic converters 

I.1. Introduction 

Power electronics applies solid-state electronics to regulate and transform electrical power from 

one form to another, including converting between AC and DC, adjusting voltage and current 

levels, altering frequency, or combining these functions. Power electronic converters find 

widespread use across a broad spectrum of power conversion tasks, spanning from low-voltage, 

low-power applications to high-voltage, high-power scenarios. In certain instances, multiple 

converters may be interconnected in series, parallel, or cascade configurations to achieve 

multistage power conversion. While specific applications vary, the overarching objectives 

typically revolve around five key factors: energy efficiency, power density, cost-effectiveness, 

system complexity, and reliability. These aspects are interconnected, with each influencing the 

others to varying degrees. 

I.2. Type of power converter 

The power converter has four types, since each one plays a crucial role in the proper functioning 

of our electronic devices and our systems. They play an essential role in the machine that is our 

increasingly electrified world, mention it: 

I.2.1. AC to DC converter(Rectifies) 

AC-DC converter, also called rectifiers, are used to transform alternating current AC into direct 

current DC. These converters are usually found in power supplies for electronic devices such as 

laptops, televisions and phone chargers. 

I.2.2. DC to AC converter (Inverter) 

A DC-AC converter, commonly known as inverter, perform the reverse function of rectifiers. They 

turn the DC into AC. Inverter are commonly used in renewable energy systems such as solar 

panels, which produce dielectric electrical power that must be converted into current electrical 

power to be used in household appliances . 

I.2.3. DC to DC converter (Chopper) 

A DC-DC converter are used to modify the voltage level of a DC power source. They play an 

essential role in mobile devices and computers where different components require different 

voltage levels; for example, the processor of a laptop and LED panel may require different 

voltages, which is facilitated by a DC-DC converter. 

I.2.4. AC to AC converter (Cycloconverter) 

AC-AC converter are devices that transform one form of AC into another, usually by changing the 

magnitude of the current and frequency. Their use is frequent in motor speed control applications, 

such as variable air conditioning or changing stations for electric vehicles. 



Chapter I: Power electronic converters 

5 

 

 

 

I.3. Two-Level power converter 

I.3.1. Definition 

A two-level power converter (Figure I.1) is a type of power converter that typically provides two 

voltage levels at its output. It can be designed using various models, such as switching function 

(without using rectifier mode), average model (controlled by Uref), or average model (without Uref 

control).Such converters are frequently employed in a number of applications, including renewable 

energy. 

Figure I.1Two-Level power converter configuration 

A two-level power converter works by converting direct current (DC) to alternating current (AC) 

by switching the output voltage between two levels. Here is a brief explanation of its operation: 

- It consists of six electronic switches (such as IGBTs or MOSFETs) arranged in a three-phase bridge 

configuration. 

- The switches control the conversion of the DC voltage between two levels: +Vdc and -Vdc. 

- Pulse Width Modulation (PWM) techniques are used to rapidly switch the switches on and off, 

controlling the shape and frequency of the output. 

- The converter produces a square wave or a modulated wave that can be filtered to convert it into a 
sinusoidal wave. 
I.3.2. Advantages of Two-Level power converter 

 Dependability and Simplicity: The two-level converter topology is a popular and simple design 

found in many industrial applications. 

Because of its great reliability and simplicity, it is a popular option for a variety of systems. 

 Great Efficiency: Because power semiconductor switches lose very little power, two-level 

converters have great efficiency. 



Chapter I: Power electronic converters 

6 

 

 

 

Their dependability and longevity are further increased by the lack of moving parts1. 

 Cost-Effectiveness: Two-level converters are inexpensive to develop and implement. 

Lower manufacturing costs are partly attributable to fewer components and simpler control 

systems. 

 Harmonic Performance: Two-level converters are nevertheless appropriate for a wide range of 

applications, despite certain harmonic performance issues. 

 
 

I.3.3. Disadvantages of Two-Level power converter 

 A two-level power converter's significant harmonic distortion leads to poor power quality, which is 

a drawback. 

 Two-level converters have difficulties with greater harmonic distortion levels, which affects the 

quality of the power output, in contrast to more sophisticated multilevel converters that can 

eliminate low-order harmonics. 

 This restriction may result in problems like power transfer inefficiencies and interference with other 

electronic devices. 

I.4. Multi-Level power converter 

I.4.1. Definition 

A multi-level power converter is a complex power converter that generates high voltage 

waveforms from low voltage components. These converters have been developed for over a 

century. Its origins date back to the 1880s, when the advantages of long-distance direct current 

transmission were recognized. Multilevel converters offer the advantages of improved power 

quality, efficiency, and the ability to eliminate low-order harmonics from the output waveform. 

They utilize advanced topologies and modulation strategies to improve their performance in high 

voltage and high power applications. 

I.4.2. Types of Multi-level power converter 

Three types of multi-level converters have been proposed: the diode-clamped inverter, the flying- 

capacitor converter in common DC sources, and the cascade converter in Isolated DC sources: 
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I.4.2.1. The diode-clamped multilevel converter 
 

Figure I.2 :Three level diode clamped multilevel inverter 

The diode-clamped converter as shown in figure I.2 is a type of multilevel converter topology 

that utilizes diodes to limit voltage stress on power devices, achieving steps in the output voltage. 

This inverter topology is commonly used in high-power applications due to its ability to provide 

multiple voltage levels through the connection of phases to a series of capacitors. The diode- 

clamped inverter is known for its straightforward operation and well-known structure, making it 

a popular choice in industry applications for medium to high-voltage power conversion needs. 

I.4.2.2. The flying-capacitors multilevel inverter 
 

Figure I.3:Three level flying-capacitor multilevel inverter 
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A flying capacitor inverter (figure I.3) is a multi-level inverter that uses flying capacitors to store 

and transfer energy between different levels of the inverter [5-8]. These capacitors are connected 

in series and parallel to obtain the desired voltage level, making them important components in 

multilevel inverters used in various applications such as electric vehicles (EV), battery 

management systems (BMS), and renewable energy systems. Flying capacitors play a vital role in 

balancing voltage levels, reducing harmonic distortion in voltage waveforms and improving 

system power quality. They are particularly useful in applications where voltage equalization, 

energy storage and power quality optimization are important requirements. 

I.4.2.3. The cascaded H-Bridge multilevel inverter 

A cascaded H-Bridge multilevel converter (figure I.4) is a type of power converter that consists 

of multiple converter stages connected in series to achieve the desired output voltage or current 

levels. These converters offer advantages such as modularity, scalability, and improved power 

quality. They are commonly used in high-power applications where the conversion of voltage or 

current to specific levels is required. 

The research and development in the field of cascaded converters have led to the proposal of 

innovative designs like the Interconnected Cascaded Converter (ICC), which aims to generate 

sinusoidal waveforms efficiently. Cascaded converters can be designed with various topologies, 

such as boost converters, buck converters, and hybrid configurations, to meet specific application 

requirements. 

Figure I. 4: cascaded H-Bridge multilevel converter 
 

I.4.3. Advantages of multi-level power converter 

The advantages of multi-level power converter include: 
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 Improved power quality, Higher efficiency, Reduced harmonic distortion. 

 The ability to achieve higher voltage levels with fewer components compared to traditional two- 

level converters. 

 It offers enhanced performance in high-power applications, making them valuable for various 

industries and applications. 

 It can operate at both fundamental switching frequencies, providing flexibility and efficiency in 

power conversion processes. 

I.4.4. Disadvantages of multi-level power converter 

Disadvantages of multi-level power converters include: 

 Circuit design complexity, 

 The need for additional gate driver circuitry for each added active semiconductor, 

 The need for isolated voltage sources to form small voltage stages. 

 It also face challenges related to voltage imbalance issues, voltage limiting requirements, and the 

limitations of achieving a large number of voltage levels due to these limitations. 

 An increase in the number of active switches in a multilevel converter leads to higher costs and 

increased complexity in the overall system design. 

I.5. Modular Multi-level Converter (MMC) 

A modular multilevel converter (MMC) is utilized in high-voltage direct current (HVDC) 

transmission systems and other applications necessitating high-voltage conversion. Comprising 

numerous power electronic modules interconnected in series, it elevates voltage levels while 

minimizing harmonic distortion and enhancing efficiency. Through dynamic voltage adjustment 

across each module, the converter regulates output voltage precisely, facilitating precise voltage 

control and management of reactive power. Notable advantages of MMCs include scalability, fault 

tolerance, and modularity, rendering them well-suited for diverse power transmission and 

distribution scenarios. 

I.5.1. Overview of Converter Topologies 

I.5.1.1. Basic Principles 

The Modular Multilevel Converter (MMC) operates based on several fundamental principles. 

Let's explore them: 

1. Cell-Based Structure: 

- The MMC comprises multiple power cells connected in series to generate a medium voltage 

output. 

- Each phase includes two arms, each equipped with arm inductors. 
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- Power cells can be either "single submodules" (two IGBTs and one capacitor bank) or "double 

submodules" (four IGBTs and two capacitor banks). 

2. Voltage Levels: 

The MMC functions at two voltage levels: positive Vdc and negative Vdc. 

It provides scalable, motor-friendly voltage and produces a virtually sinusoidal output current 

suitable for loads and motors. 

I.5.1.2. Modular Multilevel Converters Configurations 
 

Figure I.5: Configuration of modular multilevel converter 
 

The Modular Multilevel Converter (MMC) can be configured in various ways to suit different 

applications and requirements. The primary configurations include single-phase and three-phase 

setups, where each phase consists of two arms filled with multiple submodules. These submodules 

can be arranged symmetrically or asymmetrically, depending on the desired voltage levels and 

fault management needs. Additionally, cascaded MMCs connect multiple MMC units in series for 

handling higher voltage levels, and hybrid MMCs combine traditional MMCs with other converter 

topologies for enhanced performance. This modular and flexible design makes MMCs suitable for 

a wide range of applications, from high-voltage direct current (HVDC) transmission to renewable 

energy integration and large motor drives. A simplified general diagram of an MMC is illustrated 

in Figure I.5 By using many levels - that is, many more voltage levels than a two- or three-level 

converter - an MMC can create a high-quality output voltage waveform with very low harmonic 

distortion. 
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I.5.1.3. Sub-Module Configurations 

Sub-modules are the building blocks of MMCs. They form the converter arms and phase-legs. 

Each sub-module consists of a set of power semiconductor devices (such as IGBTs or MOSFETs) 

1200–1700V and passive components (such as capacitors and inductors).The commonly used 

submodule configurations in a modular multilevel converter are: 

 

 

 
 Half-bridge (HB) submodule 

 

 

Figure I.6:Half-bridge sub-module and output voltage waveform 
 

Half-Bridge Sub-modules (HB-SMs) are fundamental building blocks within MMCs. 

Each HB-SM consists of a half-bridge configuration (Figure I.6). It is composed of two IGBT devices with 

anti-parallel diodes (S1 and S̅ 1̅) and one DC capacitor (C). The two IGBT devices are operated in a 

complementary manner to regulate the DC capacitor voltage at a value of VC. The DC capacitor voltage is 

given by equation 1: 

 
1 

𝑉𝐶 = 
𝐶 
∫ 𝑖𝐶 ∂t 1 

 

The DC capacitor current in terms of AC current (ixy) and the switching state of the top device S1 are given 

by: 

 

𝑖𝐶 = 𝑆1𝑖𝑥𝑦 2 

 

The DC capacitor current is equal to the AC current or zero, depending on the position of top 

switch S1. 
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Table I.1Switching states of HB SM 
 

States 1 2 3 4 

𝑺𝟏 0 0 1 1 

̅�̅��̅� 0 1 0 1 

VH - 0 +VDC - 

Condition Allowed Distractive 

 

 

As seen in Figure I.6, the half-bridge sub-modules AC output voltage has two voltage levels: "0" 

and " VC." The AC output voltage is equal to VC when the top switch is in the "ON" position. In 

this mode, the DC capacitor voltage rises when the current flows in a positive direction and falls 

when it flows in a negative direction. The AC output voltage is equal to "0" when the top switch 

is in the "OFF" position [2]. No matter which way the current flows, the DC capacitor voltage 

stays constant in this mode. The half-bridge submodule's AC output voltage can be expressed in 

terms of the DC capacitor voltage and the top device S1 switching state as (equation3) : 

 

𝑉𝐻 = 𝑆1𝑉𝐶 3 

 

 Full-bridge (FB) sub-module 

H-bridge converter is another name for the full-bridge (FB) submodule. Figure I.7displays the 

full-bridge submodule's circuit configuration. It consists of one DC capacitor (C) and two half- 

bridge legs (S1, S1, and S2, S2). Two IGBT devices with antiparallel diodes make up each leg, 

and they are each run in a complementary way. 

Figure I.7:Full-bridge (FB) submodule and output voltage waveform 
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The IGBT devices S1 and S2 are controlled in order to manage the DC capacitor voltage. 

Equation (2.1) gives the same formula for the DC capacitor voltage of the half-bridge submodule 

as it does for the full-bridge submodule. The condition of devices S1 and S2 determines the amount 

of current flowing through the DC capacitor. The current through a DC capacitor is given by 

equation 4: 

 

𝐼𝐶  = (𝑆1𝑆2 − �̅�1�̅�2)𝑖𝑥𝑦 4 

 

All possible combination of switching states for S1 and S2 are shown in Table I.2. The four switching 

combinations generate three voltage levels, “0,” “VC ,” and “–VC ”[2]. 

 

 

 
Table I.2:Switching states of FB SM 

 

States 1 2 3 4 5 6 7 8 9 

𝑺𝟏 0 0 0 1 0 0 1 0 1 

̅�̅��̅� 0 1 0 0 1 1 0 0 0 

𝑺𝟐 0 0 1 1 1 0 0 0 0 

̅�̅��̅� 0 0 0 0 0 1 0 1 1 

VF - - - 0 -VDC 0 - - +VDC 

Condition Allowed 

The full-bridge sub-module AC output voltage is displayed in Figure I.7. The AC output voltage 

is identical to "VC" when IGBT devices S1, S2 are "ON." In this mode, the voltage of the DC 

capacitor rises in the positive direction of the current and falls in the negative direction. In the 

switching states of S1-"ON," S2-"OFF," and S1-"OFF," S2-"ON," the AC output voltage will be 

"0." No matter which way the current flows, the DC capacitor voltage stays constant in this mode. 

The voltage level "0" is represented by the two switching states of the full-bridge submodule. We 

refer to the extra switching states that match the same voltage level as redundant switching states. 

The symmetrical distribution of power losses between S1 is accomplished by the usage of 

redundant switching states. 

When devices S1, S2 are "OFF," the full-bridge submodule generates a voltage level of -VC. 

When there are DC-side faults, the current is limited by this switching condition. 
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The full-bridge sub-module's operation is represented by the AC output voltage equation, which 

is given by equation 5: 

 

𝑉𝐹  = (𝑆1𝑆2 − �̅�1�̅�2)𝑉𝐶 5 

 

 
 Flying capacitor (FC) submodule 

The flying capacitor (FC) submodule configuration is displayed in Figure I.7 .It consists of two 

DC capacitors (C1 and C2) and four IGBT devices with anti-parallel diodes (S1, S1, S2, and S2). 

DC capacitors C1 and C2 voltage is determined by : 

 

VC1 = 
1 
∫
𝑡 
𝑖𝑐1(𝑟)𝑑𝑟 

𝐶1 +0 
6 

VC2 = 
1 
∫
𝑡 
𝑖𝑐2(𝑟)𝑑𝑟 

𝐶2 +0 
7 

 

The DC capacitors current is given in terms of the device switching states and the AC current as : 

 

iC1 = S1 ixy 8 

iC2 = (S2 - S1) ixy 9 

 
Table I.3: Switching states of FC SM [2] 

 

States 1 2 3 4 
 

5 6 7 8 9 

𝑺𝟏 0 1 0 0 
 

0 1 1 0 1 

̅�̅��̅� 0 0 1 0 
 

0 1 0 0 0 

𝑺𝟐 0 0 0 1 
 

0 0 1 1 0 

̅�̅��̅� 0 0 0 0 
 

1 0 0 1 1 

VF - - 
 

- 

- 
 

- +VDC 

(Vc1) 

0 

(VC1 –VC3) 

-VDC (Vc2) 0 

(VC3 –VC2) 

Condition Allowed 

 
 

Table I.4displays the flying capacitor submodule's device switching states (S1 and S2). As seen 

in Figure I.8, there are a total of four switching combinations that result in three voltage levels: 
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"0," VC1− VC2or VC2, and VC1. During the reverse blocking mode, the DC capacitor voltage VC1is 

regulated at twice the DC capacitor voltage VC2, producing symmetrical steps in the output voltage 

and equal voltage across IGBT devices. When both S1 and S2 devices are turned on, the AC output 

voltage is equal to "VC1." In this mode, the DC capacitor voltage VC1rises when the current flows 

in a positive direction and falls when it flows in a negative direction. The voltage of the DC 

capacitorVC2, doesn't change. When a switching state is S1–“ON,” S2–“OFF,” the AC output 

voltage will be "VC1− VC2." In this mode, when the current is flowing in a positive direction, the 

DC capacitor voltage VC1rises and VC2falls, and vice versa. Similar to this, the AC output voltage 

is equal to VC2for both switching states: S1–“OFF” and S2–“ON”. While the DC capacitor voltage 

VC1stays constant, the DC capacitor voltage VC2will fluctuate in this mode. The AC voltage level 

is "0" when S1, S2 are in the "OFF" switching state. They produce the same voltage values at the 

output for each of the states[2]. The DC capacitor voltage is regulated by 
 

Figure I.8 : Flying capacitor submodule and output voltage waveform: (a) three-level operation, and (b) two-level 

operation 
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The switching states that correspond to these states. The flying capacitor submodule's operation 

is represented by the AC output voltage equation, which is given by: 

 

𝑉𝐹𝐶 = 𝑆1𝑉𝐶1 + (𝑆2 − 𝑆1)𝑉𝐶2 10 

 

The flying capacitor submodule can work as a half-bridge submodule in addition to having dual 

functionality. The equivalent operation of a half-bridge submodule and a flying capacitor 

submodule is depicted in Figure (b). The voltage levels "0" and "VC1," respectively, at the output 

are produced by the switching combinations that correspond to the states. This mode of operation 

fully omits the DC capacitor C2. The half-bridge submodule's output voltage is provided by: 

 

𝑉𝐻 = 𝑆1𝑆2𝑉𝐶1 11 

 

 

 
 Cascaded half-bridge (CH) submodule 

The cascaded half-bridge (CH) submodule circuit arrangement is shown in Figure I.12. It is made 

up of two half-bridge submodules that are the same and are linked in series. 

Figure I.9 :Cascaded half-bridge submodule and output voltage waveform. 

 
 

The two DC capacitors (C1 and C2) in the cascaded half-bridge submodule have nominal voltages 

that are equivalent. The voltage of C1 and C2's DC capacitors can be found using equation. The 

amount of current flowing via these capacitors is determined by: 

 

 

 
𝑖𝐶1 = 𝑆1𝑖𝑥𝑦 11 
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𝑖𝐶2 = 𝑆12𝑖𝑥𝑦 

 
12 

 

 

 

The probable pairing of S1 and S2 switching states are shown in Table I.5. The cascaded half- 

bridge submodule generates three voltage states: "0," "VC1 and VC2," and "VC1 + VC2." It has four 

switching combinations. Figure I.9 displays the cascaded half-bridge submodule's AC output 

voltage waveform. "VC1 + VC2" is the output voltage when devices S1, S2 are "ON." In this 

condition, the voltage of the DC capacitors C1 and C2 varies according to the direction of the 

current [2]. 

 

 

 
Table I.6: Switching states of CH SM 

 

States 1 2 3 4 5 6 7 8 9 

S1 0 1 0 0 0 1 0 0 1 

̅�̅̅��̅� 0 0 1 0 0 1 1 0 0 

S2 0 0 0 1 0 0 1 1 0 

̅�̅̅��̅� 0 0 0 0 1 0 0 1 1 

VF - - - - - 2VDC (Vc1+VC2) -VDC (VC1) 0 - 

Condition Allowed 

One of the half-bridge submodules is bypassed when switching states, so the output voltage is 

either "VC1" or "VC2." In this mode, the positive direction of the current causes the DC capacitor 

voltage corresponding to the inserted half-bridge submodule to increase, and vice versa. The half-

bridge submodule that was bypassed maintains a steady DC capacitor voltage. When devices S1, 

S2 are "OFF," the cascaded half-bridge submodule generates a voltage level of "0" at the output. 

The voltage of the DC capacitors "VC1" and "VC2" does not change depending on the direction of 

the current. Mathematically, the cascaded half-bridge submodule's AC output voltage is expressed 

as: 

 
𝑉𝐶𝐻 = 𝑆1𝑉𝐶1 𝑆2𝑉𝐶2 13 
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 Double clamp (CD) sub-module 

Figure I.10: Double clamp submodule and output voltage waveform 

Each half-bridge submodule has one DC capacitor whose voltage can be obtained from the 

equation .The current owing through the DC capacitors is given by : 

 

𝑖𝐶1 = 𝑆1𝑖𝑥𝑦 + (1 − 𝑆𝐵)𝑖𝑥𝑦 14 

𝑖𝐶2 = 𝑆2𝑖𝑥𝑦+(1 − 𝑆𝐵)𝑖𝑥𝑦 15 

 
Table I.7: Switching states of CD SM 

 

States 1 2 3 4 5 6 7 8 9 10 

S1 0 0 0 1 0 0 1 0 1 1 

   
S1 

0 1 0 1 1 0 0 0 0 0 

S2 0 0 1 0 1 1 0 0 0 1 

S2 
0 0 0 0 0 1 0 1 1 0 

VF - - - +VDC 0 -VDC - - - - 

Condition Allowed Potentially destructive 

 

 

The states in which the double clamp submodule switches are shown in Table I.5. The normal 

operation of a double clamp submodule is comparable to that of a cascaded half-bridge 
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submodule, which has four switching possibilities and can produce three voltage levels: "0" 

"VC1and VC2," and "VC1+ VC2." In regular functioning, the IGBT device "SB" is consistently "ON." 

The two DC capacitors of the half-bridge submodules are linked in series via diodes DB1 and DB2 

and switch SB when devices S1, S2 are "ON." The AC output voltage in this condition is equal to 

"VC1+ VC2." Turning "OFF" either S1 or S2 will bypass one of the half-bridge submodule DC 

capacitors, generating the voltage level "VC1, VC2." Disabling devices S1 and S2 will generate the 

voltage level "0." The double clamp submodule's typical operation is represented by the AC output 

voltage equation (16), which is given by : 

 

𝑉𝐷𝐶 = 𝑆𝐵(𝑆1𝑉𝐶1 + 𝑆2𝑉𝐶2 ) 16 

 

In addition, the double clamp submodule produces negative voltage levels when operating in the 

blocking mode (BM). When there are DC-side failures, this mode of operation is employed to 

limit current. As seen in Table I.5, all IGBT devices are in this state and are turned "OFF" "VC1 + 

VC2" represents the submodule output voltage in the positive direction of current flow, and "−VC1, 

−VC2" represents the submodule output voltage in the negative direction. 

I.5.1.4. Modulation Techniques 

Although there are a lot of equations and knowledge behind these pulse width modulation 

techniques, the physical knowledge and understanding of the operation of power converters in 

real-life applications are very important. This is why in the project stage, advanced pole voltage 

source inverters design using modern control algorithms and cascade converter concepts will be 

involved. Well-known carrier-based pulse width modulation techniques are used in single-phase 

and three-phase voltage source inverters and also in three-phase voltage source converters. These 

carrier-based pulse width modulation techniques use a fixed or variable position high-frequency 

triangular carrier waveform and compare it with one or more narrow bands of the reference 

modulating waveforms to generate the appropriate pulse width modulation gate signals. The 

triangular carrier waveform, reference modulation waveforms, and the generated pulse width 

modulation gate signals can be in the range of -1 to +1, and the equations for calculating the 

continuous phase shift sinusoidal pulse width modulation, space vector pulse width modulation, 

and various selective harmonic elimination pulse width modulation can be different. Traditional 

modulation techniques like phase shift modulation, amplitude modulation, and pulse width 

modulation generate trapezoidal or sinusoidal waveforms for converters. Pulse width modulation 

is popular in power electronics for its attractive features: linear feedback control, low total 

harmonic distortion, and reduced switching losses in power semiconductor devices. 

I.5.2. Operating Principle 

The operating principles of a modular multilevel converter involve the use of individual modular 

sub-converters grouped together to achieve high voltage/high power applications such as HVDC 

transmission systems and renewable energy systems. The converter consists of independent and 

independent voltage source transformer submodules, each with a DC source, a 
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capacitor voltage divider and an H-bridge inverter. By connecting the AC outputs of the sub- 

converters in series, the final result is obtained. One of the main advantages of this converter is 

its modularity in terms of both sub-modules and voltage output levels, which allows easy isolation 

of damaged sub-modules and efficient operation. The main functions of a modular multi-level 

converter include three-phase conversion. From alternating current to high voltage direct current, 

which is then used to output variable voltage and frequency alternating current through inverter 

circuits. The DC interconnect contains several submodules that provide high- resolution output 

voltage waveforms generated by the submodules' switches and capacitors for energy storage. This 

configuration enables high-quality output voltage waveforms with low- power switching devices, 

reducing conduction losses and device voltages. In addition, the operation of switches is 

independent of changes in inductance and capacitance values, which improves reliability and 

reduces faults. Voltage conversion in a modular multilevel converter is performed by adjusting the 

output voltages of each submodule to achieve the desired phase voltages. . .Different modulation 

strategies are used to control the output waveform, such as baseband sub-modulation PWM, phase 

shift carrier PWM, and selective harmonic elimination modulation. By maintaining capacitor 

voltage balance in each submodule, the power electronic switches can work constructively together 

to synthesize the AC line voltage. Selective harmonic modulation with fixed switching patterns 

can also provide a constant output voltage, providing solutions for certain operating conditions. 

Modulation techniques such as selective harmonic elimination modulation and phase shift carrier 

PWM are used to improve output waveform quality and reduce harmonics. content These methods 

include calculating selected harmonic amplitudes to cancel unwanted harmonics and adjusting the 

phase shift between carriers to control the output voltage. By selecting different fixed switching 

patterns and modulation rates, the output waveform of the converter can be quickly adjusted to 

meet specific requirements. 

I.5.2.1. Voltage balancing 

Maintaining the voltage balance across the individual submodules is crucial for the proper 

operation of an MMC. Sophisticated control algorithms are employed to actively monitor and 

adjust the voltage levels in each submodule, ensuring equal distribution of the overall voltage 

and preventing potential failures. Voltage balancing is crucial for the operation of modular 

multilevel converters. It involves controlling the charging and discharging of capacitors in sub- 

modules to maintain balanced voltages. This can be achieved through a closed-loop PI controller 

in the control stage, or using a logic-based algorithm in the modulation phase. The logic function 

approach is suitable for any PWM system, while the PI controller method is specifically for PSC- 

PWM. 

A simple voltage balancing strategy involves measuring capacitor voltages in each branch, 

comparing them, sorting submodule index numbers based on arm flow direction, and adjusting the 

number of submodules in the modulation stage. This ensures that submodules with lower capacitor 

voltages are charged in the positive current direction, while those with higher voltages are 

discharged in the negative direction. By comparing reference index numbers generated by 
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each submodule, the necessary gate signals for each submodule can be determined to maintain a 

constant switching frequency equal to the carrier frequency   of   the   PWM   system. Overall, 

voltage balancing is a critical aspect of ensuring the reliability and efficiency of modular multilevel 

converters, and the use of either a closed-loop PI controller or a logic-based algorithm can help 

achieve this balance effectively [1]. 

I.5.2.2. control strategies employed in modular multilevel converters 

The control strategies commonly used for MMC: 

 Pulse Width Modulation (PWM): Pulse Width Modulation is a fundamental control strategy 

used in modular multilevel converters (MMC) to regulate the output voltage and current. PWM involves 

switching the power devices on and off at a high frequency while varying the duty cycle to control the 

average output voltage and current of the converter. This strategy allows for precise control of the output to 

match the desired load demand, enabling efficient power conversion and high-quality output waveforms. 

Figure I.14, shows the output voltage of MMC during PWM control strategy. 

 

 

 
          

          

          

          

 

 
Figure I.10 : Output voltage of MMC based Pulse Width Modulation (PWM) Control 

 Current Control Techniques: Current control techniques focus on regulating the current flow 

within the MLC to ensure stability and optimal performance. By controlling the current levels, these 

techniques help manage power flow, reduce harmonics, and enhance the overall efficiency of the converter. 

Current control strategies are essential for maintaining system stability and ensuring safe operation in high- 

power applications. 

 Voltage Control Techniques: Voltage control techniques are employed in MLCs to manage the 

output voltage levels effectively. These strategies aim to regulate the voltage output to meet specific 

requirements, ensuring stable operation and optimal performance of the converter. Voltage control 

techniques play a critical role in maintaining the desired voltage levels, reducing harmonics, and improving 

the overall power quality of the system. 
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I.5.3. Comparison with Conventional Converters 

I.5.3.1. Advantages of Modular Multilevel Converters (MMCs) 

 Quality Output Performance: MMCs offer high-quality voltage and current output, 

ensuring superior power conversion efficiency and waveform quality. 

 Modularity and Scalability: MMCs are modular and scalable, allowing for easy extension 

to higher voltage and power levels by adding more submodules in series or parallel. 

 Lower Switching Losses: MMCs exhibit higher efficiency and reliability due to lower 

switching losses, enhancing overall system performance. 

 Reduced Voltage Stress: MMCs impose lower voltage stress on power devices, 

contributing to improved reliability and longevity of the components. 

 Fault-Tolerance and Redundancy: MMCs inherently offer fault-tolerance and redundancy, 

ensuring system stability and reliability even in challenging conditions. 

I.5.3.2. Disadvantages of Modular Multilevel Converters (MMCs): 

 Higher Complexity and Cost: MMCs entail higher complexity and cost due to the number 

of components required, sophisticated control algorithms, and communication systems. 

 Dynamic Interactions and Harmonics: MMCs can introduce dynamic interactions and 

harmonics in the system, potentially affecting stability and power quality. 

 Safety Concerns: The high voltage and current levels in MMCs necessitate effective 

protection and safety mechanisms to prevent faults and ensure safe operation. 

 Complex Control Requirements: MMCs require advanced control strategies to manage 

the switching of submodules and circulating currents effectively, adding to the complexity 

of operation. 

I.5.4. Mathematical Modeling 

Mathematical modeling of Modular Multilevel Converters (MMCs) is a complex task that 

involves representing the dynamic behavior of the converter’s components and the control 

strategies employed. The model typically includes the following elements: 

 Submodule Capacitance (C): Each submodule’s capacitor voltage needs to be modeled to ensure 

voltage balancing across the converter. 

 Arm Inductance (L): The inductance of the arms affects the current ripple and the dynamic 

response of the MMC. 

 Switching Functions (S): These represent the state of the IGBTs within each submodule, which 

are crucial for synthesizing the output voltage waveform. 
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 Control System: The control system model includes the algorithms for capacitor voltage 

balancing, power flow control, and modulation techniques. 

The mathematical model can be expressed using differential equations that describe the behavior 

of the MMC under different operating conditions. For instance, the state-space representation is a 

common approach where the state variables typically include the capacitor voltages and the branch 

currents. 

Here’s a simplified example of the state-space equations for an MMC: 

 
𝑑 1 1 
𝑉𝐶(𝑡) = 𝐼𝑎𝑟𝑚(𝑡) − 𝑆(𝑡)𝑉𝑜𝑢𝑡 (𝑡) 

𝑑𝑡 𝐶 𝐶 
17 

𝑑 1 1 𝑅 
𝐼𝑎𝑟𝑚(𝑡) = 𝑉𝑑𝑐(𝑡) − 𝑆(𝑡)𝑉𝐶 (𝑡) − 𝐼𝑎𝑟𝑚(𝑡) 

𝑑𝑡 𝐿 𝐿 𝐿 

 

18 

Where: 

 VC(t)is the capacitor voltage at time ( t ) 

 Iarm(t) is the arm current at time ( t ) 

 S(t) is the switching function at time ( t ) 

 Vout(t) is the output voltage at time ( t ) 

 Vdc(t) is the DC link voltage at time ( t ) 

 R is the resistance of the arm 

I.6. CONCLUSIONS 

As conclusion, power electronic converters serve as the cornerstone of contemporary electrical 

systems, facilitating efficient energy conversion and management across diverse applications. By 

regulating voltage, current, and frequency, these converters enable the seamless integration of 

renewable energy sources, improve electric drive performance, and optimize power distribution 

networks. Their significance extends across industrial, commercial, and residential sectors, where 

they play a crucial role in enhancing energy efficiency and mitigating environmental impact. 

Ongoing advancements in semiconductor technology, control algorithms, and system integration 

have propelled power electronic converters to unprecedented levels of performance and reliability. 

Ultimately, the future of power electronic converters holds the promise of a more resilient, 

adaptable, and sustainable energy infrastructure, ushering us toward a greener and more electrified 

world. As we push the boundaries of technological innovation, power electronic converters will 

remain indispensable in shaping the landscape of modern power systems for generations to come. 
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II. Machine Learning Fault Diagnosis 

II.1. Introduction 

Within electrical engineering, ensuring the dependable operation of power converters is crucial, 

particularly in systems where energy conversion is central. Faults, ranging from short circuits to 

component deterioration, have the potential to disrupt the smooth functioning of these converters, 

leading to hazards and inefficiencies. Therefore, grasping the intricacies of fault detection is vital 

for maintaining system integrity and operational safety. Fault detection involves identifying 

abnormalities or deviations from normal operating conditions within a system. In the context of 

multilevel power converters, this entails identifying faults such as overvoltage, undervoltage, 

overcurrent, and short circuits. The significance of fault detection cannot be overstressed; it not 

only ensures the longevity and reliability of the power system but also guards against catastrophic 

failures with far-reaching consequences. Engineers have developed numerous strategies to 

effectively detect and address faults. These techniques encompass both hardware-based and 

software-based approaches, each offering distinct advantages and applications. Hardware 

solutions often entail deploying specialized sensors and monitoring circuits to detect abnormalities 

in voltage, current, and temperature. Conversely, software-based methods utilize advanced 

algorithms and signal processing techniques to analyze system behavior and detect anomalies 

in real-time. These methods may include model-based approaches, such as observer-based fault 

detection, as well as data-driven methods like machine learning and neural networks. 

II.2. Machine Learning (ML) 

Machine learning, a subset of artificial intelligence (AI), focuses on crafting algorithms and 

methodologies enabling computers to learn from data and generate predictions or decisions. Unlike 

conventional programming, which relies on explicit instructions tailored to specific tasks, machine 

learning algorithms autonomously discern patterns and relationships from data without explicit 

programming for each scenario. 

The fundamental principle underlying machine learning is to empower computers to learn from 

data and enhance their performance progressively. This is achieved through statistical models and 

algorithms capable of autonomously recognizing patterns, correlations, and trends within datasets. 

Through the analysis of extensive data sets, machine learning algorithms can uncover valuable 

insights and make predictions or decisions that may elude human observation or manual analysis. 

(Figure II.14) Depicts four machine learning techniques and describes briefly the nature of data 

they require [5]. 
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Figure II.1 : Different machine learning techniques and their required 

II.3. Types of machine learning 

Machine learning involves training algorithms on large data sets, learning patterns, and data 

relationships to make predictions or decisions based on new, unseen data. These algorithms can 

be broadly divided into several types, including [5]: 

II.3.1. Supervised machine learning 

Supervised Learning involves training algorithms on labeled datasets, where each data point is 

paired with a corresponding label or outcome. The objective is to establish a mapping from input 

features to output labels. For instance, this could entail tasks like distinguishing between spam and 

non-spam emails, or forecasting housing prices based on factors such as location, size, and number 

of bedrooms. 

II.3.2. Unsupervised machine learning 

In Unsupervised Learning, algorithms are trained on unlabeled datasets, where no predefined 

labels or outcomes exist. Instead, the algorithm's objective is to unveil hidden patterns or structures 

within the data. This could involve tasks such as grouping similar data points together through 

clustering techniques or employing dimensionality reduction methods to extract significant 

features. 

II.3.3. Semi-supervised learning 

Semi-Supervised Learning merges aspects of both supervised and unsupervised learning. It 

involves training algorithms on datasets comprising both labeled and unlabeled data. This 

approach proves beneficial when labeled data is limited or costly to acquire, as it enables the 

algorithm to utilize both types of data to enhance performance. 
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II.3.4. Reinforcement machine learning 

Reinforcement Learning stands as a branch of machine learning in which an agent learns to make 

decisions through interaction with an environment and obtaining feedback in the form of rewards 

or penalties. The objective is to acquire a policy or strategy that maximizes cumulative rewards 

over time. Examples include instructing a robot to navigate a maze or training an AI to excel in 

video games. 

II.4. Machine Learning Classification 

Classification in machine learning is a fundamental technique aimed at sorting data points into 

predefined categories. This process entails training a model on a labeled dataset, where each data 

point is linked to a specific class or category. Through this training, the model discerns patterns 

and connections within the data, enabling it to predict the class labels of new, unseen data points. 

Classification tasks vary widely in complexity, ranging from straightforward binary 

classification, such as distinguishing between spam and non-spam emails, to more intricate multi-

class classification, like identifying different species of animals. The selection of a classification 

algorithm depends on various factors, including the dataset's characteristics, the number of classes, 

and the problem's complexity. 

Common classification algorithms encompass a range of techniques: 

 Logistic Regression: A linear model estimating the probability of a binary outcome based on 

predictor variables. 

 Decision Trees: Tree-like structures where each internal node represents a feature, and branches 

and leaf nodes signify decisions and class labels, respectively. 

 Random Forest: An ensemble method creating multiple decision trees during training and 

combining their outputs. 

 Support Vector Machines (SVM): A supervised learning model that segregates data points into 

classes by finding the optimal hyperplane. 

 Neural Networks: Deep learning models with interconnected layers of neurons, capable of 

learning intricate patterns and relationships within the data. 

II.5. Classification Types 

Classification in machine learning encompasses various types, each tailored to specific aspects of 

the classification problem and the structure of output classes. Below are some common 

classification types: 
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II.5.1. Binary Classification: This type involves sorting data points into one of two possible classes or 

categories. Examples include distinguishing between spam and non-spam emails, predicting customer 

churn, or diagnosing medical conditions. 

II.5.2. Multi-Class Classification: In multi-class classification, data points are categorized into one of 

three or more classes or categories. Examples include classifying different animal species, categorizing 

news articles into various topics, or identifying music genres. 

II.5.3. Multi-Label Classification: Multi-label classification assigns multiple labels to each data point, 

often suitable for tasks where data points can belong to multiple categories simultaneously. Examples 

include classifying images with multiple objects, tagging articles with relevant topics, or labeling products 

with multiple attributes. 

II.5.4. Imbalanced Classification: Imbalanced classification deals with datasets where one class 

significantly outnumbers the others, requiring specialized techniques to handle the imbalance and ensure 

accurate predictions for minority classes. 

II.5.5. Hierarchical Classification: This type organizes classes into a hierarchical structure, facilitating a 

more organized and structured approach to classification, particularly in domains with complex 

relationships between classes and a large number of classes. 

II.5.6. Ordinal Classification: Ordinal classification addresses datasets where classes possess a natural 

ordering or hierarchy. The objective is to predict the ordinal relationship between classes rather than 

assigning arbitrary labels. Examples include ranking products by customer satisfaction or predicting disease 

severity. 

II.6. Learning Data in Supervised and Unsupervised Learning 

Here are the fundamental differences between supervised learning (and) unsupervised learning( in the 

context of modular multilevel converters (MMCs) 

1. Supervised Learning 

- Definition: Supervised learning relies on labeled datasets, where each data point includes both input 

features and corresponding output labels. 

- Purpose: The objective is to train algorithms to classify data or predict outcomes accurately. 

- Examples: 

- Classification: Algorithms categorize test data into specific groups (e.g., identifying faults in MMCs as 

either open-circuit or short-circuit). 

- Regression: Models predict numerical values based on input data (e.g., predicting the temperature rise in 

an MMC under different load conditions). 

- Common Algorithms 
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- For classification: Linear classifiers, support vector machines, decision trees, random 

forests. 

- For regression: Linear regression, logistic regression, polynomial regression. 

2. Unsupervised Learning: 

- Definition:(Unsupervised learning analyzes) unlabeled datasets without predefined output 

labels. 

- Tasks: 

- Clustering: Grouping similar data points based on inherent similarities or differences (e.g., 

clustering operating conditions of MMCs to identify common patterns). 

- Association: Discovering patterns or associations within the data. 

- Dimensionality Reduction: Reducing the number of features while preserving essential 

information (e.g., simplifying the feature set for monitoring MMC performance). 

- Use Cases 

- Market segmentation, image compression, anomaly detection, etc. 

II.7. Machine Learning Data Quantitative Requirements 

Machine learning (ML) data requirements for modular multilevel converters (MMC)s involve several 

crucial considerations. Let's explore them: 

1. Dataset Size 

- The size of your training dataset significantly impacts ML model performance. For MMC-related tasks, 

ensure: 

- Sufficient Samples: Have an adequate number of samples representing various operating conditions, 

fault scenarios, and system dynamics. 

- Imbalance: Address class imbalance if present (e.g., normal operation vs. fault conditions). 

- Generalization: Aim for a dataset that generalizes well to unseen scenarios. 

2. Feature Selection 

- Choose relevant features that capture the behavior of MMCs, including: 

- Voltage and Current Waveforms: To capture transient and steady-state behavior. 

- Switching Patterns: Representing converter operation. 

- Environmental Factors: Such as temperature and humidity. 

3. Data Quality 

- Clean and preprocess your data: 
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- Outliers: Detect and handle outliers. 

- Missing Data: Impute missing values. 

- Noise Reduction: Apply filters or denoising techniques. 

4. Temporal Resolution 

- Decide on the temporal resolution of your data: 

- Sampling Rate: Determine how frequently data is collected (e.g., per second, minute, etc.). 

- Transient vs. Steady-State: Ensure the capture of both transient and steady-state behavior. 

5. Labeling 

- For supervised learning, ensure accurate labels: 

- Fault Labels: Identify fault types (e.g., open-circuit, short-circuit). 

- Operating Modes: Different MMC modes (e.g., grid-connected, islanded). 

6. Validation and Testing 

- Reserve a portion of your data for validation and testing. 

- Use techniques like cross-validation to assess model performance. 

II.8. Metrics in classification problems 

Evaluation metrics commonly used in classification problems are crucial for assessing the performance of 

machine learning models, especially in binary or multiclass classification tasks. Here are some key metrics: 

1. Accuracy 

- Accuracy measures how often the classifier correctly predicts the class labels. 

- Defined as the ratio of the number of correct predictions to the total number of predictions. 

- However, accuracy alone can be misleading, especially in class-imbalanced datasets with a 

significant disparity between positive and negative labels. 

- Example: A model with 99% accuracy might seem excellent, but context matters. 

2. Precision and Recall 

- Precision: The proportion of true positive predictions (correctly predicted positive instances) 

out of all positive predictions. 

- Recall (Sensitivity: The proportion of true positive predictions out of all actual positive 

instances. 

- These metrics are particularly useful for imbalanced datasets. 
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- Precision focuses on minimizing false positives, while recall aims to minimize false 

negatives. 

- The F1-score combines precision and recall into a single metric, balancing both aspects. 

3. Confusion Matrix 

- A table summarizing the performance of a classification algorithm. 

- Shows true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

counts. 

- Useful for understanding the trade-offs between different metrics. 

4. Log-Loss (Cross-Entropy Loss) 

- Commonly used for probabilistic models. 

- Measures the difference between predicted probabilities and actual class labels. 

- Penalizes confident incorrect predictions more than uncertain ones. 

5. AUC-ROC (Area Under the Receiver Operating Characteristic Curve) 

- Evaluates the model's ability to distinguish between positive and negative classes across 

different probability thresholds. 

- Summarizes the trade-off between true positive rate (recall) and false positive rate. 

- AUC values close to 1 indicate better performance. 

II.9. Training Data Preparation 

Data preparations crucial for the successful implementation of machine learning models, including those 

related to modular multilevel converters (MMCs) Let's delve into how data preparation specifically applies 

to MMCs: 

1. Challenges in MMC Simulation: 

- Simulating the electromagnetic transients of MMCs in high-voltage direct current (HVDC) 

systems can be demanding due to the high number of nodes and semiconductor devices involved. 

- To mitigate this challenge, researchers have developed various MMC models that strike a 

balance between simulation speed and accuracy. 

- A common feature among these models is the simplification of semiconductor device 

representations within the MMC. 

- These models are designed for specific tasks, such as power flow analysis, stability 

assessments, and electromagnetic transient (EMT) simulations. 

2. Trade-offs in Model Selection: 
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- Different MMC models are suitable for different simulation tasks based on the trade-off 

between accuracy and efficiency. 

- For steady-state power flow (PF) analyses, simpler models are preferred as they focus on grid 

steady-state operation. 

- In contrast, EMT simulations require more detailed models to capture fast dynamics. 

- The choice of model depends on the specific application and computational requirements. 

3. Isomorphism-Based Approach: 

- A novel approach for MMC simulation involves sub-circuit isomorphism. 

- Initially used for analyzing modular electronic circuits (e.g., random access memories), this 

approach clusters structurally identical sub-modules within the MMC. 

- By leveraging common behavior, it enables detailed yet efficient simulations of HVDC 

systems. 

- This method provides a balance between accuracy and computational cost. 

II.10. The K Nearest Neighbors (KNN) 

II.10.1. Definition 

K-Nearest Neighbors (K-NN) is celebrated as one of the simplest and most straightforward 

Machine Learning algorithms, making it highly accessible for implementation. Despite its 

simplicity, K-NN boasts versatility and resilience, rendering it a formidable tool for both 

classification and regression tasks. The algorithm's acronym, "K-Nearest Neighbors," succinctly 

encapsulates its essence. Its adaptability stems from its capacity to handle diverse tasks, ranging 

from classification to regression. Fundamentally, K-NN operates on the premise that similar 

entities tend to cluster together in proximity. However, it's important to note that K-NN's utility 

comes at the cost of memory consumption during training. As datasets grow in size, K-NN's 

performance may suffer due to its need to compute distances between test and training data, 

resulting in slower execution times. The parameter "K" in K-NN signifies the number of neighbors 

considered in the algorithm. Determining the optimal value of K often entails a trial- and-error 

approach, as it is a hyperparameter that is not learned directly from the data. 

II.10.2. Theoretical component of the K-NN algorithm 

The K-Nearest Neighbors (K-NN) algorithm stands as a straightforward yet potent tool utilized 

for both classification and regression tasks within machine learning. Central to its operation is 

the principle of similarity: akin data points tend to yield akin outcomes. 

The conceptual framework of the k-NN algorithm encompasses several pivotal elements: 
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1. Distance Metric: To gauge the resemblance between data points, a distance metric becomes 

imperative. While Euclidean distance stands as the most prevalent choice, alternative metrics like 

Manhattan distance or cosine similarity find utility based on data characteristics and task nuances. 

2. K-Nearest Neighbors: The 'K' parameter in K-NN denotes the quantity of Nearest Neighbors 

taken into account during predictions. Upon encountering a query point, the algorithm discerns the k nearest 

neighbor’s contingent on the designated distance metric. 

3. Voting Mechanism: Upon identifying the K nearest neighbors, the algorithm resorts to a voting 

mechanism to deduce the class label (in classification scenarios) or the value (in regression contexts) of the 

query point. In classification, the predominant class among the K Nearest Neighbors commonly dictates the 

class label assignment. 

4. Parameter Tuning: The selection of 'K' wields significant influence within K-NN. A diminutive 

'K' value may precipitate overfitting, whereas an expansive 'K' value may foster underfitting. Ergo, opting 

for an apt 'K' value via methodologies like cross-validation is indispensable. 

5. Scalability: The scalability of K-NN poses a prominent challenge, particularly concerning 

voluminous datasets. Given the algorithm's prerequisite of computing distances between the query point and 

all other data points, the computational overhead can be substantial, notably within high-dimensional 

spaces. 

6. Data Normalization: Normalizing feature values frequently prove requisite to preclude features 

with substantial scales from overshadowing distance computations. Prevalent normalization techniques 

encompass min-max scaling or z-score normalization. 

7. Handling Missing Values: Addressing missing values emerges as another facet within K-NN. 

Imputation techniques such as mean imputation or median employment can rectify missing values 

preceding algorithmic application. 

II.11. Decision Trees algorithm 

The decision tree algorithm stands as a cornerstone within data mining, particularly in the realm 

of classification systems. This algorithm, renowned for its versatility, excels in handling large 

volumes of data, making it a vital tool in drawing insights from categorical class names. By 

leveraging training sets and class labels, it not only makes educated assumptions but also efficiently 

categorizes newly acquired data. Within the vast landscape of machine learning classification 

algorithms, the focus of this paper rests on the decision tree algorithm and its overarching 

significance (Figure 12) illustrate a structure of DT. 
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Figure II.2: illustrate a structure of DT 

 

 
II.12. Decision Tree Types 

In machine learning, decision trees are categorized into two main types: 

II.12.1. Classification Trees 

These trees are employed when the target variable is categorical, determining the occurrence or 

non-occurrence of an event, typically resulting in a binary outcome. 

For instance, a classification tree might predict a student's course pass or fail based on factors 

such as study hours per week, test scores, and attendance. 

II.12.2. Regression Trees 

Regression trees come into play when the target variable is continuous, forecasting numerical 

values using historical data or information sources. For example, a regression tree could forecast 

the price of a house based on attributes like location, size, and number of bedrooms. 

Both classification and regression trees are encompassed within the "classification and regression 

trees" (CART) framework. The primary distinction lies in classification trees predicting 

categorical results, while regression trees forecast continuous numerical outcomes. 

II.13. Advantages and disadvantages of Decision Trees 

II.13.1. Advantages of Decision Trees 

 Interpretability: Decision trees are highly intuitive and easy to understand, allowing for clear 

visualization of decision-making processes. 

 Minimal Data Preparation: Unlike other algorithms, decision trees require minimal data 

preparation, eliminating the need for normalization or handling missing values. 
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 Non-Parametric Nature: Decision trees do not rely on strict assumptions like linear regression, 

making them adaptable to various data distributions. 

 Versatility: They can be used for multiple purposes, from data exploration to solving both 

regression and classification problems, offering a wide range of applications. 

 Handling Non-Linearity: Decision trees are capable of managing complex decision boundaries, 

making them effective for solving non-linear problems. 

II.13.2. Disadvantages of Decision Trees 

1. Overfitting: Decision trees are prone to overfitting due to high variance, especially when the trees 

are deep and there are many features. 

2. Feature Reduction and Data Resampling: Training decision trees can be time-consuming, often 

requiring feature reduction and data resampling to achieve efficient performance, particularly with 

imbalanced datasets. 

3. Optimization Challenges: Decision trees use a greedy algorithm that focuses on local optimal 

solutions, which may not always lead to the best global result. 

4. Computational Expense: Decision trees can be computationally expensive, especially with large 

datasets, affecting scalability and efficiency. These factors should be considered when selecting decision 

trees for model development to optimize results and address potential limitations. 

 

 

 
II.14. CONCLUSIONS 

In conclusions, Machine Learning (ML) fault diagnosis offers a groundbreaking approach across 

industries, providing a data-centric method to efficiently detect and rectify system irregularities. 

Utilizing ML algorithms like neural networks, decision trees, and support vector machines 

alongside comprehensive datasets containing historical performance data and sensor readings, 

fault diagnosis systems excel in anomaly detection, failure prediction, and proactive maintenance. 

The adoption of ML-driven fault diagnosis shows immense potential across diverse sectors such as 

manufacturing, healthcare, and automotive, where early fault detection translates to improved 

reliability, reduced downtime, and heightened operational efficiency. Nonetheless, challenges 

persist, including the necessity for robust feature engineering, managing imbalanced datasets, and 

ensuring the interpretability of ML models, especially in safety-critical settings. Despite these 

hurdles, continual advancements in ML techniques, paired with the proliferation of sensor 

technology and big data analytics, highlight the ever-expanding capabilities of ML fault diagnosis 

to revolutionize predictive maintenance methodologies and propel innovation in the era of

 intelligent, self-regulating system 
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III. Simulation and the results obtained 

III.1. Introduction 

In this chapter, simulation results of healthy MMC are presented. Then a failure of upper and lower 

capacitors results are considered. Finally, a diagnosis method using machine learning approach is 

detailed. 

III.2. Simulation results with healthy MMC 
 

 

Figure III.1: the output of natural simulation of MMC 

The figure III.17 shows simulation results of MMC under normal operating conditions during 

(0.3s ): 

1 - The first curve represents the output current (Is), which present a periodic sine form with an 

amplitude [9.1,-9.1] and a constant frequency 50 Hz, which indicates a stable alternating current. 

2- The second curve VC1 is upper capacitor voltage that is regulated to 800 V (Vdc/5). 

3- The third curve VC4 is lower capacitor voltage that is regulated to 800 V (Vdc/5). 

4-the fourth curve is output voltage Vs, where 6 levels are shown, with an amplitude of [2000 - 

2000 ] and a constant frequency equal to 50Hz. 
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III.3. Simulation results with the fault in SM1 
 

 
 

Figure III. 2 the output of simulation of MMC with the fault in SM1 

The figure III.18 shows simulation results of MMC under one of upper capacitor failure conditions, 

this failure is introduced at 0.15s: 

1 - The first curve represents the output current (Is), which present a periodic sine form with an 

amplitude [9.1, -9.1] and a constant frequency 50 Hz, which indicates a stable alternating current 

and show currant harmonics during the failure around 0.15s to 0.30s. 

2- The second curve VC1 is upper capacitor voltage that is regulated to 800 V (Vdc/5) and show 

voltage harmonics during the failure around 0.15s to 0.30s there a clear drop up to [100-200 V] . 

3- The third curve VC2 is lower capacitor voltage that is regulated to 800 V (Vdc/5) and show 

harmonics during the failure are relative altitudes of up to 850V that around 0.15s to 0.30s. 

4-the fourth curve is output voltage Vs, where 6 levels are shown, with amplitude of [2000 - 

2000] and a constant frequency equal to 50Hz than show voltage harmonics during the failure 

around 0.15s to 0.30s. 



CHAPTER III: SIMULATION AND THE RESALTS OBTAINED 

40 

 

 

 

III.4. Simulation results with the fault in SM7 
 

 

Figure III.3 the output of simulation of MMC with the fault in SM7 
 

The figure III.19 shows simulation results of MMC under one of lower capacitor failure 

conditions; this failure is introduced at 0.15s: 

1 - The first curve represents the output current (Is), which present a periodic sine form with an 

amplitude [9.1, -9.1] and a constant frequency 50 Hz, which indicates a stable alternating current 

and show currant harmonics during the failure around 0.15s to 0.30s . 

2- The second curve VC1 is lower capacitor voltage that is regulated to 800 V (Vdc/5) and show the 

voltage harmonics during the failure are relative altitudes of up to 850-900V that around 0.15s to 

0.30s. 

3- The third curve VC2 is upper capacitor voltage that is regulated to 800 V (Vdc/5) and show 

voltage harmonics during the failure around 0.15s to 0.30s there a clear drop up to [100-200 V]. 

4- The fourth curve is output voltage Vs, where 6 levels are shown, with amplitude of [2000 - 

2000] and a constant frequency equal to 50Hz than show there increase in volume disturbances 

or noise spikes that are particularly noticeable around 0.15s to 0.30s. 
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III.5. Simulation results with the fault in SM1 and SM7 
 

 
 

Figure III.4 the output of simulation of MMC with the fault in SM1 and SM7 
 

The figure III.20 shows simulation results of MMC under upper and lower capacitors 

failure conditions; this failure is introduced at 0.15s: 

1.  The first curve represents the output current (Is), which present a periodic sine form with 

an amplitude [9.1, -9.1] and a constant frequency 50 Hz, which indicates a stable 

alternating current and show currant harmonics during the failure around 0.15s to 0.30s. 

2. The second curve VC1 is lower capacitor voltage that is regulated to 800 V (Vdc/5) and show 

the voltage harmonics during the failure are relative altitudes of down to 850-900V that 

around 0.15s to 0.30s. 

3. The third curve VC1 is upper capacitor voltage that is regulated to 800 V (Vdc/5) and show 

voltage harmonics during the failure around 0.15s to 0.30s there a clear drop down to [100-

150 V] . 

4. The fourth curve is output voltage Vs, where 6 levels are shown, with amplitude of [2000 -2000] 

and a constant frequency equal to 50Hz than show there increase in volume disturbances or noise 

spikes that are particularly noticeable around 0.15s to 0.30s. 
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III.6. Fault diagnosis using machine learning algorithms 

III.6.1. KNN algorithm with PYTHON 

Machine learning algorithm (KNN) is applied in this section in order to develop a diagnosis method with 

high accuracy using PYTHON 

The following is algorithm of KNN and its results 

#############################KNN_Diagnosis################################ 

############ 

import pandas as pd 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder, MinMaxScaler 

from sklearn.utils import shuffle 

# read CSV data into a pandas DataFrame 

data = pd.read_csv('/content/MMC.csv',sep=',') 

data=shuffle(data) 

# extract features and target variable 

X = data[['Vc1U','Vc3L']] #.values.reshape(-3, 3) # one feature 

y = data['Label'].values 

# Split the dataset into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=42) 

 

# Create a KNN classifier with K=3 

knn = KNeighborsClassifier(n_neighbors=3) 

 

# Train the classifier 

knn.fit(X_train, y_train) 

 

# Make predictions on the test set 

y_pred = knn.predict(X_test) 

 

# Print the predicted labels 

print("Predicted labels:", y_pred) 

 

# Print the accuracy of the classifier 

accuracy = knn.score(X_test, y_test) 

print("Accuracy:", accuracy) 

 

########################################################################## 

#### 

from sklearn.metrics import precision_score 

from sklearn.metrics import f1_score 
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Results 
 

Predicted labels: ['TF' 'TF' 'H' ... 'OUF' 'H' 'TF'] 

Accuracy: 0.9991663887962654 

recall_score: 0.9991624176683747 

precision_score: 0.9991555281904021 

f1_score: 0.9991494250103802 

specificity_score: 0.9997240494688098 

accuracy_score: 0.9991663887962654 

 

 

III.6.2. Decision_Tree algorithm with PYTHON 

Machine learning algorithm (Decision_Tree) is applied in this section in order to develop a diagnosis 

method with high accuracy using PYTHON 

The following is algorithm of Decision_Tree and its results 
 

 

#########################Decision_Tree#################################### 

from sklearn.metrics import recall_score 

from imblearn.metrics import specificity_score 

from sklearn.metrics import accuracy_score 

 
a=recall_score(y_test, y_pred, average='macro') 

b=f1_score(y_test, y_pred, average='macro') 

c=precision_score(y_test, y_pred, average='macro') 

d=specificity_score(y_test, y_pred, average='macro') 

e=accuracy_score(y_test, y_pred) 

 
print("recall_score:", a) 

print("precision_score:", b) 

print("f1_score:", c) 

print("specificity_score:", d) 

print("accuracy_score:", e) 

######## 

import pandas as pd 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.utils import shuffle 

 

 
# read CSV data into a pandas DataFrame 

data = pd.read_csv('/content/MMC.csv',sep=',') 

data=shuffle(data) 
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# extract features and target variable 

X = data[['Vc1U','Vc3L']] #.values.reshape(-3, 3) # one feature 

y = data['Label'].values 

# split data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=42) 

 

# create decision tree classifier 

clf = DecisionTreeClassifier() 

 

# train classifier 

clf.fit(X_train, y_train) 

 

# Make predictions on the test set 

y_pred = clf.predict(X_test) 

 

# evaluate performance on testing set 

accuracy = clf.score(X_test, y_test) 

print(f"Accuracy on testing set: {accuracy}") 

########################################################################## 

######## 

from sklearn.metrics import precision_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import recall_score 

from imblearn.metrics import specificity_score 

from sklearn.metrics import accuracy_score 

 

a=recall_score(y_test, y_pred, average='macro') 

b=f1_score(y_test, y_pred, average='macro') 

c=precision_score(y_test, y_pred, average='macro') 

d=specificity_score(y_test, y_pred, average='macro') 

e=accuracy_score(y_test, y_pred) 

 

print("recall_score:", a) 

print("precision_score:", b) 

print("f1_score:", c) 

print("specificity_score:", d) 

print("accuracy_score:", e) 

Results 

Accuracy on testing set: 0.9998332777592531 

recall_score: 0.9998263888888889 

precision_score: 0.9998312239457303 

f1_score: 0.9998361730013106 
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specificity_score: 0.9999441090990386 

accuracy_score: 0.9998332777592531 

III.7. CONCLUSION 

In this chapter, we have performed extensive simulations to evaluate the fault diagnosis 

capabilities of the proposed power electronic converter system. The results obtained from these 

simulations provide valuable insights and demonstrate the effectiveness of our diagnostic approach 

with high accuracy. 
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GENERAL CONCLUSION 

The MMC is anticipated to be a preferred choice for medium and high-voltage power applications 

due to its inherent advantages, such as scalable multilevel output voltage, low harmonic content in 

output voltage and current, modular and flexible design, enhanced efficiency, and redundancy. As 

a topology oriented towards applications, it is expected that the MMC will be increasingly 

customized and well-adapted to specific application areas, particularly in power transmission and 

quality improvement. Focusing on submodule and overall topologies, mathematical modeling and 

control methods, modulation techniques, and power losses, with an emphasis on the incorporation 

of WBG technology. Among various submodule configurations, the HBSM remains dominant in 

commercial use due to its simple architecture and low cost. Newly developed submodule circuits 

could be examined in comparative studies to balance module size and cost against switching losses 

and fault tolerance. Additionally, new advanced topologies could be explored to achieve better 

performance and meet diverse load requirements, especially under fluctuating or unbalanced loads. 

Regarding MMC control, this review discusses the control of output voltage and current under 

different grid conditions, submodule balancing control, and circulating current control. Key 

challenges include managing submodule balancing, circulating current control, simultaneous 

control of multiple variables, and the resulting complexity. Nonlinear and predictive control 

strategies are highlighted as promising alternatives to conventional methods. Modulation 

techniques are reviewed and categorized by switching frequency, considering application areas 

and implementation efforts. Power losses are analyzed with WBG technology using various 

modulation methods and switching frequencies. Performance comparisons show that PSC-PWM 

offers better output performance but generates higher power losses compared to PD-PWM and 

SAM-PWM. WBG semiconductors demonstrate superior performance in reducing power losses 

and increasing power efficiency, particularly at high switching frequencies. Integrating WBG 

technology will further enhance MMC applications by offering advantages such as high-voltage 

and high-power operations, low power losses, high efficiency, improved reliability, and reduced 

module size and cooling requirements. 

Finally, this review focuses on MMC topology, modeling, control, and modulation techniques 

for stationary applications, with future research set to explore MMC applications in vehicles. 
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