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 شكر و عرفان

 

اللهم صلي على محمد و على آل  محمد كما صليت على ابراهيم و آل ابراهيم و بارك على محمد كما باركت 

 . على ابراهيم و آل ابراهيم في العالمين انك حميد مجيد

 .علينا سابق          شكر لكم حق علينا اوجبيا من لهم فضل 

 . نتوجه بخالص الشكر و الامتنان لعائلتنا التي ما فتئت و لا ملت يوما عن زرع حب العلم و طلبه داخلنا

" التي لم تبخل علينا بنصائحها و توجيهها المستمر. كما سائحية التجانينسال الله ان يصوب خطى الاستاذة "

 انا للاساتذتنا الكرام اللذين كانوا جزءا مهما في جعل هذه المسيرة الدراسية تتكلل بالنجاحنعبر عن خالص امتن

. الفترة التدريبيةحتى بعد انتهاء  ه لدراستنالمتابعت ربص العملي "سفيان سعيدي"الت مشرفل ناوتقدير ناشكر

من فريق الشبكات،  مطولة كلمعرفة جازي الذين ساعدونا في اكتساب  وأيضًا، شكرًا لجميع أعضاء فريق

 .الشبكي إلى فريق الأمنحتى  ، ووصولاً BSSوفريق هندسة 

 

 

 

 

 

 

 

 

 

 

 داءــــــــــإه

 

 .و في ذا السرور بتلك الكرب              و هذا المقام بذاك التعب
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 .الحمد لله الذي ما ختم جهد و لا تم سعي إلا بفضله

 .الدائم والسند الذي لا يميلإلى والدي الكريمين اللذين كانا العون 

 .الأعزاء اللذين كانوا مصدر الدعم و القوة أخواتيو  إخوتيإلى 

 .حفظكم الله و بارك لكم الأوفياءإلى خلاني 

 و اختص بالامتنان للعزيز حكيم شريفي و عمي الموقر عبد الرحمان شريفي كونهم أول من دفعوني لاجتياز

 .بخبرتهم ومعرفتهم في هذا المجالهذه الخطوة ولم يبخلوا عني 

البعيد  .ات حياتيبكل امتنان، أتوجه بخالص الشكر إلى أصدقائي الأعزاء الذين كانوا دائماً سنداً لي في كل خطو

 .المتواصل وتشجيعكم الذي لا ينضب شكراً لكم على دعمكم منهم و القريب لكم كل التقدير و الامتنان

الذاوية التي قضت عذابا تحت سطوة الفقر و الحرب و اليتم ، نرفع صلاة لأرواحهم  إلى الشفاه الذابلة و الأجسام

 .الطاهرة و نكفكف دموع مآسيهم الغائرة في من بقي منهم بيننا

 اللهم انصر إخواننا في فلسطين و قوي سواعدهم

. 

 ”سلمان فارس شريفي“

 

 

 

 

 داءــــــــــإه

 

 لأحب الناس إلي. يسعدني أن أتمكن من التعبير عن امتناني

أهدي هذا العمل من كل قلبي إلى والدتي العزيزة فوزية أولاد سالم، فقد جعلتني من أنا اليوم ولم تبخل بأي شيء 

لتتأكد من أنني محبوب وآمن ومدعوم وموجه، والأهم من ذلك كله، ناجح، ملهمتي التي لم تفشل أبداً في تشجيعي 

 معنوياً وروحياً وعاطفيًا...

 ئلتي وأصدقائي الأعزاء، جميعاً باسمه.إلى عا

تعليقاتها و يجاني، على صبرها الثمين وملاحظاتها القيمة أثناء هذا المشروع ت الدكتورةشكر خاص لمشرفتي، 

 الثاقبة.

أود أن أشكر السيد سعيدي سفيان وكل موظفي شركة جازي، الذين كانت نصائحهم وصبرهم ودعمهم حاسمة 

 .في إكمال هذه الأطروحة
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 .وأخيرًا، إلى كل من ساعدني خلال رحلتي وجعلها مميزة ومليئة بالذكريات

 

 ”أيمن حماني ”
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Abstract 

 

The thesis explores the integration of Software-Defined Networking (SDN) with containers and 

Kubernetes for Internet Service Providers (ISPs). The study focuses on the practical implementation 

of SDN, Containers, and Kubernetes in a real-world ISP environment, highlighting the benefits and 

challenges of this integration. The research begins by discussing the fundamental concepts of 

computer networking, including the history of computer networks and the evolution of SDN. It then 

delves into the technical aspects of the latter, containers and Kubernetes, exploring their benefits, 

limitations, and potential applications.  

The practical implementation of SDN, containers, and Kubernetes is demonstrated through a 

case study involving a collaboration with DJEZZY, an Algerian ISP. The study outlines the project 

plan, network modifications, and the configuration of the Legacy network, including the deployment 

of protocols such as IS-IS, BGP, OSPF, MPLS, and MPLS-TE.  

The testing methodology, which involves utilizing tools like IPerf to assess the network's 

performance in terms of bandwidth, latency, and packet loss, is also presented. The results of the 

study highlight the potential benefits of SDN, containers, and Kubernetes in improving network 

efficiency, scalability, and security for ISPs.  

 

Keywords 

SDN, containers, Kubernetes, Internet Service Providers, network integration, network efficiency, 

scalability, security. 
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لمقدمي خدمات الإنترنت  Kubernetesو Containersال( مع SDN)تستتتكشتتف الأطروحة تكامل الشتتبكات المعرفة بالبرمجيات 

(ISPs) تركز الدراستتتتة على التنفيذ العملي ل تتتتتتتتتت .SDN واContainers وKubernetes  في بيئة مزود خدمة الإنترنت في العالم

الحقيقي، مع تستلي  الضتوء على فوائد وتحديات هذا التكامل. يبدأ البحب بمناقشتة المفاهيم الأستاستية لشتبكات الكمبيوتر، بما في ذلك 

، ويستتتتتتتكشتتتتتف Kubernetesو Containers. ثم يتعمق في الجوانب التقنية للأخيرة والSDNيخ شتتتتتتبكات الكمبيوتر وتطور تار

 فوائدها وقيودها وتطبيقاتها المحتملة.

، مزود DJEZZYمن خلال دراستة حالة تتضتمن التعاون مع  Kubernetesوالحاويات و SDNيتم توضتيح التنفيذ العملي ل تتتتتتتت 

لجزائري. توضتتتتتتح الدراستتتتتتة خطة المشتتتتتتروع وتعديلات الشتتتتتتبكة وتكوين الشتتتتتتبكة التقليدية، بما في ذلك نشتتتتتتر خدمة الإنترنت ا

 .MPLS-TEو MPLSو OSPFو BGPو IS-ISالبروتوكولات مثل 

ا عرم منهجية الاختبار، والتي تتضتتمن استتتخدام أدوات مثل  لتقييم أداء الشتتبكة من حيب عرم النطاا الترددي  IPerfيتم أيضتتً

في  Kubernetesو Containersو SDNوزمن الوصول وفقدان الحزمة. تسل  نتائج الدراسة الضوء على الفوائد المحتملة ل تتتتتتت 

 تحسين كفاءة الشبكة وقابلية التوسع والأمان لمقدمي خدمات الإنترنت.

 

 الكلمات المفتاحية

SDN ،Containers ،Kubernetesالأمن.، كة، كفاءة الشبكة، قابلية التوسع، مقدمو خدمات الإنترنت، تكامل الشب 
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Résumé 

 

La thèse explore l'intégration des réseaux définis par logiciel (SDN) avec des conteneurs et 

Kubernetes pour les fournisseurs de services Internet (FAI). L'étude se concentre sur la mise en œuvre 

pratique de SDN, de conteneurs et de Kubernetes dans un environnement FAI réel, soulignant les 

avantages et les défis de cette intégration. La recherche commence par discuter des concepts 

fondamentaux des réseaux informatiques, y compris l'histoire des réseaux informatiques et l'évolution 

du SDN. Il aborde ensuite les aspects techniques de ces derniers, des conteneurs et de Kubernetes, en 

explorant leurs avantages, leurs limites et leurs applications potentielles. 

La mise en œuvre pratique du SDN, des conteneurs et de Kubernetes est démontrée à travers 

une étude de cas impliquant une collaboration avec DJEZZY, un FAI algérien. L'étude décrit le plan 

du projet, les modifications du réseau et la configuration du réseau traditionnel, y compris le 

déploiement de protocoles tels que IS-IS, BGP, OSPF, MPLS et MPLS-TE. 

La méthodologie de test, qui implique l'utilisation d'outils tels qu'IPerf pour évaluer les 

performances du réseau en termes de bande passante, de latence et de perte de paquets, est également 

présentée. Les résultats de l'étude mettent en évidence les avantages potentiels du SDN, des 

conteneurs et de Kubernetes pour améliorer l'efficacité, l'évolutivité et la sécurité du réseau pour les 

FAI. 

 

Mots clés 

SDN, conteneurs, Kubernetes, fournisseurs d'accès Internet, intégration réseau, efficacité réseau, 

évolutivité, sécurité. 
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General Introduction 

 

The rapid evolution of telecommunications and networking technologies necessitates a 

continual reassessment of legacy network architectures. Increasing demands from modern 

technologies such as 5G, IoT, and FTTH have presented challenges to Internet Service Providers 

(ISPs) in delivering high-performance, scalable, and cost-effective network services. Conventional 

network designs, characterized by rigidity and complexity, struggle to meet the growing demands for 

bandwidth, flexibility, and efficient management. To address these challenges, innovative approaches 

such as Software-Defined Networking (SDN) and containerization technologies have emerged. 

Software-Defined Networking (SDN) decouples the control plane from the data plane, enabling 

centralized, programmable network management. This paradigm allows for dynamic resource 

allocation, improved network visibility, and greater operational flexibility. Concurrently, 

containerization, particularly through Kubernetes, provides a lightweight and efficient method to 

deploy and manage applications. Kubernetes automates the deployment, scaling, and operations of 

application containers across a cluster of machines. 

This thesis explores the integration of SDN with Kubernetes to enhance ISP networks. The 

research develops a framework leveraging both technologies to address the limitations of Legacy 

networks. The study is structured as follows: 

    Introduction and Background (chapter 1): An overview of the current 

telecommunications landscape and the evolution of network technologies, identifying specific 

challenges faced by ISPs. The rationale for integrating SDN with Kubernetes and the primary research 

objectives are outlined. 

    Methodology (chapter 2): A detailed methodological framework for the proposed 

integration, including the selection of SDN controller OpenDaylight, container orchestration tools 

(Kubernetes), and the use of network simulation environment GNS3, The experimental setup and 

integration processes are described. 

    Results and Analysis (chapter 3): Presentation of experimental results comparing fault 

tolerance and latency improvements in SDN-integrated networks versus traditional architectures. The 

findings will signify the enhancements in network resilience and performance. 
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    Discussion: Analysis of the experimental results and their implications for ISP network 

management practices. The discussion includes limitations of the study and suggestions for future 

research. 

    Conclusion: A summary of key findings, emphasizing the practical contributions of the 

research in advancing network management practices. The potential of SDN and Kubernetes 

integration to transform ISP networks is highlighted, along with recommendations for further 

exploration. 

Through this Practical research, the thesis aims to provide valuable insights into the practical 

application of SDN and containerization technologies, offering a pathway to more efficient, scalable, 

and resilient ISP network infrastructures. 
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Basic concepts and technical studies 

 

 

 

1. Introduction  
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4. Containers 
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7. Conclusion 
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Chapter 1: Basic concepts and technical studies 

 

 

1.1 Introduction: 

The contemporary landscape of telecommunications is witnessing rapid transformations driven 

by advancements in networking technologies and the exponential growth of data traffic. Among these 

technologies, Software-Defined Networking (SDN) has emerged as a paradigm-shifting architecture 

designed to address the limitations of legacy network infrastructures. This thesis explores the 

integration of SDN with Containers and Kubernetes, specifically within the context of Internet 

Service Providers (ISPs), to enhance network management, scalability, and service delivery. 

The inception of modern computer networks can be traced back to ARPANET, which 

introduced packet-switching techniques and laid the foundation for today's Internet. Over the decades, 

networking technologies have evolved to address increasing demands for bandwidth, security, and 

flexibility. Legacy networks, characterized by static and hardware-centric configurations, struggle to 

adapt to the dynamic requirements of modern applications and services. 

As ISPs strive to meet the growing needs for high-speed and reliable internet services, they face 

significant challenges related to network management, scalability, and operational efficiency. The 

legacy approach to network management is often hampered by inflexible architectures and high 

operational costs. This thesis investigates how SDN, combined with containerization technologies 

such as Kubernetes, can offer a more flexible, scalable, and cost-effective solution for ISPs. 

The Objectives are: 

 To analyze the limitations of legacy network infrastructures in ISPs. 

 To explore the potential benefits of integrating SDN with containerization technologies 

like Kubernetes. 

 To propose a practical implementation framework for ISPs to adopt SDN and 

containerization technologies effectively. 

This chapter presents an overview of the research, its context, and the organizational structure 

of the thesis. It addresses the evolution of network technologies and the increasing demand for 

efficient, scalable, and reliable network infrastructure, highlighting the limitations of traditional 

legacy networks and introducing Software-Defined Networking (SDN) as a promising solution. The 
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problem statement articulates the issues with legacy networks regarding scalability, fault tolerance, 

and resource management, leading to the central research problem. Our primary research objectives 

include evaluating SDN performance, assessing fault tolerance capabilities, and exploring the 

integration of Kubernetes with SDN. 

1.2 Computer Networks 

1.2.1 Introduction 

    Networking is the practice of linking multiple computing devices together to enable the 

transmission, exchange, or sharing of data and resources between them. This can be achieved through 

wired connections (like cables) or wireless connections (like Wi-Fi).  

Networks can be classified based on their geographic location and the protocols they use to 

communicate. For example, a Local Area Network (LAN) connects computers in a defined physical 

space, like an office building, while a Wide Area Network (WAN) can connect computers across long 

distances or even continents. The internet is the largest example of a WAN, connecting billions of 

computers worldwide. 

1.2.2 History of Computer Networks 

The origins of contemporary computer networking can be traced back to the development of 

ARPANET in the late 1960s and early 1970s. Before this pivotal period, existing computer networks 

primarily focused on linking terminals and remote job entry stations to mainframes. However, 

ARPANET introduced a transformative concept, which is networking between computers as equal 

peers to facilitate resource sharing. Additionally, ARPANET pioneered the novel technique of packet 

switching, departing from traditional message or circuit switching methods. This innovative approach 

efficiently allocated communication resources among users with fluctuating demands, marking a 

significant milestone in the evolution of computer networking[1]. 

The original architectural design of the network comprised three primary layers: a network 

layer, encompassing network access and switch-to-switch protocols, a host-to-host layer known as 

the Network Control Protocol (NCP), and a layer dedicated to specific applications such as file 

transfer, email, speech, and remote terminal support, termed as the "function-oriented protocol" layer. 

By 1973, it became evident to leading figures in networking that an additional protocol layer 

was necessary within the hierarchy to facilitate the interconnection of diverse individual networks. 
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This imperative led to the creation of the new Internet Protocol (IP) and Transmission Control 

Protocol (TCP), which collectively superseded the NCP[1]. 

1.2.3 How computer networks work 

In this section, we will delve into the intricate layers of computer networking: access, aggregation, 

and core layers. We will explore their key components and functionalities, shedding light on the 

protocols, devices, and technologies that drive modern network infrastructures. Understanding these 

layers is vital for network engineers and administrators, enabling them to design, optimize, and scale 

networks to meet the demands of today's digital landscape. 

 

A. Core Layer 

The core layer forms the backbone of the network, responsible for fast and reliable data 

transmission between different parts of the network. It consists of high-speed routers and switches 

optimized for forwarding packets at the fastest pace possible upward of 40 to 100 gigabits a second. 

Core layer devices employ protocols like MPLS (Multiprotocol Label Switching) and BGP (Border 

Gateway Protocol) for efficient packet routing and traffic management. Redundancy and fault 

tolerance mechanisms such as Equal-Cost Multipath (ECMP) routing and link-state protocols (e.g., 

OSPF and IS-IS) are crucial at the core layer to ensure high availability and reliability. 

 

B. Aggregation Layer (Distribution Layer) 

Positioned between the access and core layers, the aggregation layer aggregates traffic from 

multiple access layer switches and forwards it toward the core network. It typically comprises high-

performance switches and routers capable of handling a large volume of traffic. Aggregation layer 

devices may implement protocols like BGP or MPLS for dynamic and efficient routing or also Link 

Aggregation to bundle multiple physical links into a single logical link, increasing bandwidth and 

providing redundancy. Additionally, features like Quality of Service (QoS) are often implemented at 

this layer to prioritize critical traffic flows. 
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C. Access Layer 

This layer serves as the entry point for end devices into the network infrastructure. It consists 

of switches and wireless access points (APs). These devices provide connectivity to end-user devices 

such as computers, printers, IP phones, and IoT devices. The access layer implements protocols like 

Ethernet for wired connections and Wi-Fi standards for wireless connectivity. Access layer switches 

utilize techniques like VLANs (Virtual Local Area Networks) to segment network traffic and ensure 

efficient communication within local network segments. 

In terms of data flow, data moves from the Access layer to the Aggregation layer, and then to 

the Core layer. Each layer serves a specific function and communicates with the layers directly above 

and below it in the hierarchy [2]. 

The hierarchical design of networks aims to reduce the workload on individual components, 

thereby increasing network efficiency and performance. It also simplifies management and 

troubleshooting, making the network more scalable and robust. This understanding of how networks 

work forms a solid foundation for any further exploration into the field of computer networking. 

Figure 1.1: Typical Network Architecture 
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1.3  Software-Defined Networking (SDN) 

1.3.1 Definition 

    SDN is a networking architecture that has emerged to address the challenges posed by the 

continuous growth of the Internet, smart applications, advanced machine learning, multimedia 

applications, social networks, etc. It aims to keep up with such evolution in terms of bandwidth, 

information overload, and complexity[3]. 

SDN separates the network’s control logic from the underlying routers and switches, promoting 

logical centralization of network control [3]. This separation allows for a more programmable 

network, enabling innovation and overall improvements to the network [4]. 

In SDN, traditional switches are upgraded if they don’t already support OpenFlow or other 

Flow related protocols that include flow tables remotely controlled by a separate software application 

called the controller. This allows for dynamic allocation of resources, management, control, security, 

etc [3]. 

One of the serious challenges in cloud computing or Internet traffic is that demand varies widely 

from day to day or even from hour to hour. This fluctuation makes it very hard to manage this process 

manually. SDN addresses this issue by allowing for automated and dynamic network management. 

OpenFlow is one of the improvements developed to ease the interaction between the controller 

and switches. It was one of the early efforts to separate the control and data plane[5]. The necessity 

to enable researchers to write vendor-neutral control software, to have high-performance and low-

cost implementations, to support varieties of research, and to be able to isolate experimental from 

production traffic were among the factors that influenced the creation of OpenFlow and SDN[5]. 

    In summary, SDN is a paradigm shift in networking that offers a more flexible, 

programmable, and efficient network by separating the control plane and data plane. 
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1.3.2 Importance of SDN  

    Software-Defined Networking (SDN) provides increased control with greater speed and 

flexibility, so network operator can control the flow of traffic over a network by programming an 

open standard software-based controller, instead of manually programming multiple vendor-specific 

hardware devices. This gives networking administrators more flexibility in choosing networking 

equipment, as they can use a single protocol to communicate with any number of hardware devices 

through a central controller.  

SDN allows for a customizable network infrastructure, where administrators can configure 

network services and allocate virtual resources to change the network infrastructure in real-time 

through one centralized location. This enables network administrators to optimize the flow of data 

through the network and prioritize applications that require more availability.  

Furthermore, SDN also offers robust security by delivering visibility into the entire network, 

providing a more holistic view of security threats. With the proliferation of smart devices that connect 

to the internet, SDN offers clear advantages over legacy networking. Operators can create separate 

zones for devices that require different levels of security, or immediately quarantine compromised 

devices so that they cannot infect the rest of the network. 

1.3.3 Application fields 

Software-defined networking (SDN) is a revolutionary technology that has found applications 

in various fields, including 5G, cloud computing, and machine learning. Here are some of the key 

application areas: 

A. 5G Networks:  

    SDN brings versatility to 5G networks. It introduces a centralized, programmable network 

architecture that separates the control plane from the data plane and eases network slicing which is 

an essential part of 5G and its low latency applications, allowing for more dynamic and efficient 

network management. SDN and virtualization go hand in hand to enable many of the network 

functions to run in software rather than in custom-built hardware[6]. 
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B. Cloud Computing:  

 SDN plays a crucial role in cloud computing. It allows applications to interact with the network 

through APIs that enable general network maintenance, including routing, security, access control, 

bandwidth management, traffic management, quality of service, processor optimization, and data 

storage[7]. 

C. Machine Learning:  

    SDN, along with edge computing, NFV, and augmented intelligence, shapes and supports 

AI-driven network ecosystems. The impact of AI on various networking products and solutions, 

including embedded hardware[7], components, and software platforms (automation, optimization, 

and network transformation), is significant. 

D. Internet Service Provider Networks:  

    SDN is also significantly beneficial for Internet Service Providers (ISPs). An architecture 

based on SDN techniques gives operators greater freedom to balance operational and business 

parameters, such as network resilience, service performance, and Quality of Experience (QoE) against 

operational expenditure and capital expenditure(OPEX and CAPEX), SDN allows for more flexible 

network management through programmable network states. This can be achieved through enabling 

network programmability based on open APIs. As a result, SDN will help operators to scale networks 

and take advantage of new revenue-generating possibilities[8]. 

E. Internet of Things (IoT): 

    SDN is beneficial for the Internet of Things (IoT) due to its scalability, programmability, and 

centralized network management. It provides efficient control over complex network infrastructure 

like IoT and can coexist with legacy networks. SDN, combined with containerization, can address 

most IoT challenges. Furthermore, it enhances Quality of Service (QoS) for critical network flows. 

These features make SDN a promising solution for managing IoT networks.  

F. Edge Computing:  

SDN plays a significant role in edge computing by providing a flexible and programmable 

network infrastructure that can support the high bandwidth and low latency requirements of edge 

applications[7]. 
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G. Simplified policy changes: 

With SDN, an administrator can change any network switch's rules when necessary -- 

prioritizing, deprioritizing or even blocking specific types of packets with a granular level of control 

and security. 

This capability is especially helpful in a cloud computing multi-tenant architecture, as it enables 

the administrator to manage traffic loads in a flexible and efficient manner. Essentially, this enables 

administrators to use less expensive commodity switches and have more control over network traffic 

flows. 

H. Reduced hardware footprint and operational expenditure 

SDN also virtualizes hardware and services that were previously carried out by dedicated 

hardware. This results in the touted benefits of a reduced hardware footprint and lower operational 

costs. 

1.3.4  SDN Infrastructure  

 SDN and legacy networking represent two different paradigms in network architecture. The 

key differences between them are primarily in their architecture, control plane, configuration and 

management, programmability, scalability, security, and cost[9]. 

A. Architecture:  

Traditional networking uses fixed-function and dedicated hardware and network devices, 

including switches and routers, to control network traffic. On the other hand, SDN is characterized 

by the decoupling of control and packet forwarding planes in the network. This separation allows for 

OpenFlow use and the use of more open protocols[10]. 

B. Control Plane: 

In legacy networks, each router has its own control plane, which makes independent decisions 

about the routing table. In contrast, SDN has a centralized control plane that provides a unified view 

of the entire network, enabling more efficient traffic management[10]. 
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C. Configuration and Management:  

Legacy networks often lack exposed APIs for provisioning and are unable to be modified as 

needed. SDN, however, allows networks to connect to apps using application programming interfaces 

(APIs), supporting application performance and security[10]. 

D. Programmability:  

SDN is programmable, allowing for dynamic, on-demand network resource management and 

configuration. This is in contrast to legacy networks, where the functionality is primarily implemented 

in application-specific integrated circuits (ASIC) and other dedicated hardware[10]. 

E. Scalability: 

 SDN, being software-based, offers better scalability and flexibility compared to traditional 

hardware-based networking. It provides users with more control and easier resource management, 

allowing users to virtually manage resources with the control plane. 

F. Security:  

SDN’s centralized control plane allows for a unified view of the network, which can enhance 

security by enabling more comprehensive and proactive threat management [9]. 

G. Cost:  

SDN networks are becoming increasingly popular due to their flexibility, automation, and cost-

effectiveness. In contrast, legacy networking infrastructure can be costly due to the need for dedicated 

hardware and devices[10]. 

In conclusion, SDN represents a paradigm shift from legacy networking, offering significant 

advantages in terms of flexibility, programmability, and cost-effectiveness. However, it’s important 

to note that each has its own strengths and weaknesses, and the choice between SDN and legacy 

networking would depend on the specific requirements and context. 
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1.3.5 SDN Controllers 

Software-Defined Networking (SDN) controllers are the central orchestrators within the SDN 

paradigm, responsible for the intelligent management and dynamic control of network resources. 

They decouple the control plane from the data plane, facilitating programmable, flexible, and scalable 

network operations.  

A. Centralized Control Plane 

SDN controllers serve as the centralized control plane, abstracting the underlying network 

infrastructure and providing a comprehensive, unified view of the network. This centralization allows 

for consistent and holistic network management and policy enforcement. 

B. Network Abstraction and APIs 

SDN controllers interface with the network through: 

 Northbound APIs: These APIs connect the SDN controller to higher-level applications and 

business logic, allowing applications to request network services and retrieve network state 

information. 

Figure 1.2: SDN Architecture [11] 
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 Southbound APIs: These APIs communicate with network devices, issuing commands and 

retrieving data. OpenFlow is the predominant protocol used here, enabling direct control 

over the forwarding behavior of network devices. 

C. Core Functions of SDN Controller 

 Topology Discovery: Continuously map and update the network topology to maintain an 

accurate network representation. 

 Flow Management: Install and manage flow rules in network devices to control traffic paths 

based on predefined policies. 

 Traffic Engineering: Optimize traffic distribution across the network to enhance 

performance and resource utilization while ensuring QoS. 

 Network Policy Enforcement: Implement and enforce security, access control, and 

compliance policies across the network. 

 

D. Prominent SDN Controllers 

While open-source controllers offer flexibility and community-driven innovation, vendor-

specific controllers often require proprietary hardware, leading to potential vendor lock-in. 

 Open-Source SDN Controllers  

OpenDaylight: An open-source platform under the Linux Foundation, OpenDaylight supports 

diverse protocols and network applications. It is flexible and modular, with strong community support 

and extensive integration capabilities. 

ONOS (Open Network Operating System): Designed for high performance and scalability, 

ONOS targets carrier-grade networks. It features a distributed core architecture for high availability 

and robust topology management. 

 Vendor-Specific SDN Controllers  

Cisco APIC-EM: Tailored for enterprise environments, it integrates deeply with Cisco’s 

hardware and software ecosystem. However, it requires Cisco-specific appliances, leading to vendor 

lock-in. 
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Huawei IMaster NCE: is an advanced SDN controller BY huawedesigned to automate and 

intelligently manage network operations. It integrates network management, control, and analysis 

functions into a single platform. Key components include capturing business intents, automating 

network tasks, and much more. 

Juniper Contrail: An SDN controller that integrates seamlessly with Juniper Networks' 

hardware. Best performance and features are achieved with Juniper-specific appliances, potentially 

limiting multi-vendor integration. 

Conclusion 

SDN controllers are the cornerstone of the SDN architecture, providing centralized, 

programmable control over network resources. They offer significant advancements in network 

flexibility, automation, and optimization, addressing the limitations of legacy networking. 

1.3.6 Technical Challenges and Considerations in Software-Defined Networking (SDN) 

A. Scalability and Performance 

Challenge: As the scope and complexity of networks expand, ensuring the scalability and 

performance of the SDN controller becomes a critical focal point. The controller must efficiently 

manage an extensive array of devices and handle substantial volumes of network traffic, all while 

ensuring minimal latency and maximal throughput. This challenge is exacerbated in large-scale 

environments such as hyperscale data centers and carrier networks, where rapid network state changes 

demand real-time processing and adaptability. 

Consideration: To address scalability and performance concerns, employing a distributed 

controller architecture is vital. Distributed controllers, such as ONOS and OpenDaylight, leverage 

multiple controller instances distributed geographically or logically across the network. These 

instances work in concert, utilizing algorithms for state synchronization and consistent hashing to 

evenly distribute network state information and manage load balancing. Additionally, the 

implementation of sharding techniques and partitioning strategies allows the controller to handle high 

traffic loads and device counts efficiently. Advanced data plane programmability, facilitated by 

protocols like P4, can offload complex processing tasks from the controller, further enhancing 

performance and scalability. 
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B. Security and Reliability 

Challenge: The centralization inherent in SDN architecture introduces heightened security 

vulnerabilities and reliability risks. The SDN controller, being the brain of the network, is a prime 

target for cyberattacks and presents a single point of failure. Ensuring robust security and high 

reliability of the controller and the communication channels between the controller and network 

devices is essential for maintaining network integrity and availability. 

Consideration: Enhancing security in SDN involves implementing multi-layered security 

measures. Utilizing Transport Layer Security (TLS) for securing controller-device communications 

is fundamental to protect against interception and tampering. Role-Based Access Control (RBAC) 

ensures that only authorized users can perform sensitive operations, reducing the risk of insider 

threats. Additionally, integrating Intrusion Detection Systems (IDS) and Security Information and 

Event Management (SIEM) systems with the SDN controller can provide real-time threat detection 

and response capabilities. For reliability, deploying multiple redundant controllers in a clustered 

configuration ensures high availability and resilience. Stateful failover mechanisms enable seamless 

controller handover in the event of a failure, minimizing downtime. Employing network slicing and 

micro-segmentation can also isolate failures and contain potential security breaches within specific 

segments of the network, reducing the overall impact. 

By addressing these advanced technical challenges and considerations, SDN can achieve the 

necessary scalability, performance, security, and reliability to meet the demands of contemporary and 

future network environments. 

1.4 Containers: 

1.4.1 Definition 

Containers are a type of software that can package up an application and its dependencies like 

Programming language runtime or package managers of the likes of APT and also database and 

drivers to name a few, having the ability to run anywhere. This is a form of operating system 

virtualization. Containers operate by sharing the same operating system kernel but running in isolated 

user spaces. They are considered lightweight because they run directly on the host machine’s 

hardware without the need for a hypervisor, unlike virtual machines. This means you can run many 

more containers on a host machine than virtual machines. 
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Containers are important because they allow developers to package an application with all of 

its dependencies into a standardized unit for software development. This means that the application 

will run the same, no matter where it is deployed, reducing inconsistencies and increasing efficiency. 

A significant advantage of containers is that they are mostly open source. This open-source 

nature makes them powerful and adaptable, as it allows developers worldwide to contribute to their 

development and improvement. It also ensures transparency, flexibility, and a wide community 

support base, further enhancing their robustness and versatility. 

A virtual machine (VM) emulates a real computer, running applications like a physical system. 

It operates on a host machine using a hypervisor, which can be software, firmware, or hardware. Each 

one includes a full guest operating system, allowing independent operation within the host. 

1.4.2 Benefits of its Infrastructure  

Container infrastructure works by creating isolated environments for applications to run. Here is a 

detailed explanation: 

A. Packaging and Isolation: 

 Containers are technologies that allow the packaging and isolation of applications with 

their entire runtime environment. This includes all of the files necessary to run the application. 

This makes it easy to move the contained application between different environments 

(development, testing, production, etc.) while retaining full functionality[11]. 

B. Sharing Resources:  

Containers share the same operating system kernel and isolate the application processes 

from the rest of the system [11]. This allows multiple containers to run on the same system 

without interfering with each other1. They share CPU, memory, storage, and network resources 

at the operating system level [12]. 

C. Portability:  

The abstraction of applications from the environment they run in makes containers highly 

portable. You can easily move the containerized application between public, private, and hybrid 

cloud environments and data centers (or on-premises) with consistent behavior and 

functionality[11]. 
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In summary, container infrastructure works by isolating applications in their own 

environments, sharing system resources, providing portability while being light weight on the 

server making them a very efficient when deployed across different environments, and 

managing deployments with container orchestration tools like Kubernetes. 

 

1.4.3 Docker Containers 

    Docker is one of the most used container engines available, just like in the VM world we 

have VMs from VMware and Hyper-V from Microsoft and many others, containers have container 

engines and Docker is the most used and the most documented engine of the bunch, images become 

containers when they run on Docker Engine. Available for both Linux and Windows-based 

applications, containerized software will always run the same, regardless of the infrastructure. 

Containers isolate software from its environment and ensure that it works uniformly despite 

differences for instance between development and staging. 

Docker containers that run on Docker Engine are: 

 Standard: Docker created the industry standard for containers, so they could be portable 

anywhere. 

 Lightweight: Containers share the machine’s OS system kernel and therefore do not require 

an OS per application, driving higher server efficiencies and reducing server and licensing 

costs. 

 Secure: Applications are safer in containers and Docker provides the strongest default 

isolation capabilities in the industry. 

   Docker container technology was launched in 2013 as an open source Docker Engine. It 

leveraged existing computing concepts around containers and specifically in the Linux world, 

primitives known as cgroups and namespaces. Docker’s technology is unique because it focuses on 

the requirements of developers and systems operators to separate application dependencies from 

infrastructure.  

Success in the Linux world drove a partnership with Microsoft that brought Docker containers 

and its functionality to Windows Server. 
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All major data center vendors and cloud providers have leveraged technology available from 

Docker and its open source project, Moby (an open source framework developed by Docker). Many 

of these providers are leveraging Docker for their container-native IaaS (Infrastructure as a Service) 

offerings. Additionally, the leading open source serverless frameworks utilize Docker container 

technology.[13] 

1.4.4  Containers and Virtual machines 

Containers and Virtual Machines (VMs) are pivotal technologies in today’s computing world. 

Containers, known for their portability, encapsulate an application and its environment, ensuring 

consistency across platforms. VMs, on the other hand, provide an abstraction of physical hardware, 

running a complete operating system, and offer stronger security boundaries. This thesis explores 

these technologies, their benefits, and their impact on the future of computing. Some of the advantages 

they provide are: 

 Efficient Data Processing:  

Containers have emerged as a new paradigm to address intensive scientific applications 

problems. Their easy deployment in a reasonable amount of time and the few required 

computational resources make them more suitable [14]. This means that they can handle large 

amounts of data efficiently, making them ideal for applications that require intensive data 

processing. 

 Light Virtualization Solutions: 

 Containers are considered light virtualization solutions. They enable performance isolation and 

flexible deployment of complex, parallel, and high-performance systems[14]. This means that they 

can run multiple instances of an application on the same hardware without causing performance 

issues. 

 Modernization and Migration:  

Containers have gained popularity to modernize and migrate scientific applications in 

computing infrastructure management. This means that they can be used to update and move 

applications to a completely different computing environment without causing disruptions. 

 



 

20 

 

Chapter 1: Basic concepts and technical studies 

 
 Reduced Computational Time: 

 Containers reduce computational time processing [14]. This means that they can execute tasks 

faster than traditional virtual machines, improving the efficiency of the system. 

 Platform Independence:  

Containers are designed to be platform-independent. Thanks to its standardized format they can 

run on any system that supports the container runtime [15], such as Docker, regardless of the 

underlying operating system or hardware. 

 Quality of Connectivity:  

These benefits make containers a powerful tool for developers and organizations alike. They 

provide a lightweight, flexible, and efficient solution for deploying and managing applications, 

particularly in distributed computing environments. 

The figure 1.3 shows the differences between Containers and virtual machines architectures. 

 

Figure 1.3: Comparing Containers with Virtual Machines [16] 

1.5 Kubernetes 

1.5.1 Definition 

     Kubernetes is an open-source system for automating deployment, scaling, and management 

of containerized applications. It groups containers that make up an application into logical units for 
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easy management and discovery. The system is designed to be a platform that takes care of scaling 

and failover for applications[17]. 

Kubernetes provides a framework for running distributed systems resiliently. It takes care of 

scaling and failover for applications, provides deployment patterns, and more. This makes it a great 

tool for managing cloud-native microservices[18]. Moreover, Kubernetes supports a variety of 

workloads, making it suitable for tasks ranging from machine learning to web applications and 

internet service providers. 

The project was originally designed by Google and is now maintained by the Cloud Native 

Computing Foundation. It is written in the Go programming language and its development and design 

were significantly influenced by Google’s Borg system. 

Kubernetes has a large and rapidly growing ecosystem, with services, support, and tools widely 

available1. It’s used in a variety of environments, from cloud-native infrastructure to on-premises 

data centers, and there are multiple distributions of Kubernetes available from various providers[18]. 

It is a robust tool for managing and orchestrating containerized microservices, is widely used 

by Internet Service Providers for its high availability management and simplified container 

orchestration. It ensures service uptime through its healing capabilities and is considered the standard 

for container orchestration. 

1.5.2 Use Cases 

Kubernetes use cases are vast and continuously being developed and improved upon while also 

showing the versatility of it all. It covers its application in large-scale deployments, microservices 

management, and much more, the aim is to underscore Kubernetes’ comprehensive capabilities 

beyond just container management. 

 Large-Scale App Deployment 

Kubernetes is designed to handle large-scale applications with its automation capabilities and 

declarative approach to configuration[19]. Features like horizontal pod scaling and load 

balancing allow developers to set up the system with minimal effort. Kubernetes ensures high 

availability and scalability to handle surges in app traffic. 

 Microservices Architecture 
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Kubernetes is well suited for deploying microservices-based applications. It helps manage 

communication between the numerous components that make up a microservices app[20]. 

Kubernetes simplifies the deployment and management of these complex, distributed 

applications. 

 Big Data Processing 

Companies dealing with big data often use Kubernetes to support their software. It ensures 

portability of big data apps across multiple environments, packages apps to ensure 

repeatability[19], and helps optimize resource usage based on varying infrastructure 

requirements. 

 Machine Learning 

Kubernetes enables running entire machine learning workflows in one place, both locally and 

in the cloud. It allows scaling resources like GPUs to fit model needs, enables gradual 

upgrades[19], automates health checks and resource management, and leverages portability. 

 Serverless and PaaS Platforms 

Kubernetes can be used to create your own serverless or platform-as-a-service (PaaS) 

platforms. Its container orchestration and scheduling capabilities make it suitable for 

workflow execution engines. 

 Hybrid and Multi-Cloud Deployments 

Kubernetes facilitates cross-cloud deployments where different services run in various cloud 

and on-premises environments[20]. It allows connecting all compute resources to the cluster, 

whether in the same cloud or hosted elsewhere. 

 Simplifying Cloud Networking 

Kubernetes simplifies cloud networking by managing networking within the cluster, 

connecting services together without configuring host-level networking rules. 
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Figure 1.4: Kubernetes Architecture overview [21] 

 

1.5.3 Kubernetes Components 

Kubernetes offers a spectrum of resources, services, and tools for application management. 

Some of the most used options are explored below. 

A. Kubernetes Master Components: 

 API Server (kube-apiserver): 

Role: The API server acts as the central management entity for the Kubernetes control plane. It 

serves as the primary point of interaction for administrators and users, handling all requests to manage 

the cluster. 

Functionality: It processes RESTful API calls and updates the state of various components in 

the etcd store. It also validates and configures data for the API objects, including pods, services, and 

replication controllers. 
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 Scheduler (kube-scheduler): 

Role: The scheduler assigns tasks (pods) to worker nodes based on resource availability and 

other constraints. 

Functionality: It continuously monitors the state of the cluster, determining which nodes have 

the resources to run a pod. It considers factors like CPU, memory, and network availability to 

optimize workload distribution and ensure efficient use of resources. 

 Controller Manager (kube-controller-manager): 

Role: This component runs various controller processes that regulate the state of the cluster. 

Functionality: Each controller watches the shared state of the cluster through the API server 

and makes changes to move the current state towards the desired state. Key controllers include the 

Node Controller (manages node status), Replication Controller (ensures the correct number of pod 

replicas), and Endpoints Controller (manages endpoint objects). 

 etcd: 

Role: etcd is a distributed key-value store used for persistent storage of all cluster data. 

Functionality: It stores configuration data, state information, and metadata, ensuring 

consistency and reliability. etcd provides a consistent and highly available data store used for storing 

all the cluster's state and configuration. 

 

B. Worker Node Components: 

 Kubelet: 

Role: The kubelet is an agent that runs on each worker node, ensuring containers are running 

in a pod as specified by the Kubernetes control plane. 

Functionality: It communicates with the API server to get the specifications of the pod and 

ensures that the containers described in these pod specs are running and healthy. It also reports the 

status of the node and pods back to the Kubernetes master. 
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 Kube-proxy: 

Role: Kube-proxy maintains network rules on each node, enabling network communication to 

and from pods. 

Functionality: It manages the routing of traffic coming into the node, distributing it to the 

appropriate pods, and providing load balancing and network address translation (NAT) services. It 

ensures that each pod gets a unique IP address and can communicate with other pods and services 

within the cluster. 

 Container Runtime (Docker in this example): 

Role: The container runtime is responsible for running the containers within the pods. 

Functionality: In this example, Docker is used as the container runtime. It pulls the necessary 

container images from a registry, starts and stops containers, and ensures they are running as expected. 

C. User Interaction Components: 

 User Interface (UI): 

Role: The UI provides a graphical interface for users to interact with the Kubernetes cluster. 

Functionality: Users can deploy, manage, and monitor applications running in the cluster using 

a visual dashboard. It provides insights into the cluster's state, health, and performance. 

 Command-Line Interface (CLI) - kubectl: 

Role: kubectl is a command-line tool that interacts with the Kubernetes API server. 

Functionality: It allows users to execute commands to deploy and manage applications, inspect 

and manage cluster resources, and view logs and status information. kubectl provides a powerful 

interface for automating tasks and scripting cluster operations. 
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D. Interaction Flow: 

 Users interact with the Kubernetes cluster through the UI or CLI (kubectl), sending 

commands to the API server. 

 API Server processes these commands, updating the state of the cluster and storing this 

information in etcd. 

 Scheduler assigns pods to suitable worker nodes based on resource availability and other 

constraints. 

 Controller Manager maintains the cluster's desired state by managing various controllers. 

 Kubelet on each worker node ensures the specified containers are running correctly within 

their pods. 

 Kube-proxy handles network communications on each node, ensuring pods can 

communicate with each other and external services. 

 etcd maintains a consistent and highly available data store for all cluster state and 

configuration data. 

This comprehensive architecture ensures Kubernetes provides a scalable, reliable, and efficient 

platform for managing containerized applications. 

1.6 Related works 

    The convergence of Software Defined Networking (SDN), containerization, and Kubernetes 

has revolutionized network management and service delivery. In this section, we explore existing 

research and practical implementations that pave the way for efficient, scalable, and dynamic 

networks. By examining relevant works and real-world deployments, we gain insights into the 

challenges, solutions, and best practices for deploying SDN-based networks using containers and 

Kubernetes,  

On this particular work by Intidhar Bedhief, the paper proposes an innovative model for IoT 

architecture by combining Software Defined Networking (SDN) and containerization (specifically 

Docker). The architecture addresses challenges related to IoT heterogeneity, network control, and 

QoS requirements. By integrating SDN principles, it achieves better control over heterogeneous IoT 
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networks. Leveraging Docker, it ensures that IoT devices can run lightweight, isolated containers. 

The proposed architecture abstracts communication and simplifies management. Validation using a 

smart supermarket use case demonstrates its effectiveness. 

    Although technologies such as SDN and NFV have been present for some time, it is with the 

emergence of 5G that they will prove their true potential. First, they provide a financial advantage. In 

[22], a study was conducted to analyze the impact of using SDN, NFV and Cloud computing in 5G 

networks for the CAPEX, the OPEX and the total cost of ownership (TCO). It was observed that in 

comparison with the traditional architecture, the CAPEX would be reduced by 68%, the OPEX by 

63%, and the TCO by 69%. 

    In the same faculty where I am currently conducting my research, Ammour Mohammed 

Chikh & Debbakh Fadia carried out a noteworthy study recently. Their thesis, titled “Performance 

Evaluation of Software Defined –Network (SDN) Controller”[23], provides an in-depth analysis of 

the performance and resilience of SDN controllers. Utilizing controllers such as HPE-VAN, ONOS, 

and Open daylight, they created an emulated SDN environments for testing and evaluation purposes. 

The research delves into the influence of various network parameters, including topology, traffic 

patterns, and controller placement, on the overall performance. The insights gained from this study 

are intended to guide network designers and operators in identifying the most effective configurations 

to enhance performance and fault tolerance in SDN networks. 

They also explained the benefits of SDN infrastructure compared to traditional network 

infrastructure while ending on a note that summarizes that Open daylight is one of the more versatile 

and reliable options they tested with the quickest recovery times 

1.7 Conclusion 

In conclusion, this Chapter has provided a detailed look at the current state of 

telecommunications, focusing on the challenges faced by Internet Service Providers (ISPs). The 

chapter traced the evolution of networking technologies from ARPANET to today's modern 

infrastructures, highlighting the difficulties legacy network designs have in meeting increasing 

demands for bandwidth, security, and flexibility. 

The problem statement identified key issues ISPs face, such as difficulties in managing 

networks, scaling them efficiently, and high operational costs. To address these challenges, the 

integration of Software-Defined Networking (SDN) with containerization technologies like 
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Kubernetes was proposed. This chapter outlined the main goals of the research: to examine the limits 

of legacy networks, explore the benefits of combining SDN with containers, and create a practical 

guide for ISPs to implement these technologies. 

Overall, this Chapter has set a strong foundation for the research, outlining the scope and 

objectives that will guide the research into advanced network architectures. This groundwork is 

essential for the detailed methodological exploration and technical implementation discussed in the 

following chapter. 
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2.1 Introduction: 

In this chapter, we outlined the methodological framework employed to investigate the 

integration of Software-Defined Networking (SDN) with containerization technologies such as 

Kubernetes within Internet Service Provider (ISP) networks. Our approach is structured to facilitate 

a thorough exploration of the technical intricacies and operational benefits of this integration. We will 

outline the selection criteria for our SDN controllers and container orchestration tools, elaborate on 

the experimental setup designed to simulate a realistic ISP environment, and detail the 

implementation steps required to configure and test our network architecture. This comprehensive 

methodological approach aims to provide a robust foundation for the subsequent analysis and 

evaluation phases, ensuring that our research is both rigorous and replicable. 

2.2 Materials  

In this project, we needed a capable Workstation computer with enough RAM and CPU cores 

for the simulation software to handle the complex and large setting we are experimenting on so the 

materials used are as follows: 

2.2.1 Workstation Computer 

It is required that we use a powerful workstation computer since network simulation software requires 

a lot of RAM and CPU cores, especially in our case where we are simulation nearly the whole Internet 

Service Provider’s Network with all the mature configurations and complex routing protocols, the 

specifications of our workstation machines goes as follows: 

 Operating System: Microsoft Windows 11 

 RAM: 64GB 

 CPU: 12cores, 24 threads  

 Storage: 2TB (512GB will suffice) 

Note that you don’t need these exact specifications for the simulation you could use less or 

more depending on what’s available, for the simulation alone you would be fine with 512GB of 

storage, and less RAM if you used less demanding routers in the simulation, as if or the GPU it wasn’t 

necessary for the simulation to run it’s purely based on the CPU calculations. 
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 2.2.2 Simulation Software 

In the rapidly evolving field of telecommunications, network simulators have become 

indispensable tools for designing, testing, and troubleshooting network configurations without the 

need for physical hardware. These tools range from open source to licensed programs, simulators like 

GNS3, EVE-NG, Cisco Packet Tracer, and Containerlab. Each of these tools offers unique features 

and capabilities tailored to different use cases, from professional and enterprise environments to 

educational and container-based projects. Understanding their strengths and weaknesses is crucial for 

selecting the most appropriate simulator for our specific requirements while also providing resources 

for researchers and professionals to use as a brief guide on choosing the right network simulator for 

anyone experimenting with SDN, Containers or Kubrenetes. 

 EVE-NG 

EVE-NG provides a robust, web-based interface that simplifies remote access and 

management, making it ideal for enterprise environments and collaborative projects. It 

supports a wide range of network devices from multiple vendors. The platform allows 

multiple users to work on the same topology simultaneously, enhancing teamwork. However, 

EVE-NG demands high system resources, especially when running multiple instances, and its 

advanced features like containers are only available in the paid Professional edition.  

 GNS3: 

GNS3 offers extensive flexibility and realism, making it an excellent choice for professional 

network engineers who require detailed multi-vendor support and the ability to integrate with 

real hardware. Its high customizability and comprehensive device support enable the creation 

of complex network topologies that closely mimic real-world scenarios. It also is the most 

documented simulator of the bunch, However, GNS3 is resource-intensive, demanding 

significant CPU and memory. The setup process can be complex and time-consuming, and 

troubleshooting can be challenging due to the variety of integrated components. 

 Packet Tracer 

Cisco Packet Tracer is tailored for educational use, offering an intuitive interface and efficient 

performance on low-end hardware. It is designed to help students learn networking concepts 

with accurate simulations of Cisco devices and IOS commands. The tool is resource-efficient 
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 and available on multiple platforms, making it accessible to a broad audience. However, 

Packet Tracer is limited to Cisco devices and technologies only, lacking multi-vendor support, 

and its simulations are less realistic compared to more advanced simulators like GNS3 or 

EVE-NG. It is also primarily designed for educational purposes, not for complex professional 

network simulations like ours. 

 Containerlab: 

Containerlab excels in modern, container-based environments, providing strong support for 

Docker and Kubernetes. It simplifies the deployment of network topologies using container 

images, offering efficient, scalable, and automated network functions. Containerlab is 

resource-efficient and integrates well with CI/CD pipelines and automation tools, making it 

ideal for cloud-native projects. However, it has a steep learning curve since it is all command 

line based and not a graphical interface, and also requires knowledge of Docker and 

Kubernetes, which may be a barrier for new users, The focus on containerized functions 

means it has limited support for traditional network devices, and it has a smaller community 

with fewer resources compared to more established simulators. Integrating Containerlab with 

existing non-containerized environments can also be challenging. 

 What we ended up with:  

For our project we chose GNS3 for its extensive documentation and support for the various 

protocols and technologies we need, we would like to use EVE-NG for its simplicity and 

modern approach, problem is container support is locked behind the paid professional version 

while we prioritized making this project completely free and open-source accessible for 

anyone following through. Containerlab meets these conditions but at the time of writing, it 

supports a handful of Nokia and juniper routers while it is a very powerful and efficient tool 

it requires a steep learning curve to operate its command line  

 

2.2.3 SDN Controller 

A plethora of options exists concerning SDN controllers, ranging from open-source to 

proprietary (vendor-specific) solutions. Our focus primarily centers on open-source alternatives such 

as ONOS, OpenDaylight, Floodlight, among others. 
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 Amidst the diverse array of SDN controllers, OpenDaylight emerges as a preeminent selection 

due to its notable attributes, extensive documentation, and dependable performance. Positioned as an 

open-source SDN controller platform under the auspices of the Linux Foundation, OpenDaylight 

benefits from a vibrant community ecosystem and a comprehensive repository of documentation 

materials. Its modular architecture, elucidated by our colleagues at [23], facilitates adaptable 

customization and seamless integration within varied networking environments. 

Furthermore, OpenDaylight demonstrates robust stability and performance, a fact substantiated 

by empirical studies such as that conducted by our colleagues [23], who highlighted its rapid recovery 

capabilities in response to sudden link disruptions. This resilience underscores its utility in 

maintaining network continuity and mitigating service interruptions. Additionally, OpenDaylight's 

adherence to standardized protocols and Application Programming Interfaces (APIs) augments 

interoperability, fostering harmonious integration with diverse network infrastructures and protocols. 

2.2.4 Other tools 

 VMware player 

VMware Player is essential for GNS3 simulations as it enables virtualization, allowing users 

to run multiple virtual machines (VMs) on a single physical host (a workstation on our case). 

This capability is crucial for emulating complex network topologies with various devices and 

operating systems. VMware Player facilitates the integration of real-world network elements 

into virtual environments, enhancing the accuracy and versatility of GNS3 simulations. 

Additionally, we used it to deploy the SDN controller into since it need to work on a separate 

server instance.  

 Putty 

 Putty is utilized in networks primarily for its SSH (Secure Shell) capability, enabling secure 

remote access and management of network devices such as routers, switches, and servers. It 

got used when accessing devices from GNS3 Its versatility across different protocols, 

lightweight design, and compatibility with various operating systems make it an essential tool 

for configuration, monitoring, and troubleshooting tasks within network infrastructures. 
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 WinSCP 

WinSCP is an open-source file transfer utility for Windows that supports FTP, SFTP, SCP, 

and WebDAV protocols. It is primarily used for securely transferring files between a local 

and a remote computer. WinSCP provides a graphical interface for easy file management, 

ensuring data security during transfers. It is commonly used for tasks such as uploading 

website files to a server, transferring configuration files to network devices, and backing up 

data to a remote server, it was used in our case to deploy the SDN controller into the server, 

and used in the web server configuration. 

 

2.3 Methodology 

2.3.1 Planning 

Our exploration commenced with a search for Internet Service Provider (ISP) network 

architectures available online, seeking a suitable model to integrate with SDN, Containers, and 

Kubernetes. Given the acknowledged benefits of these modern technologies within ISP networks, our 

attention naturally turned to their potential applications. 

Subsequently, it was determined that an immersive internship experience within an active ISP 

environment would provide invaluable insights. DJEZZY was selected for its reputation for 

embracing modern network innovations and technologies. 

Under the mentorship of Mr. Soufiane Saidi, SDN / IP Backbone Administrator at DJEZZY, 

we gained a comprehensive understanding of ISP network operations. Mr. Saidi generously shared 

his expertise, including an exemplar ISP network architecture, emphasizing the significance of th e 

Aggregation layer for optimal SDN integration. 

At present, DJEZZY is in the process of implementing an SDN solution, underscoring their 

proactive stance toward technological progress. This ongoing initiative serves to inspire us further in 

constructing a meticulous project for our research endeavors. Additionally, it presents an opportune 

moment for DJEZZY to conduct a thorough review of the anticipated benefits before proceeding with 

the active deployment of the technology. This collaborative approach not only enhances the validity 

and relevance of our research efforts but also contributes to DJEZZY's strategic decision-making 

process regarding the integration of SDN within their network infrastructure. 
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 Mr. Saidi provided the following architecture, which closely represents the current active architecture 

used by the company. This figure illustrates the IP Core layer and the Aggregation layer, with our 

primary focus being on the Aggregation layer. 

Under the guidance of our internship supervisor, we formulated the project plan, concluding 

that our SDN solution would be most effectively deployed at the aggregation layer. This decision 

aligns with DJEZZY's active efforts in this section of the network. 

For the Kubernetes and container solution, deployment will be configured to connect to the IP-

Core network, reflecting the configuration of the live network's data center. This deployment will 

serve as a web server to demonstrate its agility and automation capabilities. To simulate the combined 

benefits, a web server within a Docker container will be utilized. By generating a high volume of user 

requests until saturation, the Kubernetes master node (control plane) will automatically deploy and 

configure an identical container to manage the increased demand. This approach will showcase the 

scalability, speed, and efficiency of Kubernetes in dynamically responding to fluctuating workloads, 

effectively load-balancing traffic between containers and highlighting its capabilities in a functional 

environment. 
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2.3.2 Changes Made to Djezzy’s Network Sample 

After careful planning and consideration, we made some needed modifications to the network 

to ease the operability and efficiency of our methods 

A. Changing the router vendor:  

Cisco routers were selected over DJEZZY’s Huawei routers due to the limited availability of 

Huawei routers in GNS3, which are one SD-WAN specific and another one being a full-scale 

edge router. Additionally, the`` change was necessitated by the comparatively insufficient 

documentation provided by Huawei. In contrast, Cisco offers an extensive library of 

documentation and guides. Moreover, Cisco's leading position in the global networking 

Figure 2.1: ISP Backbone Aggregation Network Topology Showing 

Bandwidth Capacity of the Links 
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 equipment market enhances the value of learning and implementing their hardware, providing 

substantial benefits for research and future career prospects. 

 

B. Changes to IP-Core Layer: 

During the planning phase, our internship supervisor suggested that we simplify the Actual 

IP-Core layer of the network since it is out of the scope of our study, because we would be 

deploying and observing the improvement on the Aggregation layer then the IP-Core layer 

should be made just as we showed in the figure 

2.4 Building the network 

In this phase of the project, the challenge involved constructing an accurate replication of 

Djezzy network deployment using the topology they provided. This task was demanding due to our 

lack of experience on deploying and reliably configuring a professional and complicated network an 

ISP can rely on  unlike a trained professional network engineering team. 

 Since the primary focus is not on the current Legacy network, specific details regarding the 

construction and deployment of the network within the simulation software will be briefly addressed. 

 

2.4.1 Legacy Network Configuration 

After the positioning of the routers and establishment of the required connections, selection of 

an IP pool was made. Guidance on the required objectives to focus on and specification of the 

protocols deployed within the network were provided by Mr. Saidi. 

Configuration commands are demonstrated for a single router examples were taken from ASG 

(Aggregation Site Gateway) routers following a similar configuration process.  

In contrast, ASBR (Autonomous System Boundary Router) routers utilize different commands 

due to their distinct responsibilities within the network. 

The network protocols used include IS-IS, BGP, OSPF, MPLS, and MPLS-TE. 
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 A. ISIS Configuration 

IS-IS is used with BGP to leverage its strengths in internal routing efficiency, it is essential to 

the correct deployment of the BGP protocol 

 

 

 

B. BGP implementation 

BGP had to be configured on each router, matching the area chosen while specifying each 

neighbor, VPNv4 was used to distribute routing information across the routers 

The following config was taken from ASG3, all the routers share similar if not the same config 

with the difference being IP Addresses. 

 

 

 

 

 

 

 

Figure 2.2: IS-IS configuration 

Figure 2.3: BGP Configuration Sample 
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 C. OSPF 

Before deploying MPLS (Multiprotocol Label Switching) in a network infrastructure, it is 

common practice to utilize OSPF (Open Shortest Path First) as the underlying intra-domain 

routing protocol, by leveraging OSPF as the foundation for intra-domain routing, MPLS can 

be deployed on top of this stable and efficient routing infrastructure. 

 

 

E. MPLS / MPLS-TE 

We deployed MPLS (Multiprotocol Label Switching) and then added MPLS-TE (Traffic 

engineering) due to its real implementation in the Djezzy network, most if not all enterprise and ISP 

WAN networks utilize MPLS, for tunneling and QoS features. Examples taken from ASG3. 

 

 

 

Figure 2.4: OSPF Commands 

Figure 2.5: Enabling MPLS and MPLS-TE Globally on 

the Router 

Figure 2.6: Turning on MPLS and MPLS-TE on the interfaces 
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 MPLS Tunnels are an essential part of the MPLS Protocol Then we would have to add tunnels 

on each interface from and into each router, so each link has 2 tunnels, this sample is taken from ASG 

router, ASBR routers had more tunnels configured, we had to configure 12 tunnels Each.  

 

 

 

 

 

Figure 2.7: MPLS Tunnel Configurations Sample 

Figure 2.8:  MPLS-TE Dynamic 

Configuration 



 

41 

Chapter 2: Technical Framework and Implementation Methodology 

 Following this abbreviated configuration, a functioning topology of an ISP network was 

established. This foundation allows for the implementation and deployment of the SDN solution, with 

comparisons to be analyzed in later sections. 

 

The figure presents the ISP network topology incorporating aggregation and IP-core layers, as 

constructed in GNS3. Various routers and networks are interconnected to form this network design. 

The red segment represents the IP-Core with a BGP area of AS200 and Area 0 for the OSPF Protocol, 

while the blue segment represents the aggregation layer with its BGP area being AS100 while OSPF 

also within Area 0, illustrating different routing areas. 

 

Figure 2.9: A Functioning ISP Network Topology Showing Aggregation 

and IP-Core Layers built into GNS3 
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2.5 Deploying the SDN Ready Network 

This section outlines the transition from a legacy ISP network architecture to an SDN enhanced 

network. The deployment process involves integrating the SDN controller into the existing 

infrastructure, focusing on the aggregation layer where the most significant improvements are 

expected. 

2.5.1 Essential Modification Needed for The SDN Deployment 

A. Deploying The Controller on a  Linux server 

To host the SDN controller we chose (OpenDaylight) it was required to spun up a Linux VM, 

we chose Ubuntu server 24.04 LTS as the Linux image and installed ODL on top of it then 

connecting it to the network as fellows. 

 
B. Configuring the Controller 

 

 

Figure 2.11: Controller Full Initial Configuration 

Figure 2.10: OpenDaylight Booting in Ubuntu Server 
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 C. Installing OpenFlow Manager 

 To fully build the architecture of the SDN network, we need an application that will control 

the flows in network, To install OpenFlow Manager, follow these steps (on the same Ubuntu 

Server): 

 

These commands are for setting up the OpenFlow Manager, which includes installing Node.js 

and npm, cloning the repository from GitHub, and running the Grunt task runner. 

D. Activating Essential Protocols on The Network 

 Installing open-flow plugin on cisco routers 

Cisco routers unlike their switches, don’t come with OpenFlow protocol by default so we 

have to install it as a plugin, OpenFlow is essential for the operation and communication 

of the SDN controller with the other 

 

 

 

 

Figure 2.12: Steps for Installing OpenFlow Manager 

Figure 2.13: Installing Open-Flow Plugin on Cisco Routers 
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 After activating the OpenFlow protocol in the routers, the OpenFlow manager web UI is 

consulted to verify the topology. It is observed that certain links are absent from the displayed 

topology, despite being detected when conducting a more in-depth examination via the command-

line interface (CLI). This phenomenon is regarded as standard behavior inherent to OpenFlow, 

wherein only primary paths are exhibited; any alternative paths will be displayed as they come into 

use. This characteristic aligns with the functionality of the Rapid Spanning Tree Protocol (RSTP), 

which was earlier configured to prevent the formation of loops within the topology. This 

preventative measure is crucial in maintaining network integrity and mitigating potential packet loss 

scenarios. 

 

 

 

 

Figure 2.14: Network Topology through OpenFlow Manager Dashboard 
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 2.5.2 Network Load Balancing 

 

Figure 2.15: Python Script for Load Balancing the Traffic on the Network 
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On this section, we describe a Python script that we wrote and integrated into our OpenFlow 

manager to dynamically monitor and manage network bandwidth utilization. This script is an 

essential component for enhancing the load balancing capabilities of the SDN controller. 

It is designed to periodically fetch port statistics from the SDN controller and calculate the 

current bandwidth utilization. If the utilization exceeds a predefined threshold of 80%, the script 

installs a flow rule to redistribute traffic, thereby maintaining optimal network performance while 

preventing congestion. Then after detecting that the bandwidth utilization went down to 20%, it will 

delete the alternate flows that were used for the load balancing and return back to default. This 

significantly enhances the load balancing aspect of the controller. This ensures efficient utilization of 

network resources and maintains optimal service levels for all users. 
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This figure illustrates the SDN Controller logs monitoring the bandwidth on a router port. Once 

it exceeds 80%, the Python script we wrote is launched to initiate load balancing. The logs show that 

alternate flows are installed immediately when the threshold is triggered. 

 

 

 

Figure 2.16: SDN Controller Logs when the bandwidth exceeds 80% 
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Here we observe that the Controller started deleting alternate flows that it created once the total 

bandwidth dropped below 20% thus dialing back its configuration to default as normal. 

2.6 Deploying Containers and Kubernetes 

When we researched and studied Containers, we found that it would be best to deploy them with 

some basic automation features using Kubrenetes. 

An actual ISP network infrastructure has many services that are running on VMs that can be migrated 

to a fully automated Kubernetes solution highly improving the efficiency and minimizing the down 

time when one of them is down like Firewalls, Mobility Management Entity (MME), Packet Gateway 

(PGW), and many more services and tools that can be enhanced  

(Kubernetes deploy clusters that have one or multiple containers on them) 

2.6.1 Deploying Kubernetes 

We deployed a Ubuntu server instance to install Kubernetes and Containers on, we used Kubectl a 

command-line tool used to interact with Kubernetes clusters. To deploy instances, which in turn have 

clusters of Docker Containers in them called Pods, then we installed Nginx an open source Web 

server in the cluster With a simple Website just for demonstration purposes. 

The Kubernetes cluster is connected to the network as shown in Figure 2.16, connected to the IP-

core just like the active network on an ISP, where all the applications and services are hosted and 

deployed. 

Figure 2.17: SDN Controller Logs after the Bandwidth dropped to 

below 20% 
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 Key Functions of Kubectl: 

 Cluster Management: Create, configure, and manage Kubernetes clusters. 

 Resource Management: Manage Kubernetes resources such as pods, services, 

deployments, replicasets, and more. 

 Application Deployment: Deploy applications and manage their lifecycle within the 

cluster. 

 Monitoring and Debugging: Inspect cluster resources, view logs, and troubleshoot issues. 

Basic commands to navigate and administrate your deployments are shown in the Table 2.1. 

The provided commands facilitate the installation of Kubernetes components (kubeadm, 

kubelet, and kubectl), disable swap memory as stipulated by Kubernetes requirements, initialize the 

Kubernetes master node with a designated pod network, and deploy an Nginx application. The 

sequence of commands is structured in a coherent manner to facilitate a seamless setup process for 

individuals utilizing this guide for their research endeavors. 

 

 

 

Figure 2.18: Commands Needed for the Kubernetes Deployment 



 

50 

Chapter 2: Technical Framework and Implementation Methodology 

 

  

 

This figure shows the final upgraded network with the Kubernetes cluster connected to the IP-

Core and the SDN controller connected between the two ASBRs. Note that it was necessary to add 

switch between the controller and ASBR routers to achieve redundancy and high availability in case 

a link fails the network will not be effected. 

Figure 2.19: How Is Kubernetes Cluster and the SDN Controller Linked 

to the Network 



 

51 

Chapter 2: Technical Framework and Implementation Methodology 

  

 

 

Table 2.1:Basic Commands to Navigate through Kubectl 

Command Description 

kubectl cluster-info isplay cluster information. 

kubectl get nodes List all nodes in the cluster. 

kubectl create deployment myapp --

image=myimage 

Create a deployment named myapp using the 

specified image. 

kubectl expose deployment myapp --

type=LoadBalancer --port=80 

Expose the myapp deployment via a 

LoadBalancer on port 80. 

kubectl get pods List all pods in the default namespace. 

kubectl logs <pod-name> Display logs for a specific pod. 

kubectl scale deployment myapp --replicas=3 Scale the myapp deployment to 3 replicas. 
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2.7 Conclusion 

In this chapter, we meticulously detailed the methodological approach we adopted to explore 

the integration of Software-Defined Networking (SDN) with containerization technologies such as 

Kubernetes within Internet Service Provider (ISP) networks. Our efforts focused on establishing a 

comprehensive technical framework and a systematic experimental setup for our research purposes 

and for anyone to follow along with a similar setup for studying or just exploring new ways to 

Networking, designed to ensure a thorough examination of the proposed integration. 

We initiated our methodology by selecting robust SDN controllers, specifically OpenDaylight 

known for its support in carrier-grade network implementations. For container orchestration, we 

chose Kubernetes due to its extensive adoption and capability in managing containerized 

environments effectively while also being relatively a new field on its own for our future use. To 

create a realistic simulation of ISP network scenarios, we utilized network simulation tool GNS3. 

We followed a systematic series of implementation steps. First, we prepared the necessary 

hardware and software components, including virtual machines, SDN controller with its flow tables, 

and Kubernetes clusters. Next, we designed and configured the network topology to accurately reflect 

realistic ISP scenarios. Finally, we conducted integration testing to verify that the SDN controllers 

and Kubernetes clusters interacted correctly. 

By establishing this rigorous methodological framework, we ensured that our research is 

grounded in a well-defined environment. This meticulous approach allows for a detailed and accurate 

analysis of the integration of SDN and container technologies, providing valuable insights into their 

potential benefits and challenges. Our efforts in environment preparation, network configuration, and 

integration testing have laid a solid foundation for the Testing and Comparison phases of our research, 

ultimately aiming to advance network management practices for ISPs. 
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3.1 Introduction 

In this chapter, we conduct a comprehensive performance evaluation of the proposed Software-

Defined Network (SDN) architecture compared to legacy network infrastructures. The objective is to 

analyze and quantify the improvements offered by SDN in key performance metrics, including 

bandwidth capacity, round-trip time (RTT), and fault tolerance. These metrics are critical for 

assessing the efficiency, responsiveness, and reliability of network systems, particularly within the 

context of Internet Service Providers (ISPs). Through a series of controlled experiments and 

simulations, we aim to demonstrate the tangible benefits of this solution over conventional 

networking approaches, providing a robust foundation for its adoption in modern 

telecommunications. This chapter will detail the methodologies used, present the results obtained, 

and discuss their implications for network design and management. By systematically comparing the 

two network architectures, we seek to highlight the advantages of SDN in enhancing network 

performance and resilience, thereby supporting the case for its widespread deployment in ISP 

infrastructures. 

3.2 Comparative Performance Evaluation of the Proposed Network 

A comparative analysis of the proposed SDN and legacy network. The performance of both 

networks (legacy and SDN) is analyzed based on bandwidth capacity, Fault tolerance, and Learning 

time. 

3.2.1 Bandwidth comparison 

The results of bandwidth capacity in both the SDN and the legacy network were obtained by 

using IPERF tool. Here, we show the maximum bandwidth between two hosts in the SDN and the 

legacy network. As shown in Figure 3.1, the maximum bandwidth seems to be higher in the case of 

the proposed network by a little, which can highlight the ability of the controller to transfer more data 

efficiently without wasting the overhead resources, achieving 8.46 Gb/s compared to its legacy 

counterpart’s 7.62Gb/s, which in turn is an improvement of 17%. 
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3.2.2 Round Trip Time 

Round Trip Time (RTT) refers to the total time taken for a signal or packet to travel from the 

source to the destination and back again, measuring the complete duration of a communication cycle. 

The RTT between the host and server can be measured using the ping command, which gave us a 

result of 4.48ms and 7.23ms for the SDN and the legacy Network respectively which is an 

improvement of 38%. 

The test was set up two hosts one in ASG7 and another on ASG11. 

  

Figure 3.1: Bandwidth capacity for SDN and legacy network. 

Figure 3.2: Round Trip Time for SDN and legacy network. 
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3.2.3 Fault Tolerance 

Fault tolerance in networking refers to the ability of a network to maintain operational 

continuity and service availability even in the event of component failures or disruptions. In the 

context of our study, Fault tolerance is more important in our case because it is an ISP network, any 

disruptions or failures can lead to large amounts of financial loss. It encompasses various aspects, 

including the speed at which the network can recover from link failures, the amount of data loss that 

occurs during these failures and the responsiveness of the network's control mechanisms. 

In SDN, fault tolerance is enhanced through centralized control, which allows for rapid 

detection of failures and swift reconfiguration of network paths. This leads to significantly reduced 

link recovery times, minimal packet loss during failover, and quicker controller response times 

compared to legacy networks that rely on distributed control mechanisms, such as MPLS and BGP. 

This test was performed by setting up two hosts one in ASG7 and another on ASG11 sending 

traffic between them then disconnecting a link on the path they take, this is while leaving an active 

ping command that measures packets loss and link recovery time. 

 

Table 3.1: Comparison of Fault Tolerance between SDN Network and the 

Legacy Network 

Metric SDN Network  Legacy Network 

Link Recovery Time 56ms 453ms 

Packet Loss During Failover 0.08% 2.5% 

Controller/Routing Response 

Time 

22ms 232ms 
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In the legacy network, every router needs to learn about the changes in the topology, whereas 

in SDN, only the controller needs to know about the changes and it will install corresponding flow 

entries in the forwarding devices if required. This improves network performance as no routing 

advertisement messages are advertised in the network. 

In consideration of the primary objective for Djezzy's implementation of SDN, fault tolerance, 

particularly regarding link recovery time, is emphasized. This decision stems from the frequent 

occurrence of link failures across Djezzy's extensive fiber optic network spanning thousands of 

kilometers, often attributed to heavy infrastructure activities conducted by third-party entities 

accidently damaging the links. While the recovery time observed with MPLS in our case, averaging 

453 milliseconds, the operational network typically requires 10 to 15 seconds for link recovery due 

to the deployed configuration. This configuration entails a delay mechanism, wherein the network 

waits for a specified duration before switching to an alternate path upon detecting link 

unresponsiveness. Because Unlike our simulation environment, wherein link failure involves 

complete cable disconnection, real-world network disruptions manifest as unstable connectivity 

issues characterized by fluctuations between online and offline states which put the legacy protocols 

into switching then not actually switching the path completely halting the network. To address these 

challenges, Djezzy's plans to implement an SDN mainly for that reason tasked with monitoring the 

health and performance metrics of each network link and appliance. Through intelligent traffic 

routing mechanisms, the SDN Controller effectively circumvents network disturbances by seamlessly 

redirecting traffic flow, thereby mitigating disruptions without perceptible impact on network 

operations. While the latency and bandwidth benefits come as a welcomed bonus to them. 

3.3 Measuring Kubernetes Benefits  

3.3.1 Testing the Response Time 

We used the Apache Benchmark tool to flood the server with requests. The graph illustrates the 

response time distribution of an Nginx server deployed in a Kubernetes cluster under a load test. The 

x-axis represents the cumulative number of requests processed, ranging from 50 to 1000 requests, 

while the y-axis denotes the response time in milliseconds (ms). 
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3.3.2 Testing the Load balancer 

To test the load balancer we decided to delete one of the two nodes on the cluster then Verify 

that the load balancer still distributes traffic to the remaining pod. 

  

Figure 3.4: Commands for Testing the Load Balancer 

Figure 3.3: Kubernetes Server Response Time  
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This configuration is a practical demonstration of how traffic load can be distributed among 

multiple encapsulated pods within a Kubernetes environment. The load balancer plays a crucial role 

in maintaining high availability and reliability of services, ensuring that the system can effectively 

handle high-traffic conditions. This setup is a simple implementation having applications that are 

more complex and services to scale with and balance between will make Kubernetes solutions a no 

brainer serves as a testament to the robustness and scalability of Kubernetes in managing complex, 

distributed systems. 

3.4 Discussion 

The comparative performance evaluation between the Software-Defined Network (SDN) and 

the legacy network reveals substantial improvements in several key performance metrics, clearly 

demonstrating the significant advantages of SDN deployment within Internet Service Provider (ISP) 

infrastructures. The SDN network achieves a higher maximum bandwidth capacity, with a 17% 

improvement over the legacy network, underscoring its efficacy in optimizing data flow and 

improving throughput due to efficient resource management. Furthermore, SDN significantly reduces 

round-trip time (RTT) by 38%, thereby augmenting real-time application performance for ISP 

customers that utilize VOIP and play online games, facilitated by efficient path management. The 

analysis further highlights SDN's robust fault tolerance, exhibiting a rapid link recovery time of 56ms 

compared to 453ms in the legacy network, minimal packet loss during failover (0.08% vs. 2.5%), and 

a faster controller response time (22ms vs. 232ms), all contributing to superior network stability and 

reliability. These findings have profound implications for ISP networks, suggesting that SDN's 

scalability, flexibility, and improved resource management can effectively meet the growing demands 

of modern applications and services. Overall, the adoption of SDN in ISP networks offers enhanced 

performance, increased reliability, and innovative, adaptive management strategies, making it a 

compelling choice for future network infrastructures. 

3.5 Conclusion 

In this chapter, we examined the integration of SDN with Kubernetes-based container 

orchestration for Internet Service Providers. This setup leverages SDN’s ability to manage network 

traffic dynamically and Kubernetes capability to orchestrate containerized applications efficiently. 

Our results demonstrated a 17% increase in network throughput, reflecting improved bandwidth 

management. The system also achieved a 38% reduction in Round Trip Time (RTT), indicating 
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enhanced network responsiveness. Additionally, our fault tolerance analysis showed an 87.5% 

Improvement in recovery time from link failures, providing a peace of mind for network operators 

that whatever the circumstances the network faces it will always stay operational. 

These findings confirm that integrating SDN and Kubernetes orchestration can lead to improved 

network performance and reliability for the ISP Services. The centralized management of network 

resources and containerized applications simplify operations and enhances the network’s overall 

efficiency. This approach aligns with current best practices in network management, providing a 

robust and scalable solution for ISPs to tackle modern customer requirements and plan ahead for 

future developments. 
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General Conclusion and Perspective 

 

This thesis presents a comprehensive exploration of integrating Software-Defined Networking 

with containerization technologies, particularly Kubernetes, within Internet Service Provider 

networks. The primary objective was to address the limitations inherent in legacy network 

infrastructures and to enhance network management, scalability, and service delivery. Our research 

was conducted through a combination of theoretical analysis and practical implementation, 

demonstrating the potential benefits and challenges associated with this integration. 

Key findings from our research include enhanced network efficiency, scalability, flexibility, 

improved fault tolerance, and reduced operational costs. The decoupling of the control plane from the 

data plane allowed for dynamic resource allocation and centralized network management, resulting 

in optimized traffic flows and reduced latency. Our experimental results show substantial 

improvements in several key performance metrics. The SDN network achieved a higher maximum 

bandwidth capacity with an improvement of 17% over the legacy network, underscoring its efficacy 

in optimizing data flow and improving throughput. Furthermore, SDN significantly reduced round-

trip time (RTT) by 38%, augmenting real-time application performance for ISP customers that utilize 

delay sensitive applications. The analysis further highlights SDN's robust fault tolerance, exhibiting 

a rapid link recovery time compared to the legacy network by 87%, minimal packet loss during 

failover (0.08% vs. 2.5%), and a faster controller response time. Kubernetes' container orchestration 

capabilities enabled scalable and flexible deployment of network applications, which was particularly 

beneficial for handling variable traffic loads and ensuring high availability of network services. 

Lastly, the use of open-source technologies like OpenDaylight for SDN controllers and Kubernetes 

for container orchestration reduced operational expenditures associated with proprietary hardware 

and software solutions that require heavy licensing fees. Despite the promising results, several areas 

require further research and development to fully realize the potential of SDN and Kubernetes 

integration. Advanced security mechanisms are needed to address the vulnerabilities introduced by 

SDN's centralized control plane. Enhancing the security of SDN controllers and ensuring robust 

protection against cyber threats is essential. Additionally, ensuring seamless interoperability between 

different SDN controllers and Kubernetes distributions is crucial.  
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Improvements to our simulation setup can further enhance the reliability and applicability of 

our findings. Utilizing Containerlab simulation software, known for its deep integration with 

container technologies, could provide a more accurate and scalable environment for testing SDN and 

Kubernetes deployments. Containerlab's capabilities would allow for more realistic simulations of 

containerized network functions and their interactions within an SDN framework. Additionally, 

implementing a more advanced Kubernetes setup, possibly with features like Kubernetes Federation 

for multi-cluster management hosting a variation of real world services and applications could 

demonstrate its effectiveness in more complex and distributed environments. These improvements 

would not only validate our current results but also uncover new insights into optimizing network 

performance and management while also modernizing the data center. 

Continuous performance optimization is essential to handle the increasing demands of modern 

network applications such as 5G and IoT. Exploring advanced algorithms for traffic engineering, load 

balancing, and resource management will be beneficial. Conducting large-scale real-world 

deployments of SDN and Kubernetes integration in ISP environments will provide valuable insights 

into practical challenges and operational considerations. Leveraging AI and machine learning 

techniques for predictive analytics and automated network management can further enhance the 

capabilities of SDN . These technologies can help in proactive fault detection, dynamic resource 

allocation, and performance optimization. 

In conclusion, the integration of SDN with containerization technologies like Kubernetes holds 

significant promise for transforming ISP networks. This thesis has laid the groundwork for 

understanding the potential benefits and challenges, providing a solid foundation for future research 

and development. By addressing the outlined perspectives, we can move towards more efficient, 

scalable, and resilient network infrastructures, ultimately improving service delivery and user 

experience. 

 

 

 

 

 



 

63 

Chapter 3: Performance Evaluation of the Proposed Solution 

 

      Bibliography 

 

[1] C. A. Sunshine, “A Brief History of Computer Networking,” in Computer Network 

Architectures and Protocols, C. A. Sunshine, Ed., Boston, MA: Springer US, 1989, pp. 3–6. doi: 

10.1007/978-1-4613-0809-6_1. 

[2] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach, 7. edition. Boston 

Munich: Pearson Education, 2017. 

[3] I. M. Alsmadi, I. AlAzzam, and M. Akour, “A Systematic Literature Review on Software-

Defined Networking,” in Information Fusion for Cyber-Security Analytics, I. M. Alsmadi, G. 

Karabatis, and A. Aleroud, Eds., Cham: Springer International Publishing, 2017, pp. 333–369. doi: 

10.1007/978-3-319-44257-0_14. 

[4] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, 

“Software-Defined Networking: A Comprehensive Survey.” arXiv, Oct. 08, 2014. Accessed: Mar. 

20, 2024. [Online]. Available: http://arxiv.org/abs/1406.0440 

[5] V. Chergarova, I. Hur, L. Wang, and J. Sun, “Examining Software Defined Networking 

Adoption by Research and Educational Networks,” in Advances in Information and Communication, 

K. Arai, Ed., Cham: Springer International Publishing, 2022, pp. 656–674. doi: 10.1007/978-3-030-

98015-3_46. 

[6] K. J. Babu Narayanan, “SDN Journey: How SDN brings versatility to 5G networks?,” CSIT, 

vol. 8, no. 1, pp. 57–60, Mar. 2020, doi: 10.1007/s40012-020-00269-5. 

[7] M. Beshley, M. Klymash, I. Scherm, H. Beshley, and Y. Shkoropad, “Emerging Network 

Technologies for Digital Transformation: 5G/6G, IoT, SDN/IBN, Cloud Computing, and 

Blockchain,” in Emerging Networking in the Digital Transformation Age, M. Klymash, A. 

Luntovskyy, M. Beshley, I. Melnyk, and A. Schill, Eds., Cham: Springer Nature Switzerland, 2023, 

pp. 1–20. doi: 10.1007/978-3-031-24963-1_1. 

[8] A. Takacs, E. Bellagamba, and J. Wilke, “Software-defined networking: the service provider 

perspective,” E R I C S S O N R E V I E W, 2013. 



 

64 

Chapter 3: Performance Evaluation of the Proposed Solution 

[9] “Difference between Software Defined Network and Traditional Network,” GeeksforGeeks. 

Accessed: Mar. 23, 2024. [Online]. Available: https://www.geeksforgeeks.org/difference-between-

software-defined-network-and-traditional-network/ 

[10] “SDN vs traditional networking,” Kyndryl. Accessed: Mar. 23, 2024. [Online]. Available: 

https://www.kyndryl.com/ca/en/learn/sdn-vs-traditional-networking 

[11] “Containers explained: What they are and why you should care.” Accessed: Apr. 02, 2024. 

[Online]. Available: https://www.redhat.com/en/topics/containers 

[12] “What are containers?,” Google Cloud. Accessed: Apr. 02, 2024. [Online]. Available: 

https://cloud.google.com/learn/what-are-containers 

[13] “What is a Container? | Docker.” Accessed: Apr. 16, 2024. [Online]. Available: 

https://www.docker.com/resources/what-container/ 

[14] O. Bentaleb, A. S. Z. Belloum, A. Sebaa, and A. El-Maouhab, “Containerization technologies: 

taxonomies, applications and challenges,” J Supercomput, vol. 78, no. 1, pp. 1144–1181, Jan. 2022, 

doi: 10.1007/s11227-021-03914-1. 

[15] “How Docker Containers Work – Explained for Beginners,” freeCodeCamp.org. Accessed: 

Mar. 26, 2024. [Online]. Available: https://www.freecodecamp.org/news/how-docker-containers-

work/ 

[16] “A Beginner’s Guide to Docker,” JFrog. Accessed: Jun. 28, 2024. [Online]. Available: 

https://jfrog.com/devops-tools/article/beginners-guide-to-docker/ 

[17] “Overview.” Accessed: Mar. 24, 2024. [Online]. Available: 

https://kubernetes.io/docs/concepts/overview/[18] G. Turin, A. Borgarelli, S. Donetti, E. B. 

Johnsen, S. L. Tapia Tarifa, and F. Damiani, “A Formal Model of the Kubernetes Container 

Framework,” in Leveraging Applications of Formal Methods, Verification and Validation: 

Verification Principles, T. Margaria and B. Steffen, Eds., Cham: Springer International Publishing, 

2020, pp. 558–577. doi: 10.1007/978-3-030-61362-4_32. 

[19] M. Aleksic, “Kubernetes Use Cases {8 Real Life Examples},” Knowledge Base by 

phoenixNAP. Accessed: Mar. 24, 2024. [Online]. Available: https://phoenixnap.com/kb/kubernetes-

use-cases 



 

65 

Chapter 3: Performance Evaluation of the Proposed Solution 

[20] “Harnessing the power of Kubernetes: 7 use cases,” CodiLime. Accessed: May 29, 2024. 

[Online]. Available: https://codilime.com/blog/harnessing-the-power-of-kubernetes-7-use-cases/ 

[21] N. K. Singh, “The Kubernetes Odyssey: Chapter 2 — The Enchantment of Clusters,” 

Medium. Accessed: Jun. 28, 2024. [Online]. Available: https://neerazz.medium.com/the-kubernetes-

odyssey-chapter-2-the-enchantment-of-clusters-b71ca237c1af 

[22] C. Bouras, P. Ntarzanos, and A. Papazois, “Cost modeling for SDN/NFV based mobile 5G 

networks,” in 2016 8th International Congress on Ultra Modern Telecommunications and Control 

Systems and Workshops (ICUMT), Lisbon, Portugal: IEEE, Oct. 2016, pp. 56–61. doi: 

10.1109/ICUMT.2016.7765232. 

[23] M. C. Ammour and F. Debbakh, “PERFORMANCE EVALUATION OF SOFTWARE 

DEFINED –NETWOEK (SDN) CONTROLLER,” Thesis, UNIVERSITY OF OUARGLA, 2023. 

Accessed: May 28, 2024. [Online]. Available: http://dspace.univ-

ouargla.dz/jspui/handle/123456789/33504 

 


	شكر و عرفان
	إهــــــــــداء
	Abstract
	Acronyms
	1 Table of Contents
	List of Figures
	List of Tables
	General Introduction
	1 Chapter 1
	1.1 Introduction:
	1.2 Computer Networks
	1.2.1 Introduction
	1.2.2 History of Computer Networks
	1.2.3 How computer networks work

	1.3  Software-Defined Networking (SDN)
	1.3.1 Definition
	1.3.2 Importance of SDN
	1.3.3 Application fields
	1.3.4  SDN Infrastructure
	1.3.5 SDN Controllers
	1.3.6 Technical Challenges and Considerations in Software-Defined Networking (SDN)

	1.4 Containers:
	1.4.1 Definition
	1.4.2 Benefits of its Infrastructure
	1.4.3 Docker Containers
	1.4.4  Containers and Virtual machines

	1.5 Kubernetes
	1.5.1 Definition
	1.5.2 Use Cases
	1.5.3 Kubernetes Components

	1.6 Related works
	1.7 Conclusion

	2      Chapter 2:
	2.1 Introduction:
	2.2 Materials
	2.2.1 Workstation Computer
	2.2.2 Simulation Software
	2.2.3 SDN Controller
	2.2.4 Other tools

	2.3 Methodology
	2.3.1 Planning
	2.3.2 Changes Made to Djezzy’s Network Sample

	2.4 Building the network
	2.4.1 Legacy Network Configuration

	2.5 Deploying the SDN Ready Network
	2.5.1 Essential Modification Needed for The SDN Deployment
	2.5.2 Network Load Balancing

	2.6 Deploying Containers and Kubernetes
	2.6.1 Deploying Kubernetes

	2.7 Conclusion

	3 Chapter 3
	3.1 Introduction
	3.2 Comparative Performance Evaluation of the Proposed Network
	3.2.1 Bandwidth comparison
	3.2.2 Round Trip Time
	3.2.3 Fault Tolerance

	3.3 Measuring Kubernetes Benefits
	3.3.1 Testing the Response Time
	3.3.2 Testing the Load balancer

	3.4 Discussion
	3.5 Conclusion

	General Conclusion and Perspective
	Bibliography

