UNIVERSITY OF KASDI MERBAH OUARGLA

Faculty of New Technologies of Information and

Communications

Department of Electronics and Telecommunication

Master’s Thesis
Submitted in fulfillment of the requirements for the Master of Science degree in

Telecommunications Systems.

SDN Network Integration with Containers and

Kubernetes for Internet Service Providers

A Practical Study Conducted with Networks provided by Djezzy

BY
Selmane Fares CHERIFI

&
Ayman HAMMANI

In front of the jury members of

Dr. Ibtissam Chaib President MCB, Univ Ouargla
Prof. Mohammed Elbachir Mahdjoub ~ Examination Prof, Univ Ouargla
Dr. Sayhia Tidjani Supervisor MAB, Univ Ouargla

Academic year: 2023/2024

e g S

S LS dana Sle b s aml) O s sl e Culia LS seae JT Lo 5 dena e lia agll)
e es Sl Gaallall 8 sl) J1 5 o)) e

) Lle 3a o8] S Gl Wile Jumd agd (0 |y
il 4l galedl g o oo lasy cile ¥ 5 e Le 3l Laililad (liieY) 5 Sl Gallay 4a 55

LS aioall lggun 68 5 Leailiaty Lide Jagial Al " Slasll Aaaila! 3360Y) et peay ol dll JLus
Z ol QIS Gl Hall 3 el 038 a8 Laga fe 3o |58 (0l) S0 Lilud Wil Galla ey

Ao il 3yl olgii) ey s Wil Hal el "o Glitn Laadl (g il Co il U i U S
(ISl (5058 e IS A shae 4 e QLS) A L sac L (Al (5 ke (318 sliae] aaand 1580 (Ul

S8l G 38) Fa Y geass (BSS duria (3 i

3 K Y

il Iy Hliall 138 QS allly gl 13 B

RUSKTRY BUPTIR D PRVII g PRI IV
e Y Al) g a3l ¢ gall WIS ol aey U gall 5)
Bl gacall juae) glS cpalll o) 32V Al 5 asal)
AL 5 A (Shais oL Y S)
DY (Fsa8d Ge Ul g sS Gl Gleall v Jisall ee 5 b e adall YL il
Jlaall 138 8 268 jra g agh i o | glan ol g5 hadll o3a

aedl | s @l shad IS 8 T Ll 15308 ol o) e Y1 lianal) Sal Gallay 4 gl (oliial JS
oy Y Al aSani g Juaal gial) sSaes e o811 S el 5 il J< STy il 5 agia

aga) 5)Y B3a ad i ¢l g pall 5l B gl caat Llde Caal 3 50 aluad) 5 ALIA e)
_U@@&m&ﬁjw\&uh&yaﬁjsﬁu\

7 b i g b Clabs

3 K —

Ol aY i) e il e el o e

e sl Ja alg asall Ul (e iless 388 calls Y 51 45 5588 39 3l a5 () a8 S (e Jandl 128]
M@\&\Mgéﬁ\%c?bc‘dSéﬂ.JUAeAY\j4%}45‘:}35&‘};1}“‘54;\&&5&
. Gahle 5 Ua g)5 G sina

Al Bgen ol e Y1 JBaaly e)

lgilided g6 5 piall 120 oLl Aol LeianDa 5 (paaill W jua o ¢ Alagi s) Sall ¢ 8 pial pald S

daula agac s ad yua s agailal CulS Gl g e 4858 ik e IS5 Gl s) ST 0 o
Aa g hY) s Jus)

,’QAL‘; C)".‘.‘ 9

ol S Aile s 8 e Leban s il) IR iae b g S) el

Abstract

The thesis explores the integration of Software-Defined Networking (SDN) with containers and
Kubernetes for Internet Service Providers (ISPs). The study focuses on the practical implementation
of SDN, Containers, and Kubernetes in a real-world ISP environment, highlighting the benefits and
challenges of this integration. The research begins by discussing the fundamental concepts of
computer networking, including the history of computer networks and the evolution of SDN. It then
delves into the technical aspects of the latter, containers and Kubernetes, exploring their benefits,

limitations, and potential applications.

The practical implementation of SDN, containers, and Kubernetes is demonstrated through a
case study involving a collaboration with DJEZZY, an Algerian ISP. The study outlines the project
plan, network modifications, and the configuration of the Legacy network, including the deployment
of protocols such as 1S-1S, BGP, OSPF, MPLS, and MPLS-TE.

The testing methodology, which involves utilizing tools like IPerf to assess the network'’s
performance in terms of bandwidth, latency, and packet loss, is also presented. The results of the
study highlight the potential benefits of SDN, containers, and Kubernetes in improving network

efficiency, scalability, and security for ISPs.

Keywords

SDN, containers, Kubernetes, Internet Service Providers, network integration, network efficiency,

scalability, security.

i Yl e e3iad Kubernetes s Containersd) ge (SDN) ibise s 46 paall clSeal) JalSs da 5l CadSis
Alladl 8 i Y Aadd 25 3 44 A Kubernetes s Containers! s SDN — eadl 2wl e 4l jall < 5 (ISPs)
Gy b Lay ¢ i sanaSll IS0 o) s liall Ad8liey Canall oy JalSH 138 Cilan s 03 68 e o suiall Jaslisi e ¢ iial)
CiSi s cKubernetes s Containersd) s 3 a3 il el sl & Sexiy 2 SDN sy i saeSl) CilSe 5 & s

Aldinal) Leiydai o o o 5 Lol g8

250 «DIEZZY gn oslal) eaiali Al Al 0 SIS e Kubernetes s <l siall s SDN — (el 28580 gy 63 o3
i el 8 Ly cpalial) Ay) 5 o5 5 A Al Camt g g g 5 Sall Aad Al pall g o8 jal) i Yl Aend
.MPLS-TE s MPLS s OSPF s BGP s IS-IS Jis &Y S 5i 5 yll

@235 el e dua (e AS 8l elal anl) [Perf Jie &l sl aladiul a5 GLEAY) dngia (i ye Wial &4
* Kubernetes s Containersy SDN — alaisall 23 sdll e ¢ gazall il jall meilis Jald 3a jall lad g J guca sl (30)9
Y Clead edial (W) 5 s sl AL 5 A0 B S (ppun

doalidall clalsl)

L) s sl LB ASLA 3ol Al JalS oy Gledd sedia <Kubernetes <Containers <SDN

VI

Résumé

La these explore l'intégration des réseaux définis par logiciel (SDN) avec des conteneurs et
Kubernetes pour les fournisseurs de services Internet (FAI). L'étude se concentre sur la mise en ceuvre
pratique de SDN, de conteneurs et de Kubernetes dans un environnement FAI réel, soulignant les
avantages et les défis de cette intégration. La recherche commence par discuter des concepts
fondamentaux des réseaux informatiques, y compris I'histoire des réseaux informatiques et I'évolution
du SDN. Il aborde ensuite les aspects techniques de ces derniers, des conteneurs et de Kubernetes, en

explorant leurs avantages, leurs limites et leurs applications potentielles.

La mise en ceuvre pratique du SDN, des conteneurs et de Kubernetes est démontrée a travers
une étude de cas impliquant une collaboration avec DJEZZY, un FAI algérien. L'étude décrit le plan
du projet, les modifications du réseau et la configuration du réseau traditionnel, y compris le
déploiement de protocoles tels que 1S-1S, BGP, OSPF, MPLS et MPLS-TE.

La méthodologie de test, qui implique lutilisation d'outils tels qu'lPerf pour évaluer les
performances du réseau en termes de bande passante, de latence et de perte de paquets, est également
présentée. Les résultats de l'étude mettent en évidence les avantages potentiels du SDN, des
conteneurs et de Kubernetes pour améliorer l'efficacité, I'évolutivité et la securité du réseau pour les
FAL.

Mots clés

SDN, conteneurs, Kubernetes, fournisseurs d'accés Internet, intégration réseau, efficacité réseau,

évolutivité, sécurité.

VII

Acronyms

API: Application Programming Interface
AP: Access Point

BGP: Border Gateway Protocol
CAPEX: Capital Expenditure

CLI: Command-Line Interface

ECMP: Equal-Cost Multipath

GNS3: Graphical Network Simulator-3
IDS: Intrusion Detection System

IP: Internet Protocol

IS-IS: Intermediate System to Intermediate System
ISP: Internet Service Provider

LAN: Local Area Network

MME: Mobility Management Entity
MPLS: Multiprotocol Label Switching
NCP: Network Control Protocol

NFV: Network Functions Virtualization
ODL.: OpenDaylight

OPEX: Operational Expenditure

OSPF: Open Shortest Path First

PGW: Packet Gateway

VI

QoE: Quality of Experience

QoS: Quality of Service

RBAC: Role-Based Access Control

SDN: Software-Defined Networking

SIEM: Security Information and Event Management
TCP: Transmission Control Protocol

TLS: Transport Layer Security

VLAN: Virtual Local Area Network

VM: Virtual Machine

WAN: Wide Area Network

Table of Contents

L TS PSSP 1
L) T TSRS 1
A B S T R A T ettt e et e et e e as Vv
ACRONY M e et e ettt e e ettt e e e s e a bt e e e s anbb e e e e s anbbeaeesanees VI
TABLE OF CONTENTS ..ottt e et e e et e e e nnraeeas X
LIST OF FIGURES ...ttt ettt e e e e X1
LIST OF TABLES ...ttt ettt e e e et e e e anees XV
GENERAL INTRODUCTION. ...ttt ananea e e 1
CHAPTER L.t s e e s e e e 3
1.1 INTRODUCTION: Luuutttttteususnsssessnsnssssnnssnsnsssnsssssssssssssssssssssssssssnsssssnnsnsnnssssnnsnssnnnnsnnnnnnns 4
1.2 COMPUTER NETWORKSuuutuuuuuuuuunnnnnnnnnnnnnnsnnnnnnnsnsnnnnnnnssnmssmsssssnnsnnnnnsnnnnnnnnnnnnnnnnnnn. 5
121 INEFOTUCTION ... 5

1.2.2 History of Computer NEIWOIKS.........ooiviiiiie e 5

1.2.3 HOW COMPULEr NEEWOIKS WOTK.....couviiiiiiiiic e 6

1.3 SOFTWARE-DEFINED NETWORKING (SDN) ...ccoiiiiiiiiiieiiiee e 8
131 DEFINIION ... s 8

1.3.2 IMPOrTANCE OF SDIN ...ttt ettt et et e be e 9

1.33 APPLICALION FIEIAS ... eiiiieiee e 9

1.3.4 SDIN INTIASIIUCTUIE ... 11

1.35 SDIN CONEIOIIEIS ... 13

1.3.6 Technical Challenges and Considerations in Software-Defined Networking (SDN)................ 15

L CONT AINERS . ettt ee et e et e et et e e et et e e et e e e e e e e e ee e eea e eeeteeaeaeeeanareenaeees 16

141 DEFINITION ..ottt ettt 16
1.4.2 Benefits Of itS INFraStrUCTUIEoviiiiiii s 17
143 DOCKEN CONTAINELS ...ttt bbbt sb e bbbttt sbe et nbb e snees 18
144 Containers and Virtual MacChingSccoieiiiiiiiieie e 19
1.5 KKUBERNETES ...cttiiiiitiiieeiiiriee e et e et e et e s e e e st e e e st e e s e e e e s e e e e e 20
151 DEFINITION 1.ttt bbbttt 20
152 USE CBSES ...ttt etttk E Rt 21
153 KUDEIMELES COMPONENTS. ... eeitieiieiieitee ittt sttt bbb bbbttt sbe b b anees 23
1.6 RELATED WORKSutiieittiie ittt ettt e sttt ettt ettt ettt as e ettt et e e st e nnbe e e e e 26
O A ©10][4 I 1] 1 | N 27
CHAPTER 2. oottt e et e e e e e e s s bbb r e e e e e e e s e neabees 29
2.1 INTRODUCTION: .. 30
2.2 MATERIALS. ... 30
2.2.1 WOrKStation COMPULETcvvieiiee et e et e et e e te e et e e sra e e snt e e snbe e e teeenreeesnee s 30
2.2.2 SIMUIALION SOEWAIE.........eiiiiiiii e 31
2.2.3 SDIN CONOIIEN ... bbbt nre e 32
2.24 OFNEE TO0IS ... e b et r e ne e 33
2.3 METHODOLOGY ..o 34
2.3.1 o P U0] T o TSRS 34
2.3.2 Changes Made to Djezzy’s NetWork SaAmple..........cocveiieiieiieiieeieeiieseeseesie e 36
2.4 BUILDING THENETWORKccii it 37
2.4.1 Legacy Network CONfIQUIAtIONcocviiiiiieiiiiie it snaeaneas 37

2.5 DEPLOYING THE SDN READY NETWORKceuitetieieee et e e ee e e aeeaeeanns 42

251 Essential Modification Needed for The SDN Deployment...........cccocvvviiiieniiniieneeneee e 42

252 NEetWOrk Load BalanCing.........coviiiiiiiiiiiieiieiee i 45

2.6 DEPLOYING CONTAINERS AND KUBERNETES......ccttiiiiiiiieaiiiiiaeeaniieneesaniieeeessneneeas 48
2.6.1 DeployiNg KUDBIMELES.........ooiiiiiieie e 48

2 A ©7e] N0 MU L1 o] N U SOPPRT 52

(O 1 e I S SRR 53
3.1 INTRODUCTION ...uttiiieiiitiiieeaiieeeeeasitteea e s astteeeeaastte e e e e asste e e e e e asbbeeeesanbbeaeesansbeaeesannbneas 54
3.2 COMPARATIVE PERFORMANCE EVALUATION OF THE PROPOSED NETWORK 54
321 Bandwidth COMPATISON.cc.uiiuiiiiiiieitie et 54
... 55

3.2.2 Lo 0 o I I 4o T 2T RSP TR 55

3.23 FAUIT TOIBIANCE ...t 56

3.3 MEASURING KUBERNETES BENEFITS.....ccttttiiiiiiieieiiiiiiiiinniieessessrriiinnnneesssssssssnnns 57
331 Testing the RESPONSE TIME........iiiiiiiee e sre et e e re e sraeesnee s 57

3.3.2 Testing the Load DalanCer...........cccvviiiei ittt e srae e 58

K B] [T U 1SS [0 N TR TR 59
R I O00] N I U 11 [0] TR 59
GENERAL CONCLUSION AND PERSPECTIVEccooiiiiiiiiiiiieeee e 61
BIBLIOGRAPHY .ttt e e a e e e e e s s bbb eaaeeas 63

Xl

LIST OF FIGURES

FIGURE 1.1: TYPICAL NETWORK ARCHITECTUREccutttiiieieeessiiitiineeeeeessssnstnneseeeeesssnsnsnsssesesesssssnnsssssseeess 7
FIGURE 1.2: SDIN ARCHITECTURE ..1ettiiiiiiiiititieteee e s s s sttttaesseeeaasasttaesseaeeassansnsaaasesaeeesaasssssssseaeeessassssnnseeesens 13
FIGURE 1.3: COMPARING CONTAINERS WITH VIRTUAL MACHINESciittiiiiiiiiiie ettt 20
FIGURE 1.4: KUBERNETES ARCHITECTURE OVERVIEWcciiiiiiiiii ettt 23

LINKS oo 36
FIGURE 2.2: I1S-I1S CONFIGURATION0oiiiiiiiiiiiiiiiiie ittt bbbt neane s 38
FIGURE 2.3: BGP CONFIGURATION SAMPLEcouiiiiiiiiiiiiiiti ittt 38
FIGURE 2.4: OSPF COMMANDS ..ottt sttt sttt b e bbb bbb b bbb bbb 39
FIGURE 2.5: ENABLING MPLS AND MPLS-TE GLOBALLY ON ROUTERcccoiiiiiiiiiiiiciicnie e 39
FIGURE 2.6: ENABELING MPLS AND MPLS-TE ON THE INTERFACES........cccoiiiiniiiiinicic e 39
FIGURE 2.7: MPLS TUNNEL CONFIGURATIONS SAMPLEccciiiiiiiiiiiiieiie ettt 40
FIGURE 2.8: MPLS-TE DYNAMIC CONFIGURATIONcoiiiiiiiiiiiiiiiciie ittt 40

FIGURE 2.9: A FUNCTIONING ISP NETWORK TOPOLOGY SHOWING AGGREGATION AND IP-CORE LAYERS

BUILT INTO GIN S L. ittt ettt e e et e e e e st e e e st e e e e ss b e e e e snbe e e e e nnteeeeesnsaeeeennnes 41
FIGURE 2.10: OPENDAYLIGHT BOOTING IN UBUNTU SERVER.......cuuttiiiieiiiiiiiiieriieeessssiiineeseeesssnsssnnnssesssees 42
FIGURE 2.11: CONTROLLER FULL INITIAL CONFIGURATIONcctttiiiiieeeesiiiitineneeeeessssssnsneeeeeesssnsssnnsseessess 42
FIGURE 2.12: STEPS FOR INSTALLING OPENFLOW MANAGER........utttiiiiieiiiiiiiiiirieeeesssiniinneeseeesssnssnnneseessens 43
FIGURE 2.13: INSTALLING OPEN-FLOW PLUGIN ON CISCO ROUTERSccooittiiiiiieeesseiiiiiineeeeeesesnnnvaneenaeeens 43
FIGURE 2.14: NETWORK TOPOLOGY THROUGH OPENFLOW MANAGER DASHBOARDcccvvveeeeiiiiiiiinneeeenns 44
FIGURE 2.15: PYTHON SCRIPT FOR LOAD BALANCING THE TRAFFIC ON THE NETWORKcccvveeeeiiiiirenennn. 45
FIGURE 2.16: SDN CONTROLLER LOGS WHEN THE BANDWIDTH EXCEEDS 80%0ccccvvvvieieee e eeiiiineeeeeennn 47

X1

FIGURE 2.17: SDN CONTROLLER LOGS AFTER THE BANDWIDTH DROPPED TO BELOW 20%ccccvvveeeennn. 48

FIGURE 2.18: COMMANDS NEEDED FOR THE KUBERNETES DEPLOYMENT......uuuiriiieeeiiiiiiinneeeeeeeessnnnnnneeeeeens 49
FIGURE 2.19: HOW IS KUBERNETES CLUSTER AND THE SDN CONTROLLER LINKED TO THE NETWORK 50
FIGURE 3.1: BANDWIDTH CAPACITY FOR SDN AND LEGACY NETWORK.ctiiiiiiiieiiiiieessiieeeessiieeesssneeesanes 55
FIGURE 3.2: ROUND TRIP TIME FOR SDN AND LEGACY NETWORK.cciittitieiiiiiieeiiiiieesasiireessssneeessnneeessnnns 55
FIGURE 3.3: KUBERNETES SERVER RESPONSE TIMEutviiiiiiiiiiiesiiiieeessitieeessiiieeesssitneeesssteeaesssnsneeessnsneeeesnns 58
FIGURE 3.4: COMMANDS FOR TESTING THE LOAD BALANCERccutiiiiiiiiiie s iiieee ettt e e e sniaee e 58

XV

LIST OF TABLES

TABLE 2.1:BASIC COMMANDS TO NAVIGATE THROUGH KUBECTLvvviiiiiiiiieiiiiieee s siieee e siieee e sieeeessineee s 51

TABLE 3.1: COMPARISON OF FAULT TOLERANCE BETWEEN SDN NETWORK AND THE LEGACY NETWORK ..56

XV

General Introduction

The rapid evolution of telecommunications and networking technologies necessitates a
continual reassessment of legacy network architectures. Increasing demands from modern
technologies such as 5G, IoT, and FTTH have presented challenges to Internet Service Providers
(ISPs) in delivering high-performance, scalable, and cost-effective network services. Conventional
network designs, characterized by rigidity and complexity, struggle to meet the growing demands for
bandwidth, flexibility, and efficient management. To address these challenges, innovative approaches

such as Software-Defined Networking (SDN) and containerization technologies have emerged.

Software-Defined Networking (SDN) decouples the control plane from the data plane, enabling
centralized, programmable network management. This paradigm allows for dynamic resource
allocation, improved network visibility, and greater operational flexibility. Concurrently,
containerization, particularly through Kubernetes, provides a lightweight and efficient method to
deploy and manage applications. Kubernetes automates the deployment, scaling, and operations of

application containers across a cluster of machines.

This thesis explores the integration of SDN with Kubernetes to enhance ISP networks. The
research develops a framework leveraging both technologies to address the limitations of Legacy

networks. The study is structured as follows:

Introduction and Background (chapter 1): An overview of the current
telecommunications landscape and the evolution of network technologies, identifying specific
challenges faced by ISPs. The rationale for integrating SDN with Kubernetes and the primary research

objectives are outlined.

Methodology (chapter 2): A detailed methodological framework for the proposed
integration, including the selection of SDN controller OpenDaylight, container orchestration tools
(Kubernetes), and the use of network simulation environment GNS3, The experimental setup and

integration processes are described.

Results and Analysis (chapter 3): Presentation of experimental results comparing fault
tolerance and latency improvements in SDN-integrated networks versus traditional architectures. The

findings will signify the enhancements in network resilience and performance.

Discussion: Analysis of the experimental results and their implications for ISP network
management practices. The discussion includes limitations of the study and suggestions for future

research.

Conclusion: A summary of key findings, emphasizing the practical contributions of the
research in advancing network management practices. The potential of SDN and Kubernetes
integration to transform ISP networks is highlighted, along with recommendations for further

exploration.

Through this Practical research, the thesis aims to provide valuable insights into the practical
application of SDN and containerization technologies, offering a pathway to more efficient, scalable,

and resilient ISP network infrastructures.

N o a bk~ D

Chapter 1

Basic concepts and technical studies

Introduction

Computer Networks
Software-Defined Networking (SDN)
Containers

Kubernetes

Related works

Conclusion

Chapter 1: Basic concepts and technical studies

1.1 Introduction:

The contemporary landscape of telecommunications is witnessing rapid transformations driven
by advancements in networking technologies and the exponential growth of data traffic. Among these
technologies, Software-Defined Networking (SDN) has emerged as a paradigm-shifting architecture
designed to address the limitations of legacy network infrastructures. This thesis explores the
integration of SDN with Containers and Kubernetes, specifically within the context of Internet
Service Providers (ISPs), to enhance network management, scalability, and service delivery.

The inception of modern computer networks can be traced back to ARPANET, which
introduced packet-switching techniques and laid the foundation for today's Internet. Over the decades,
networking technologies have evolved to address increasing demands for bandwidth, security, and
flexibility. Legacy networks, characterized by static and hardware-centric configurations, struggle to

adapt to the dynamic requirements of modern applications and services.

As ISPs strive to meet the growing needs for high-speed and reliable internet services, they face
significant challenges related to network management, scalability, and operational efficiency. The
legacy approach to network management is often hampered by inflexible architectures and high
operational costs. This thesis investigates how SDN, combined with containerization technologies

such as Kubernetes, can offer a more flexible, scalable, and cost-effective solution for ISPs.
The Objectives are:

e To analyze the limitations of legacy network infrastructures in ISPs.

e Toexplore the potential benefits of integrating SDN with containerization technologies
like Kubernetes.

e To propose a practical implementation framework for ISPs to adopt SDN and

containerization technologies effectively.

This chapter presents an overview of the research, its context, and the organizational structure
of the thesis. It addresses the evolution of network technologies and the increasing demand for
efficient, scalable, and reliable network infrastructure, highlighting the limitations of traditional

legacy networks and introducing Software-Defined Networking (SDN) as a promising solution. The

4

Chapter 1: Basic concepts and technical studies

problem statement articulates the issues with legacy networks regarding scalability, fault tolerance,
and resource management, leading to the central research problem. Our primary research objectives
include evaluating SDN performance, assessing fault tolerance capabilities, and exploring the
integration of Kubernetes with SDN.

1.2 Computer Networks

1.2.1 Introduction

Networking is the practice of linking multiple computing devices together to enable the
transmission, exchange, or sharing of data and resources between them. This can be achieved through
wired connections (like cables) or wireless connections (like Wi-Fi).

Networks can be classified based on their geographic location and the protocols they use to
communicate. For example, a Local Area Network (LAN) connects computers in a defined physical
space, like an office building, while a Wide Area Network (WAN) can connect computers across long
distances or even continents. The internet is the largest example of a WAN, connecting billions of

computers worldwide.
1.2.2 History of Computer Networks

The origins of contemporary computer networking can be traced back to the development of
ARPANET in the late 1960s and early 1970s. Before this pivotal period, existing computer networks
primarily focused on linking terminals and remote job entry stations to mainframes. However,
ARPANET introduced a transformative concept, which is networking between computers as equal
peers to facilitate resource sharing. Additionally, ARPANET pioneered the novel technique of packet
switching, departing from traditional message or circuit switching methods. This innovative approach
efficiently allocated communication resources among users with fluctuating demands, marking a

significant milestone in the evolution of computer networking[1].

The original architectural design of the network comprised three primary layers: a network
layer, encompassing network access and switch-to-switch protocols, a host-to-host layer known as
the Network Control Protocol (NCP), and a layer dedicated to specific applications such as file

transfer, email, speech, and remote terminal support, termed as the "function-oriented protocol” layer.

By 1973, it became evident to leading figures in networking that an additional protocol layer

was necessary within the hierarchy to facilitate the interconnection of diverse individual networks.

Chapter 1: Basic concepts and technical studies

This imperative led to the creation of the new Internet Protocol (IP) and Transmission Control
Protocol (TCP), which collectively superseded the NCP[1].

1.2.3 How computer networks work

In this section, we will delve into the intricate layers of computer networking: access, aggregation,
and core layers. We will explore their key components and functionalities, shedding light on the
protocols, devices, and technologies that drive modern network infrastructures. Understanding these
layers is vital for network engineers and administrators, enabling them to design, optimize, and scale
networks to meet the demands of today's digital landscape.

A. Core Layer

The core layer forms the backbone of the network, responsible for fast and reliable data
transmission between different parts of the network. It consists of high-speed routers and switches
optimized for forwarding packets at the fastest pace possible upward of 40 to 100 gigabits a second.
Core layer devices employ protocols like MPLS (Multiprotocol Label Switching) and BGP (Border
Gateway Protocol) for efficient packet routing and traffic management. Redundancy and fault
tolerance mechanisms such as Equal-Cost Multipath (ECMP) routing and link-state protocols (e.g.,

OSPF and I1S-1S) are crucial at the core layer to ensure high availability and reliability.

B. Aggregation Layer (Distribution Layer)

Positioned between the access and core layers, the aggregation layer aggregates traffic from
multiple access layer switches and forwards it toward the core network. It typically comprises high-
performance switches and routers capable of handling a large volume of traffic. Aggregation layer
devices may implement protocols like BGP or MPLS for dynamic and efficient routing or also Link
Aggregation to bundle multiple physical links into a single logical link, increasing bandwidth and
providing redundancy. Additionally, features like Quality of Service (QoS) are often implemented at

this layer to prioritize critical traffic flows.

Chapter 1: Basic concepts and technical studies

C. Access Layer

This layer serves as the entry point for end devices into the network infrastructure. It consists
of switches and wireless access points (APs). These devices provide connectivity to end-user devices
such as computers, printers, IP phones, and 10T devices. The access layer implements protocols like
Ethernet for wired connections and Wi-Fi standards for wireless connectivity. Access layer switches
utilize techniques like VLANSs (Virtual Local Area Networks) to segment network traffic and ensure

efficient communication within local network segments.

In terms of data flow, data moves from the Access layer to the Aggregation layer, and then to
the Core layer. Each layer serves a specific function and communicates with the layers directly above
and below it in the hierarchy [2].

The hierarchical design of networks aims to reduce the workload on individual components,
thereby increasing network efficiency and performance. It also simplifies management and
troubleshooting, making the network more scalable and robust. This understanding of how networks

work forms a solid foundation for any further exploration into the field of computer networking.

Core Layer |

Figure 1.1: Typical Network Architecture

(W

Chapter 1: Basic concepts and technical studies

1.3 Software-Defined Networking (SDN)

1.3.1 Definition

SDN is a networking architecture that has emerged to address the challenges posed by the
continuous growth of the Internet, smart applications, advanced machine learning, multimedia
applications, social networks, etc. It aims to keep up with such evolution in terms of bandwidth,
information overload, and complexity[3].

SDN separates the network’s control logic from the underlying routers and switches, promoting
logical centralization of network control [3]. This separation allows for a more programmable

network, enabling innovation and overall improvements to the network [4].

In SDN, traditional switches are upgraded if they don’t already support OpenFlow or other
Flow related protocols that include flow tables remotely controlled by a separate software application
called the controller. This allows for dynamic allocation of resources, management, control, security,
etc [3].

One of the serious challenges in cloud computing or Internet traffic is that demand varies widely
from day to day or even from hour to hour. This fluctuation makes it very hard to manage this process

manually. SDN addresses this issue by allowing for automated and dynamic network management.

OpenFlow is one of the improvements developed to ease the interaction between the controller
and switches. It was one of the early efforts to separate the control and data plane[5]. The necessity
to enable researchers to write vendor-neutral control software, to have high-performance and low-
cost implementations, to support varieties of research, and to be able to isolate experimental from

production traffic were among the factors that influenced the creation of OpenFlow and SDNI[5].

In summary, SDN is a paradigm shift in networking that offers a more flexible,

programmable, and efficient network by separating the control plane and data plane.

Chapter 1: Basic concepts and technical studies

1.3.2 Importance of SDN

Software-Defined Networking (SDN) provides increased control with greater speed and
flexibility, so network operator can control the flow of traffic over a network by programming an
open standard software-based controller, instead of manually programming multiple vendor-specific
hardware devices. This gives networking administrators more flexibility in choosing networking
equipment, as they can use a single protocol to communicate with any number of hardware devices

through a central controller.

SDN allows for a customizable network infrastructure, where administrators can configure
network services and allocate virtual resources to change the network infrastructure in real-time
through one centralized location. This enables network administrators to optimize the flow of data
through the network and prioritize applications that require more availability.

Furthermore, SDN also offers robust security by delivering visibility into the entire network,
providing a more holistic view of security threats. With the proliferation of smart devices that connect
to the internet, SDN offers clear advantages over legacy networking. Operators can create separate
zones for devices that require different levels of security, or immediately quarantine compromised

devices so that they cannot infect the rest of the network.
1.3.3 Application fields

Software-defined networking (SDN) is a revolutionary technology that has found applications
in various fields, including 5G, cloud computing, and machine learning. Here are some of the key

application areas:
A. 5G Networks:

SDN brings versatility to 5G networks. It introduces a centralized, programmable network
architecture that separates the control plane from the data plane and eases network slicing which is
an essential part of 5G and its low latency applications, allowing for more dynamic and efficient
network management. SDN and virtualization go hand in hand to enable many of the network

functions to run in software rather than in custom-built hardware[6].

Chapter 1: Basic concepts and technical studies

B. Cloud Computing:

SDN plays a crucial role in cloud computing. Itallows applications to interact with the network
through APIs that enable general network maintenance, including routing, security, access control,
bandwidth management, traffic management, quality of service, processor optimization, and data
storage[7].

C. Machine Learning:

SDN, along with edge computing, NFV, and augmented intelligence, shapes and supports
Al-driven network ecosystems. The impact of Al on various networking products and solutions,
including embedded hardware[7], components, and software platforms (automation, optimization,

and network transformation), is significant.
D. Internet Service Provider Networks:

SDN is also significantly beneficial for Internet Service Providers (ISPs). An architecture
based on SDN techniques gives operators greater freedom to balance operational and business
parameters, such as network resilience, service performance, and Quality of Experience (QoE) against
operational expenditure and capital expenditure(OPEX and CAPEX), SDN allows for more flexible
network management through programmable network states. This can be achieved through enabling
network programmability based on open APIs. As a result, SDN will help operatorsto scale networks

and take advantage of new revenue-generating possibilities[8].
E. Internet of Things (loT):

SDN is beneficial for the Internet of Things (10T) due to its scalability, programmability, and
centralized network management. It provides efficient control over complex network infrastructure
like 10T and can coexist with legacy networks. SDN, combined with containerization, can address
most 10T challenges. Furthermore, it enhances Quality of Service (QoS) for critical network flows.

These features make SDN a promising solution for managing 10T networks.
F. Edge Computing:

SDN plays a significant role in edge computing by providing a flexible and programmable
network infrastructure that can support the high bandwidth and low latency requirements of edge

applications[7].

10

Chapter 1: Basic concepts and technical studies

G. Simplified policy changes:

With SDN, an administrator can change any network switch's rules when necessary --
prioritizing, deprioritizing or even blocking specific types of packets with a granular level of control

and security.

This capability is especially helpful in a cloud computing multi-tenant architecture, as it enables
the administrator to manage traffic loads in a flexible and efficient manner. Essentially, this enables
administrators to use less expensive commodity switches and have more control over network traffic

flows.
H. Reduced hardware footprint and operational expenditure

SDN also virtualizes hardware and services that were previously carried out by dedicated
hardware. This results in the touted benefits of a reduced hardware footprint and lower operational

costs.
1.3.4 SDN Infrastructure

SDN and legacy networking represent two different paradigms in network architecture. The
key differences between them are primarily in their architecture, control plane, configuration and

management, programmability, scalability, security, and cost[9].
A. Architecture:

Traditional networking uses fixed-function and dedicated hardware and network devices,
including switches and routers, to control network traffic. On the other hand, SDN is characterized
by the decoupling of control and packet forwarding planes in the network. This separation allows for

OpenFlow use and the use of more open protocols[10].
B. Control Plane:

In legacy networks, each router has its own control plane, which makes independent decisions
about the routing table. In contrast, SDN has a centralized control plane that provides a unified view

of the entire network, enabling more efficient traffic management[10].

11

Chapter 1: Basic concepts and technical studies

C. Configuration and Management:

Legacy networks often lack exposed APIs for provisioning and are unable to be modified as
needed. SDN, however, allows networks to connect to apps using application programming interfaces
(APIs), supporting application performance and security[10].

D. Programmability:

SDN is programmable, allowing for dynamic, on-demand network resource management and
configuration. This is in contrast to legacy networks, where the functionality is primarily implemented
in application-specific integrated circuits (ASIC) and other dedicated hardware[10].

E. Scalability:

SDN, being software-based, offers better scalability and flexibility compared to traditional
hardware-based networking. It provides users with more control and easier resource management,

allowing users to virtually manage resources with the control plane.
F. Security:

SDN’s centralized control plane allows for a unified view of the network, which can enhance

security by enabling more comprehensive and proactive threat management [9].
G. Cost:

SDN networks are becoming increasingly popular due to their flexibility, automation, and cost-
effectiveness. In contrast, legacy networking infrastructure can be costly due to the need for dedicated

hardware and devices[10].

In conclusion, SDN represents a paradigm shift from legacy networking, offering significant
advantages in terms of flexibility, programmability, and cost-effectiveness. However, it’s important
to note that each has its own strengths and weaknesses, and the choice between SDN and legacy

networking would depend on the specific requirements and context.

12

Chapter 1: Basic concepts and technical studies

APPLICATION LAYER | |

Business Applications

API

SDN
Control .
Software Network Services

Control Data Plane interface

(e.g., OpenFlow)
INFRASTRUCTURE LAYER

Network Device Network Device Network Device
Network Device Network Device

CONTROL LAYER

Figure 1.2: SDN Architecture [11]

1.3.5 SDN Controllers

Software-Defined Networking (SDN) controllers are the central orchestrators within the SDN
paradigm, responsible for the intelligent management and dynamic control of network resources.
They decouple the control plane from the data plane, facilitating programmable, flexible, and scalable

network operations.
A. Centralized Control Plane

SDN controllers serve as the centralized control plane, abstracting the underlying network
infrastructure and providing a comprehensive, unified view of the network. This centralization allows

for consistent and holistic network management and policy enforcement.
B. Network Abstraction and APIs

SDN controllers interface with the network through:
e Northbound APIs: These APIs connect the SDN controller to higher-level applications and
business logic, allowing applications to request network services and retrieve network state

information.

13

Chapter 1: Basic concepts and technical studies

e Southbound APIs: These APIs communicate with network devices, issuing commands and
retrieving data. OpenFlow is the predominant protocol used here, enabling direct control
over the forwarding behavior of network devices.

C. Core Functions of SDN Controller

e Topology Discovery: Continuously map and update the network topology to maintain an
accurate network representation.

e Flow Management: Install and manage flow rules in network devices to control traffic paths
based on predefined policies.

e Traffic Engineering: Optimize traffic distribution across the network to enhance
performance and resource utilization while ensuring QoS.

e Network Policy Enforcement: Implement and enforce security, access control, and

compliance policies across the network.

D. Prominent SDN Controllers

While open-source controllers offer flexibility and community-driven innovation, vendor-

specific controllers often require proprietary hardware, leading to potential vendor lock-in.

e Open-Source SDN Controllers

OpenDaylight: An open-source platform under the Linux Foundation, OpenDaylight supports
diverse protocols and network applications. Itis flexible and modular, with strong community support

and extensive integration capabilities.

ONOS (Open Network Operating System): Designed for high performance and scalability,
ONOS targets carrier-grade networks. It features a distributed core architecture for high availability

and robust topology management.

e Vendor-Specific SDN Controllers

Cisco APIC-EM: Tailored for enterprise environments, it integrates deeply with Cisco’s
hardware and software ecosystem. However, it requires Cisco-specific appliances, leading to vendor

lock-in.

14

Chapter 1: Basic concepts and technical studies

Huawei IMaster NCE: is an advanced SDN controller BY huawedesigned to automate and
intelligently manage network operations. It integrates network management, control, and analysis
functions into a single platform. Key components include capturing business intents, automating

network tasks, and much more.

Juniper Contrail: An SDN controller that integrates seamlessly with Juniper Networks'
hardware. Best performance and features are achieved with Juniper-specific appliances, potentially

limiting multi-vendor integration.
Conclusion

SDN controllers are the cornerstone of the SDN architecture, providing centralized,
programmable control over network resources. They offer significant advancements in network

flexibility, automation, and optimization, addressing the limitations of legacy networking.

1.3.6 Technical Challenges and Considerations in Software-Defined Networking (SDN)

A. Scalability and Performance

Challenge: As the scope and complexity of networks expand, ensuring the scalability and
performance of the SDN controller becomes a critical focal point. The controller must efficiently
manage an extensive array of devices and handle substantial volumes of network traffic, all while
ensuring minimal latency and maximal throughput. This challenge is exacerbated in large-scale
environments such as hyperscale data centers and carrier networks, where rapid network state changes

demand real-time processing and adaptability.

Consideration: To address scalability and performance concerns, employing a distributed
controller architecture is vital. Distributed controllers, such as ONOS and OpenDaylight, leverage
multiple controller instances distributed geographically or logically across the network. These
instances work in concert, utilizing algorithms for state synchronization and consistent hashing to
evenly distribute network state information and manage load balancing. Additionally, the
implementation of sharding techniques and partitioning strategies allows the controller to handle high
traffic loads and device counts efficiently. Advanced data plane programmability, facilitated by
protocols like P4, can offload complex processing tasks from the controller, further enhancing

performance and scalability.

15

Chapter 1: Basic concepts and technical studies

B. Security and Reliability

Challenge: The centralization inherent in SDN architecture introduces heightened security
vulnerabilities and reliability risks. The SDN controller, being the brain of the network, is a prime
target for cyberattacks and presents a single point of failure. Ensuring robust security and high
reliability of the controller and the communication channels between the controller and network

devices is essential for maintaining network integrity and availability.

Consideration: Enhancing security in SDN involves implementing multi-layered security
measures. Utilizing Transport Layer Security (TLS) for securing controller-device communications
is fundamental to protect against interception and tampering. Role-Based Access Control (RBAC)
ensures that only authorized users can perform sensitive operations, reducing the risk of insider
threats. Additionally, integrating Intrusion Detection Systems (IDS) and Security Information and
Event Management (SIEM) systems with the SDN controller can provide real-time threat detection
and response capabilities. For reliability, deploying multiple redundant controllers in a clustered
configuration ensures high availability and resilience. Stateful failover mechanisms enable seamless
controller handover in the event of a failure, minimizing downtime. Employing network slicing and
micro-segmentation can also isolate failures and contain potential security breaches within specific

segments of the network, reducing the overall impact.

By addressing these advanced technical challenges and considerations, SDN can achieve the
necessary scalability, performance, security, and reliability to meet the demands of contemporary and

future network environments.

1.4 Containers:

1.4.1 Definition

Containers are a type of software that can package up an application and its dependencies like
Programming language runtime or package managers of the likes of APT and also database and
drivers to name a few, having the ability to run anywhere. This is a form of operating system
virtualization. Containers operate by sharing the same operating system kernel but running in isolated
user spaces. They are considered lightweight because they run directly on the host machine’s
hardware without the need for a hypervisor, unlike virtual machines. This means you can run many

more containers on a host machine than virtual machines.

16

Chapter 1: Basic concepts and technical studies

Containers are important because they allow developers to package an application with all of
its dependencies into a standardized unit for software development. This means that the application

will run the same, no matter where it is deployed, reducing inconsistencies and increasing efficiency.

A significant advantage of containers is that they are mostly open source. This open-source
nature makes them powerful and adaptable, as it allows developers worldwide to contribute to their
development and improvement. It also ensures transparency, flexibility, and a wide community

support base, further enhancing their robustness and versatility.

A virtual machine (VM) emulates a real computer, running applications like a physical system.
It operates on a host machine using a hypervisor, which can be software, firmware, or hardware. Each

one includes a full guest operating system, allowing independent operation within the host.
1.4.2 Benefits of its Infrastructure

Container infrastructure works by creating isolated environments for applications to run. Here is a

detailed explanation:
A. Packaging and Isolation:

Containers are technologies that allow the packaging and isolation of applications with
their entire runtime environment. This includes all of the files necessary to run the application.
This makes it easy to move the contained application between different environments

(development, testing, production, etc.) while retaining full functionality[11].
B. Sharing Resources:

Containers share the same operating system kernel and isolate the application processes
from the rest of the system [11]. This allows multiple containers to run on the same system
without interfering with each otherl. They share CPU, memory, storage, and network resources

at the operating system level [12].
C. Portability:

The abstraction of applications from the environment they run in makes containers highly
portable. You can easily move the containerized application between public, private, and hybrid
cloud environments and data centers (or on-premises) with consistent behavior and

functionality[11].

17

Chapter 1: Basic concepts and technical studies

In summary, container infrastructure works by isolating applications in their own
environments, sharing system resources, providing portability while being light weight on the
server making them a very efficient when deployed across different environments, and
managing deployments with container orchestration tools like Kubernetes.

1.4.3 Docker Containers

Docker is one of the most used container engines available, just like in the VM world we
have VMs from VMware and Hyper-V from Microsoft and many others, containers have container
engines and Docker is the most used and the most documented engine of the bunch, images become
containers when they run on Docker Engine. Available for both Linux and Windows-based
applications, containerized software will always run the same, regardless of the infrastructure.
Containers isolate software from its environment and ensure that it works uniformly despite

differences for instance between development and staging.
Docker containers that run on Docker Engine are:

e Standard: Docker created the industry standard for containers, so they could be portable
anywhere.

e Lightweight: Containers share the machine’s OS system kernel and therefore do not require
an OS per application, driving higher server efficiencies and reducing server and licensing
costs.

e Secure: Applications are safer in containers and Docker provides the strongest default

isolation capabilities in the industry.

Docker container technology was launched in 2013 as an open source Docker Engine. It
leveraged existing computing concepts around containers and specifically in the Linux world,
primitives known as cgroups and namespaces. Docker’s technology is unique because it focuses on
the requirements of developers and systems operators to separate application dependencies from

infrastructure.

Success in the Linux world drove a partnership with Microsoft that brought Docker containers

and its functionality to Windows Server.

18

Chapter 1: Basic concepts and technical studies

All major data center vendors and cloud providers have leveraged technology available from
Docker and its open source project, Moby (an open source framework developed by Docker). Many
of these providers are leveraging Docker for their container-native laaS (Infrastructure as a Service)
offerings. Additionally, the leading open source serverless frameworks utilize Docker container
technology.[13]

1.4.4 Containers and Virtual machines

Containers and Virtual Machines (VMs) are pivotal technologies in today’s computing world.
Containers, known for their portability, encapsulate an application and its environment, ensuring
consistency across platforms. VMs, on the other hand, provide an abstraction of physical hardware,
running a complete operating system, and offer stronger security boundaries. This thesis explores
these technologies, their benefits, and their impact on the future of computing. Some of the advantages
they provide are:

e Efficient Data Processing:

Containers have emerged as a new paradigm to address intensive scientific applications
problems. Their easy deployment in a reasonable amount of time and the few required
computational resources make them more suitable [14]. This means that they can handle large
amounts of data efficiently, making them ideal for applications that require intensive data

processing.

e Light Virtualization Solutions:

Containers are considered light virtualization solutions. They enable performance isolation and
flexible deployment of complex, parallel, and high-performance systems[14]. This means that they
can run multiple instances of an application on the same hardware without causing performance

issues.

e Modernization and Migration:

Containers have gained popularity to modernize and migrate scientific applications in
computing infrastructure management. This means that they can be used to update and move

applications to a completely different computing environment without causing disruptions.

19

Chapter 1: Basic concepts and technical studies
[]

Reduced Computational Time:

Containers reduce computational time processing [14]. This means that they can execute tasks
faster than traditional virtual machines, improving the efficiency of the system.

Platform Independence:

Containers are designed to be platform-independent. Thanks to its standardized format they can

run on any system that supports the container runtime [15], such as Docker, regardless of the
underlying operating system or hardware.

Quality of Connectivity:

These benefits make containers a powerful tool for developers and organizations alike. They

provide a lightweight, flexible, and efficient solution for deploying and managing applications,
particularly in distributed computing environments.

The figure 1.3 shows the differences between Containers and virtual machines architectures.

' s
Containerized Applications

N [
Virtual Machine Virtual Machine Virtual Machine
|
AppA AppB Appc
< 1] (8] o : l;
j=5 o o
Z 5: = 3 & T Guest Guest Guest
Operating Operating Operating
System System System

Hypervisor

Figure 1.3: Comparing Containers with Virtual Machines [16]
1.5 Kubernetes

1.5.1 Definition

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications. It groups containers that make up an application into logical units for

20

Chapter 1: Basic concepts and technical studies

easy management and discovery. The system is designed to be a platform that takes care of scaling

and failover for applications[17].

Kubernetes provides a framework for running distributed systems resiliently. It takes care of
scaling and failover for applications, provides deployment patterns, and more. This makes it a great
tool for managing cloud-native microservices[18]. Moreover, Kubernetes supports a variety of
workloads, making it suitable for tasks ranging from machine learning to web applications and

internet service providers.

The project was originally designed by Google and is now maintained by the Cloud Native
Computing Foundation. It is written in the Go programming language and its development and design

were significantly influenced by Google’s Borg system.

Kubernetes has a large and rapidly growing ecosystem, with services, support, and tools widely
availablel. It’s used in a variety of environments, from cloud-native infrastructure to on-premises

data centers, and there are multiple distributions of Kubernetes available from various providers[18].

It is a robust tool for managing and orchestrating containerized microservices, is widely used
by Internet Service Providers for its high availability management and simplified container
orchestration. It ensures service uptime through its healing capabilities and is considered the standard

for container orchestration.
1.5.2 Use Cases

Kubernetes use cases are vast and continuously being developed and improved upon while also
showing the versatility of it all. It covers its application in large-scale deployments, microservices
management, and much more, the aim is to underscore Kubernetes’ comprehensive capabilities

beyond just container management.

e Large-Scale App Deployment

Kubernetes is designed to handle large-scale applications with its automation capabilities and
declarative approach to configuration[19]. Features like horizontal pod scaling and load
balancing allow developers to set up the system with minimal effort. Kubernetes ensures high

availability and scalability to handle surges in app traffic.

e Microservices Architecture

21

Chapter 1: Basic concepts and technical studies

Kubernetes is well suited for deploying microservices-based applications. It helps manage
communication between the numerous components that make up a microservices app[20].
Kubernetes simplifies the deployment and management of these complex, distributed

applications.
e Big Data Processing

Companies dealing with big data often use Kubernetes to support their software. It ensures
portability of big data apps across multiple environments, packages apps to ensure
repeatability[19], and helps optimize resource usage based on varying infrastructure

requirements.
e Machine Learning

Kubernetes enables running entire machine learning workflows in one place, both locally and
in the cloud. It allows scaling resources like GPUs to fit model needs, enables gradual

upgrades[19], automates health checks and resource management, and leverages portability.

e Serverless and PaaS Platforms

Kubernetes can be used to create your own serverless or platform-as-a-service (PaaS)
platforms. Its container orchestration and scheduling capabilities make it suitable for

workflow execution engines.

e Hybrid and Multi-Cloud Deployments

Kubernetes facilitates cross-cloud deployments where different services run in various cloud
and on-premises environments[20]. It allows connecting all compute resources to the cluster,

whether in the same cloud or hosted elsewhere.

e Simplifying Cloud Networking
Kubernetes simplifies cloud networking by managing networking within the cluster,

connecting services together without configuring host-level networking rules.

22

Chapter 1: Basic concepts and technical studies

Worker Node - 1 \

=\

(Container ‘I)

Container 1) (Container 1)
(Container 2

Kubernetes Master (Container 3)
P a—
(API Server) DOCKER
| Kubelet Kube-proxy
Int%'ﬁ:ce (Scheduler) L)
Worker Node - 2
(Controller - Manager) ~
pra——
(eted) (Container '1) (Container 1) [Container 1]
Kubectl ~ J (Container 2) [Container 2)
'
DOCKER
[Kubelet Kube-proxy
~ S

Figure 1.4: Kubernetes Architecture overview [21]

1.5.3 Kubernetes Components

Kubernetes offers a spectrum of resources, services, and tools for application management.

Some of the most used options are explored below.
A. Kubernetes Master Components:
e API Server (kube-apiserver):

Role: The API server acts as the central management entity for the Kubernetes control plane. It
serves as the primary point of interaction for administrators and users, handling all requests to manage

the cluster.

Functionality: It processes RESTful API calls and updates the state of various components in
the etcd store. It also validates and configures data for the API objects, including pods, services, and

replication controllers.

23

Chapter 1: Basic concepts and technical studies

e Scheduler (kube-scheduler):

Role: The scheduler assigns tasks (pods) to worker nodes based on resource availability and

other constraints.

Functionality: It continuously monitors the state of the cluster, determining which nodes have
the resources to run a pod. It considers factors like CPU, memory, and network availability to

optimize workload distribution and ensure efficient use of resources.
e Controller Manager (kube-controller-manager):
Role: This component runs various controller processes that regulate the state of the cluster.

Functionality: Each controller watches the shared state of the cluster through the API server
and makes changes to move the current state towards the desired state. Key controllers include the
Node Controller (manages node status), Replication Controller (ensures the correct number of pod
replicas), and Endpoints Controller (manages endpoint objects).

e etcd:
Role: etcd is a distributed key-value store used for persistent storage of all cluster data.

Functionality: It stores configuration data, state information, and metadata, ensuring
consistency and reliability. etcd provides a consistent and highly available data store used for storing

all the cluster’s state and configuration.

B. Worker Node Components:
e Kubelet:

Role: The kubelet is an agent that runs on each worker node, ensuring containers are running

in a pod as specified by the Kubernetes control plane.

Functionality: It communicates with the API server to get the specifications of the pod and
ensures that the containers described in these pod specs are running and healthy. It also reports the

status of the node and pods back to the Kubernetes master.

24

Chapter 1: Basic concepts and technical studies

o Kube-proxy:

Role: Kube-proxy maintains network rules on each node, enabling network communication to

and from pods.

Functionality: It manages the routing of traffic coming into the node, distributing it to the
appropriate pods, and providing load balancing and network address translation (NAT) services. It
ensures that each pod gets a unique IP address and can communicate with other pods and services
within the cluster.

e Container Runtime (Docker in this example):
Role: The container runtime is responsible for running the containers within the pods.

Functionality: In this example, Docker is used as the container runtime. It pulls the necessary

container images from a registry, startsand stops containers, and ensures they are running as expected.
C. User Interaction Components:
e User Interface (UI):
Role: The Ul provides a graphical interface for users to interact with the Kubernetes cluster.

Functionality: Users can deploy, manage, and monitor applications running in the cluster using

a visual dashboard. It provides insights into the cluster's state, health, and performance.
e Command-Line Interface (CLI) - kubectl:
Role: kubectl is a command-line tool that interacts with the Kubernetes API server.

Functionality: It allows users to execute commands to deploy and manage applications, inspect
and manage cluster resources, and view logs and status information. kubectl provides a powerful

interface for automating tasks and scripting cluster operations.

25

Chapter 1: Basic concepts and technical studies

D. Interaction Flow:

e Users interact with the Kubernetes cluster through the Ul or CLI (kubectl), sending
commands to the API server.

e API Server processes these commands, updating the state of the cluster and storing this
information in etcd.

e Scheduler assigns pods to suitable worker nodes based on resource availability and other
constraints.

e Controller Manager maintains the cluster's desired state by managing various controllers.

e Kubelet on each worker node ensures the specified containers are running correctly within
their pods.

e Kube-proxy handles network communications on each node, ensuring pods can
communicate with each other and external services.

e etcd maintains a consistent and highly available data store for all cluster state and

configuration data.

This comprehensive architecture ensures Kubernetes provides a scalable, reliable, and efficient

platform for managing containerized applications.

1.6 Related works

The convergence of Software Defined Networking (SDN), containerization, and Kubernetes
has revolutionized network management and service delivery. In this section, we explore existing
research and practical implementations that pave the way for efficient, scalable, and dynamic
networks. By examining relevant works and real-world deployments, we gain insights into the
challenges, solutions, and best practices for deploying SDN-based networks using containers and

Kubernetes,

On this particular work by Intidhar Bedhief, the paper proposes an innovative model for loT
architecture by combining Software Defined Networking (SDN) and containerization (specifically
Docker). The architecture addresses challenges related to 10T heterogeneity, network control, and

QoS requirements. By integrating SDN principles, it achieves better control over heterogeneous loT

26

Chapter 1: Basic concepts and technical studies

networks. Leveraging Docker, it ensures that 10T devices can run lightweight, isolated containers.
The proposed architecture abstracts communication and simplifies management. Validation using a

smart supermarket use case demonstrates its effectiveness.

Although technologies such as SDN and NFV have been present for some time, it is with the
emergence of 5G that they will prove their true potential. First, they provide a financial advantage. In
[22], a study was conducted to analyze the impact of using SDN, NFV and Cloud computing in 5G
networks for the CAPEX, the OPEX and the total cost of ownership (TCO). It was observed that in
comparison with the traditional architecture, the CAPEX would be reduced by 68%, the OPEX by
63%, and the TCO by 69%.

In the same faculty where I am currently conducting my research, Ammour Mohammed
Chikh & Debbakh Fadia carried out a noteworthy study recently. Their thesis, titled “Performance
Evaluation of Software Defined —Network (SDN) Controller”’[23], provides an in-depth analysis of
the performance and resilience of SDN controllers. Utilizing controllers such as HPE-VAN, ONOS,
and Open daylight, they created an emulated SDN environments for testing and evaluation purposes.
The research delves into the influence of various network parameters, including topology, traffic
patterns, and controller placement, on the overall performance. The insights gained from this study
are intended to guide network designers and operatorsin identifying the most effective configurations

to enhance performance and fault tolerance in SDN networks.

They also explained the benefits of SDN infrastructure compared to traditional network
infrastructure while ending on a note that summarizes that Open daylight is one of the more versatile

and reliable options they tested with the quickest recovery times

1.7 Conclusion

In conclusion, this Chapter has provided a detailed look at the current state of
telecommunications, focusing on the challenges faced by Internet Service Providers (ISPs). The
chapter traced the evolution of networking technologies from ARPANET to today's modern
infrastructures, highlighting the difficulties legacy network designs have in meeting increasing

demands for bandwidth, security, and flexibility.

The problem statement identified key issues ISPs face, such as difficulties in managing
networks, scaling them efficiently, and high operational costs. To address these challenges, the

integration of Software-Defined Networking (SDN) with containerization technologies like

27

Chapter 1: Basic concepts and technical studies

Kubernetes was proposed. This chapter outlined the main goals of the research: to examine the limits
of legacy networks, explore the benefits of combining SDN with containers, and create a practical

guide for ISPs to implement these technologies.

Overall, this Chapter has set a strong foundation for the research, outlining the scope and
objectives that will guide the research into advanced network architectures. This groundwork is
essential for the detailed methodological exploration and technical implementation discussed in the

following chapter.

28

Chapter 2:

Technical Framework and Implementation

Methodology for Network Enhancements

Introduction

Material Used

Methodology

Building the Network

Deploying the SDN Ready Network

Deploying Containers and Kubernetes

N o a k~ b RE

Conclusion

Chapter 2: Technical Framework and Implementation Methodology

2.1 Introduction:

In this chapter, we outlined the methodological framework employed to investigate the
integration of Software-Defined Networking (SDN) with containerization technologies such as
Kubernetes within Internet Service Provider (ISP) networks. Our approach is structured to facilitate
athorough exploration of the technical intricacies and operational benefits of this integration. We will
outline the selection criteria for our SDN controllers and container orchestration tools, elaborate on
the experimental setup designed to simulate a realistic ISP environment, and detail the
implementation steps required to configure and test our network architecture. This comprehensive
methodological approach aims to provide a robust foundation for the subsequent analysis and
evaluation phases, ensuring that our research is both rigorous and replicable.

2.2 Materials

In this project, we needed a capable Workstation computer with enough RAM and CPU cores
for the simulation software to handle the complex and large setting we are experimenting on so the

materials used are as follows:
2.2.1 Workstation Computer

Itis required that we use a powerful workstation computer since network simulation software requires
a lot of RAM and CPU cores, especially in our case where we are simulation nearly the whole Internet
Service Provider’s Network with all the mature configurations and complex routing protocols, the

specifications of our workstation machines goes as follows:

e Operating System: Microsoft Windows 11
e RAM: 64GB

e CPU: 12cores, 24 threads

e Storage: 2TB (512GB will suffice)

Note that you don’t need these exact specifications for the simulation you could use less or
more depending on what’s available, for the simulation alone you would be fine with 512GB of
storage, and less RAM if you used less demanding routers in the simulation, as if or the GPU it wasn’t

necessary for the simulation to run it’s purely based on the CPU calculations.

30

2.2.2

Chapter 2: Technical Framework and Implementation Methodology

Simulation Software

In the rapidly evolving field of telecommunications, network simulators have become

indispensable tools for designing, testing, and troubleshooting network configurations without the

need for physical hardware. These tools range from open source to licensed programs, simulators like

GNS3, EVE-NG, Cisco Packet Tracer, and Containerlab. Each of these tools offers unique features

and capabilities tailored to different use cases, from professional and enterprise environments to

educational and container-based projects. Understanding their strengths and weaknesses is crucial for

selecting the most appropriate simulator for our specific requirements while also providing resources

for researchers and professionals to use as a brief guide on choosing the right network simulator for

anyone experimenting with SDN, Containers or Kubrenetes.

EVE-NG

EVE-NG provides a robust, web-based interface that simplifies remote access and
management, making it ideal for enterprise environments and collaborative projects. It
supports a wide range of network devices from multiple vendors. The platform allows
multiple users to work on the same topology simultaneously, enhancing teamwork. However,
EVE-NG demands high system resources, especially when running multiple instances, and its

advanced features like containers are only available in the paid Professional edition.
GNS3:

GNS3 offers extensive flexibility and realism, making it an excellent choice for professional
network engineers who require detailed multi-vendor support and the ability to integrate with
real hardware. Its high customizability and comprehensive device support enable the creation
of complex network topologies that closely mimic real-world scenarios. It also is the most
documented simulator of the bunch, However, GNS3 is resource-intensive, demanding
significant CPU and memory. The setup process can be complex and time-consuming, and

troubleshooting can be challenging due to the variety of integrated components.

Packet Tracer

Cisco Packet Tracer is tailored for educational use, offering an intuitive interface and efficient
performance on low-end hardware. It is designed to help students learn networking concepts

with accurate simulations of Cisco devices and 10S commands. The tool is resource-efficient

31

Chapter 2: Technical Framework and Implementation Methodology

and available on multiple platforms, making it accessible to a broad audience. However,
Packet Tracer is limited to Cisco devices and technologies only, lacking multi-vendor support,
and its simulations are less realistic compared to more advanced simulators like GNS3 or
EVE-NG. Itis also primarily designed for educational purposes, not for complex professional

network simulations like ours.

e Containerlab:

Containerlab excels in modern, container-based environments, providing strong support for
Docker and Kubernetes. It simplifies the deployment of network topologies using container
images, offering efficient, scalable, and automated network functions. Containerlab is
resource-efficient and integrates well with CI/CD pipelines and automation tools, making it
ideal for cloud-native projects. However, it has a steep learning curve since it is all command
line based and not a graphical interface, and also requires knowledge of Docker and
Kubernetes, which may be a barrier for new users, The focus on containerized functions
means it has limited support for traditional network devices, and it has a smaller community
with fewer resources compared to more established simulators. Integrating Containerlab with

existing non-containerized environments can also be challenging.

e What we ended up with:

For our project we chose GNS3 for its extensive documentation and support for the various
protocols and technologies we need, we would like to use EVE-NG for its simplicity and
modern approach, problem is container support is locked behind the paid professional version
while we prioritized making this project completely free and open-source accessible for
anyone following through. Containerlab meets these conditions but at the time of writing, it
supports a handful of Nokia and juniper routers while it is a very powerful and efficient tool

it requires a steep learning curve to operate its command line

2.2.3 SDN Controller

A plethora of options exists concerning SDN controllers, ranging from open-source to
proprietary (vendor-specific) solutions. Our focus primarily centers on open-source alternatives such

as ONOS, OpenDaylight, Floodlight, among others.

32

Chapter 2: Technical Framework and Implementation Methodology

Amidst the diverse array of SDN controllers, OpenDaylight emerges as a preeminent selection
due to its notable attributes, extensive documentation, and dependable performance. Positioned as an
open-source SDN controller platform under the auspices of the Linux Foundation, OpenDaylight
benefits from a vibrant community ecosystem and a comprehensive repository of documentation
materials. Its modular architecture, elucidated by our colleagues at [23], facilitates adaptable

customization and seamless integration within varied networking environments.

Furthermore, OpenDaylight demonstrates robust stability and performance, a fact substantiated
by empirical studies such as that conducted by our colleagues [23], who highlighted its rapid recovery
capabilities in response to sudden link disruptions. This resilience underscores its utility in
maintaining network continuity and mitigating service interruptions. Additionally, OpenDaylight's
adherence to standardized protocols and Application Programming Interfaces (APIs) augments

interoperability, fostering harmonious integration with diverse network infrastructures and protocols.
2.2.4 Other tools

e VMware player

VMware Player is essential for GNS3 simulations as it enables virtualization, allowing users
to run multiple virtual machines (VMs) on a single physical host (a workstation on our case).
This capability is crucial for emulating complex network topologies with various devices and
operating systems. VMware Player facilitates the integration of real-world network elements
into virtual environments, enhancing the accuracy and versatility of GNS3 simulations.
Additionally, we used it to deploy the SDN controller into since it need to work on a separate

server instance.
e Putty

Putty is utilized in networks primarily for its SSH (Secure Shell) capability, enabling secure
remote access and management of network devices such as routers, switches, and servers. It
got used when accessing devices from GNS3 Its versatility across different protocols,
lightweight design, and compatibility with various operating systems make it an essential tool

for configuration, monitoring, and troubleshooting tasks within network infrastructures.

33

Chapter 2: Technical Framework and Implementation Methodology

e WiInSCP

WiInSCP is an open-source file transfer utility for Windows that supports FTP, SFTP, SCP,
and WebDAYV protocols. It is primarily used for securely transferring files between a local
and a remote computer. WIinSCP provides a graphical interface for easy file management,
ensuring data security during transfers. It is commonly used for tasks such as uploading
website files to a server, transferring configuration files to network devices, and backing up
data to a remote server, it was used in our case to deploy the SDN controller into the server,

and used in the web server configuration.

2.3 Methodology

2.3.1 Planning

Our exploration commenced with a search for Internet Service Provider (ISP) network
architectures available online, seeking a suitable model to integrate with SDN, Containers, and
Kubernetes. Given the acknowledged benefits of these modern technologies within ISP networks, our

attention naturally turned to their potential applications.

Subsequently, it was determined that an immersive internship experience within an active ISP
environment would provide invaluable insights. DJEZZY was selected for its reputation for

embracing modern network innovations and technologies.

Under the mentorship of Mr. Soufiane Saidi, SDN / IP Backbone Administrator at DJEZZY,
we gained a comprehensive understanding of ISP network operations. Mr. Saidi generously shared
his expertise, including an exemplar ISP network architecture, emphasizing the significance of th e

Aggregation layer for optimal SDN integration.

At present, DJEZZY is in the process of implementing an SDN solution, underscoring their
proactive stance toward technological progress. This ongoing initiative serves to inspire us further in
constructing a meticulous project for our research endeavors. Additionally, it presents an opportune
moment for DJEZZY to conduct a thorough review of the anticipated benefits before proceeding with
the active deployment of the technology. This collaborative approach not only enhances the validity
and relevance of our research efforts but also contributes to DJEZZY's strategic decision-making

process regarding the integration of SDN within their network infrastructure.

34

Chapter 2: Technical Framework and Implementation Methodology

Mr. Saidi provided the following architecture, which closely represents the current active architecture
used by the company. This figure illustrates the IP Core layer and the Aggregation layer, with our

primary focus being on the Aggregation layer.

Under the guidance of our internship supervisor, we formulated the project plan, concluding
that our SDN solution would be most effectively deployed at the aggregation layer. This decision

aligns with DJEZZY's active efforts in this section of the network.

For the Kubernetes and container solution, deployment will be configured to connect to the IP-
Core network, reflecting the configuration of the live network's data center. This deployment will
serve as a web server to demonstrate its agility and automation capabilities. To simulate the combined
benefits, a web server within a Docker container will be utilized. By generating a high volume of user
requests until saturation, the Kubernetes master node (control plane) will automatically deploy and
configure an identical container to manage the increased demand. This approach will showcase the
scalability, speed, and efficiency of Kubernetes in dynamically responding to fluctuating workloads,
effectively load-balancing traffic between containers and highlighting its capabilities in a functional

environment.

35

Chapter 2: Technical Framework and Implementation Methodology

Figure 2.1: ISP Backbone Aggregation Network Topology Showing
Bandwidth Capacity of the Links

2.3.2 Changes Made to Djezzy’s Network Sample

After careful planning and consideration, we made some needed modifications to the network

to ease the operability and efficiency of our methods

A. Changing the router vendor:
Cisco routers were selected over DJEZZY’s Huawei routers due to the limited availability of
Huawei routers in GNS3, which are one SD-WAN specific and another one being a full-scale
edge router. Additionally, the™™ change was necessitated by the comparatively insufficient
documentation provided by Huawei. In contrast, Cisco offers an extensive library of

documentation and guides. Moreover, Cisco's leading position in the global networking

36

Chapter 2: Technical Framework and Implementation Methodology

equipment market enhances the value of learning and implementing their hardware, providing

substantial benefits for research and future career prospects.

B. Changes to IP-Core Layer:
During the planning phase, our internship supervisor suggested that we simplify the Actual
IP-Core layer of the network since it is out of the scope of our study, because we would be
deploying and observing the improvement on the Aggregation layer then the IP-Core layer
should be made just as we showed in the figure

2.4 Building the network

In this phase of the project, the challenge involved constructing an accurate replication of
Djezzy network deployment using the topology they provided. This task was demanding due to our
lack of experience on deploying and reliably configuring a professional and complicated network an

ISP can rely on unlike a trained professional network engineering team.

Since the primary focus is not on the current Legacy network, specific details regarding the

construction and deployment of the network within the simulation software will be briefly addressed.

2.4.1 Legacy Network Configuration

After the positioning of the routers and establishment of the required connections, selection of
an IP pool was made. Guidance on the required objectives to focus on and specification of the

protocols deployed within the network were provided by Mr. Saidi.

Configuration commands are demonstrated for a single router examples were taken from ASG

(Aggregation Site Gateway) routers following a similar configuration process.

In contrast, ASBR (Autonomous System Boundary Router) routers utilize different commands

due to their distinct responsibilities within the network.

The network protocols used include 1S-1S, BGP, OSPF, MPLS, and MPLS-TE.

37

Chapter 2: Technical Framework and Implementation Methodology

A. ISIS Configuration
IS-1S is used with BGP to leverage its strengths in internal routing efficiency, it is essential to

the correct deployment of the BGP protocol

I
interface GigabitEthernetl/o
ip address 10.10.1.9 255.255.255.252
ip router isis

!
router isis
net 49.0010.3333.3333.3333.00

Figure 2.2: 1S-1S configuration

B. BGP implementation

BGP had to be configured on each router, matching the area chosen while specifying each
neighbor, VPNv4 was used to distribute routing information across the routers
The following config was taken from ASG3, all the routers share similar if not the same config

with the difference being IP Addresses.

router bgp 100

bgp log-neighbor-changes

redistribute connected

neighbor 172.16.0.1 remote-as 100

neighbor 172.16.0.1 update-source Loopback®
neighbor 172.16.0.2 remote-as 100

neighbor 172.16.0.2 update-source Loopback®
I

address-family vpnv4

neighbor 172.16.0.1 activate

neighbor 172.16.0.1 send-community extended
neighbor 172.16.0.2 activate

neighbor 172.16.0.2 send-community extended
exit-address-family

Figure 2.3: BGP Configuration Sample

38

Chapter 2: Technical Framework and Implementation Methodology

C. OSPF
Before deploying MPLS (Multiprotocol Label Switching) in a network infrastructure, it is
common practice to utilize OSPF (Open Shortest Path First) as the underlying intra-domain
routing protocol, by leveraging OSPF as the foundation for intra-domain routing, MPLS can
be deployed on top of this stable and efficient routing infrastructure.

!
router ospf 1
network 10.10.1.

network 10.10.1.
network 10.10.1.
network 172.16.0.

Figure 2.4: OSPF Commands

E. MPLS/MPLS-TE

We deployed MPLS (Multiprotocol Label Switching) and then added MPLS-TE (Traffic
engineering) due to its real implementation in the Djezzy network, most if not all enterprise and ISP
WAN networks utilize MPLS, for tunneling and QoS features. Examples taken from ASG3.

! mpls traffic-eng tunnels
router ospf ﬂ 1

mpls ldp autoconfig
mpls traffic-eng router-id Loopback®
mpls traffic-eng areal®o

Figure 2.5: Enabling MPLS and MPLS-TE Globally on
the Router

interface GigabitEtherneto/o
mpls ip

mpls traffic-eng tunnels
ip rsvp bandwidth 512 512

Figure 2.6: Turning on MPLS and MPLS-TE on the interfaces

39

Chapter 2: Technical Framework and Implementation Methodology

MPLS Tunnels are an essential part of the MPLS Protocol Then we would have to add tunnels
on each interface from and into each router, so each link has 2 tunnels, this sample is taken from ASG
router, ASBR routers had more tunnels configured, we had to configure 12 tunnels Each.

I
interface Tunnel3l

ip unnumbered Loopback®

tunnel mode mpls traffic-eng

tunnel destination 172.16.0.1

tunnel mpls traffic-eng autoroute announce

tunnel mpls traffic-eng priority 2 2

tunnel mpls traffic-eng bandwidth 31

tunnel mpls traffic-eng path-option 10 explicit name ASG3TOASBR1
I

interface Tunnel32

ip unnumbered Loopback®

tunnel mode mpls traffic-eng

tunnel destination 172.16.0.2

tunnel mpls traffic-eng autoroute announce

tunnel mpls traffic-eng priority 4 4

tunnel mpls traffic-eng bandwidth 32

tunnel mpls traffic-eng path-option 20 explicit name ASG3TOASBR2

Figure 2.7: MPLS Tunnel Configurations Sample

ip explicit-path name ASG3TOASBR1 enable
next-address loose 10.10.1.5

ip explicit-path name ASG3TOASBR2 enable
next-address loose 10.10.1.14

Figure 2.8: MPLS-TE Dynamic
Configuration

40

Chapter 2: Technical Framework and Implementation Methodology

Following this abbreviated configuration, a functioning topology of an ISP network was
established. This foundation allows for the implementation and deployment of the SDN solution, with

comparisons to be analyzed in later sections.

glj0 152 168.10.1 /30
G20 152.168.10.5 /30
g3/0 152.168.10.% /30
g0 152.168.10.13 /30
oD IFE16.H0 L /32

@0V 0 192 168.20.5/30 g0/0 g0/0 192.168.20.1/30

9L/0 1010 L 230 A 9170 10.10.1.1/ 30
g2/0 ML10.L5 f30

G0/0 10.10.L50/30

g1/0 10.10.165/30

o0 172.16.0.11 /32
[

o0/ 10.10.1.26/30
B gl /0 1010118/ 30
g2/0 10.10.1.25 30
b 0 721607 /32

NT7

V0 10:10.1.66/30
g1/0 10:10.L 7430
o0 172.16.0.14 /32
NET 14

Figure 2.9: A Functioning ISP Network Topology Showing Aggregation
and IP-Core Layers built into GNS3

The figure presents the ISP network topology incorporating aggregation and IP-core layers, as
constructed in GNS3. Various routers and networks are interconnected to form this network design.
The red segment represents the IP-Core with a BGP area of AS200 and Area 0 for the OSPF Protocol,
while the blue segment represents the aggregation layer with its BGP area being AS100 while OSPF

also within Area 0, illustrating different routing areas.

41

Chapter 2: Technical Framework and Implementation Methodology

2.5 Deploying the SDN Ready Network

This section outlines the transition from a legacy ISP network architecture to an SDN enhanced
network. The deployment process involves integrating the SDN controller into the existing
infrastructure, focusing on the aggregation layer where the most significant improvements are

expected.

2.5.1 Essential Modification Needed for The SDN Deployment
A. Deploying The Controller on a Linux server

To host the SDN controller we chose (OpenDaylight) it was required to spun up a Linux VM,

we chose Ubuntu server 24.04 LTS as the Linux image and installed ODL on top of it then

connecting it to the network as fellows.

Hit ‘<tab>" for a list of available commands
and '[cmd] --help® for help on a specific command.
Hit '<ctrl-d>' or type ‘'system:shutdown’' or ‘logout' to shutdown OpenDaylight.

@

Figure 2.10: OpenDaylight Booting in Ubuntu Server

B. Configuring the Controller

feature:install odl-restconf
feature:install odl-12switch-switch
feature:install odl-mdsal-all

feature:install odl-dlux-core
feature:install odl-dluxapps-topology
feature:install odl-dluxapps-nodes

Figure 2.11: Controller Full Initial Configuration

42

Chapter 2: Technical Framework and Implementation Methodology

C. Installing OpenFlow Manager

To fully build the architecture of the SDN network, we need an application that will control

the flows in network, To install OpenFlow Manager, follow these steps (on the same Ubuntu
Server):

#0penFlow Manager

apt-get install -y npm

apt-get install -y nodejs

apt-get install git

git clone http://github.com/CiscoDevNet/OpenDaylight-OpenFlow-App.git

cd OpenDaylight-OpenFlow-App

nano ./ofm/src/common/config/env.module.js
npm install -g grunt-cli

grunt

Figure 2.12: Steps for Installing OpenFlow Manager

These commands are for setting up the OpenFlow Manager, which includes installing Node.js
and npm, cloning the repository from GitHub, and running the Grunt task runner.

D. Activating Essential Protocols on The Network
e Installing open-flow plugin on cisco routers

Cisco routers unlike their switches, don’t come with OpenFlow protocol by default so we

have to install it as a plugin, OpenFlow is essential for the operation and communication
of the SDN controller with the other

ASG3# copy tftp://downloads/ofa-1.0.0-n3000-SPA-k9.ova bootflash:/ofa-1.0.06-n3000-SPA-k9.ova

ASG3# virtual-service install name openflow_agent package bootflash:/ofa-1.0.0-n3000-SPA-k9.ova
ASG3(config)# virtual-service openflow_agent

ASG3(config-virt-serv)# activate
ASG3(config-virt-serv)# end

Figure 2.13: Installing Open-Flow Plugin on Cisco Routers

43

Chapter 2: Technical Framework and Implementation Methodology

After activating the OpenFlow protocol in the routers, the OpenFlow manager web Ul is
consulted to verify the topology. It is observed that certain links are absent from the displayed
topology, despite being detected when conducting a more in-depth examination via the command-
line interface (CLI). This phenomenon is regarded as standard behavior inherent to OpenFlow,
wherein only primary paths are exhibited; any alternative paths will be displayed as they come into
use. This characteristic aligns with the functionality of the Rapid Spanning Tree Protocol (RSTP),
which was earlier configured to prevent the formation of loops within the topology. This

preventative measure is crucial in maintaining network integrity and mitigating potential packet loss

scenarios.
Basic view Flow management Statistics Hosts
Show host devices -]
&
< J— ® .
o (2]
Lo
&
—, —
= Penflow2
enflow:$
o o o
2] e
= opelon:3 - g -
= - } = 2
— opgnflow:d
((::,’ o R
2] L]
e 0)
enflow ramy ‘(:_,
[& = =
— 3 _ . penflow:6
nflow:

Figure 2.14: Network Topology through OpenFlow Manager Dashboard

44

Chapter 2: Technical Framework and Implementation Methodology

2.5.2 Network Load Balancing

Define constants
controller ip = "192.168.1.100"
controller port = "8181"

auth = ('admin', 'admin')
threshold = ©.8

low_threshold = 9.2
check_interval = 5

flow idle timeout = 3@

Define path configurations
pathl = [switch_id, in_port, out ports]
path2 = [switch_id, in_port, out ports]

Define helper functions

def get port stats(switch_id, port_id):
Make API call to get port statistics
Return port statistics

def calculate bandwidth_utilization(previous stats, current_stats, interval):
Calculate bandwidth utilization based on previous and current statistics
Return utilization

def install flow rule(switch_id, in_port, out ports, flow id):
Install flow rule using REST API
Print debug information

def check flow exists(switch_id, flow id):
Check if flow rule exists on switch
Return True if exists, False otherwise

def remove flow rule(switch_id, flow id):
Remove flow rule from switch
Print debug information

def main():
Initialize variables
previous_stats = {}
active flows = False

while True:
Gather port statistics for output ports in pathi
Calculate and check utilization for each output port
Install or remove flow rules based on utilization thresholds
Update previous statistics
Sleep for check interval

#H o o H

if _name__ == "_main__ ":
Call main function

Figure 2.15: Python Script for Load Balancing the Traffic on the Network

45

Chapter 2: Technical Framework and Implementation Methodology

On this section, we describe a Python script that we wrote and integrated into our OpenFlow
manager to dynamically monitor and manage network bandwidth utilization. This script is an

essential component for enhancing the load balancing capabilities of the SDN controller.

It is designed to periodically fetch port statistics from the SDN controller and calculate the
current bandwidth utilization. If the utilization exceeds a predefined threshold of 80%, the script
installs a flow rule to redistribute traffic, thereby maintaining optimal network performance while
preventing congestion. Then after detecting that the bandwidth utilization went down to 20%, it will
delete the alternate flows that were used for the load balancing and return back to default. This
significantly enhances the load balancing aspect of the controller. This ensures efficient utilization of

network resources and maintains optimal service levels for all users.

46

Chapter 2: Technical Framework and Implementation Methodology

Utilization
Utilization
Utilization
Utilization
Utilization
Utilization
Utilization
Utilization
Utilization
Utilization

r

"flow": [
{

wid"s

is between and
is between - and
is between 3 and
is between : and
is between : and
is between . and
is between and
is between and
is between : and

S

"priority"
"table_id"

"hard-
"idle-

timeout”: O,
timeout™: 30,

"match": {

"in-

portis 731

"ethernet-match”: {

3

J
})
"instructions™: {

"instruction”: [

{

1
J

]

"ipv4-destination™: "192.168.30.5/24",
"ipv4-source™: "172.16.50.1/24"

"order”: 0,
"apply-actions": {
"action™: [
{

“order™: 0,

"output-action”:

.9% on
.0% on
.0% on
.0% on
.0% on
.0% on
.8% on
.0% on
.9% on
exceeds 80@. openflow:2:5: 80.52%
Flow rule JSON payload:

{

openflow:1:
openflow:2:
openflow:3:
openflow:4:

openflow:

openflow:2:
openflow:3:
openflow:4:
openflow:1:

"output-node-connector”: "5"

}
¥
1
¥

Flow rule installed successfully on openflow:1

Figure 2.16: SDN Controller Logs when the bandwidth exceeds 80%

R WNRESWN R
vuouuuununuun o,

This figure illustrates the SDN Controller logs monitoring the bandwidth on a router port. Once

it exceeds 80%, the Python script we wrote is launched to initiate load balancing. The logs show that

alternate flows are installed immediately when the threshold is triggered.

47

Chapter 2: Technical Framework and Implementation Methodology

Utilization is between 20.0% and 80.0% on openflow:2:5: 41.57%
Utilization is between 20.0% and 80.0% on openflow:3:5: 42.10%
utilization is below 20.0% on openflow:4:5: ©0.02%

Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:

Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:
Flow rule removed successfully on openflow:

POV E B WNR

Figure 2.17: SDN Controller Logs after the Bandwidth dropped to
below 20%

Here we observe that the Controller started deleting alternate flows that it created once the total

bandwidth dropped below 20% thus dialing back its configuration to default as normal.

2.6 Deploying Containers and Kubernetes

When we researched and studied Containers, we found that it would be best to deploy them with

some basic automation features using Kubrenetes.

An actual ISP network infrastructure has many services that are running on VMs that can be migrated
to a fully automated Kubernetes solution highly improving the efficiency and minimizing the down
time when one of them is down like Firewalls, Mobility Management Entity (MME), Packet Gateway

(PGW), and many more services and tools that can be enhanced
(Kubernetes deploy clusters that have one or multiple containers on them)
2.6.1 Deploying Kubernetes

We deployed a Ubuntu server instance to install Kubernetes and Containers on, we used Kubectl a
command-line tool used to interact with Kubernetes clusters. To deploy instances, which in turn have
clusters of Docker Containers in them called Pods, then we installed Nginx an open source Web

server in the cluster With a simple Website just for demonstration purposes.

The Kubernetes cluster is connected to the network as shown in Figure 2.16, connected to the IP-
core just like the active network on an ISP, where all the applications and services are hosted and

deployed.

48

Chapter 2: Technical Framework and Implementation Methodology

Key Functions of Kubectl:

e Cluster Management: Create, configure, and manage Kubernetes clusters.
e Resource Management: Manage Kubernetes resources such as pods, services,
deployments, replicasets, and more.

e Application Deployment: Deploy applications and manage their lifecycle within the
cluster.

e Monitoring and Debugging: Inspect cluster resources, view logs, and troubleshoot issues.

Basic commands to navigate and administrate your deployments are shown in the Table 2.1.

#Install Kubernetes Components

sudo apt-get update && sudo apt-get install -y apt-transport-https curl

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -cat <<EOF | sudo tee
/etc/apt/sources.list.d/kubernetes.list

deb http://apt.kubernetes.io/ kubernetes-xenial main

EOF

sudo apt-get update

sudo apt-get install -y kubelet kubeadm kubectl

sudo apt-mark hold kubelet kubeadm kubectl

Disable Swap
sudo swapoff -a

Initialize the Kubernetes Master Node (Run this section on the master node only)
sudo kubeadm init --pod-network-cidr=10.244.0.0/16

Deploy Nginx Application (Run this section on the master node only)
kubectl create deployment nginx --image=nginx
kubectl expose deployment nginx --port=80 --type=LoadBalancer

Figure 2.18: Commands Needed for the Kubernetes Deployment

The provided commands facilitate the installation of Kubernetes components (kubeadm,
kubelet, and kubectl), disable swap memory as stipulated by Kubernetes requirements, initialize the
Kubernetes master node with a designated pod network, and deploy an Nginx application. The
sequence of commands is structured in a coherent manner to facilitate a seamless setup process for

individuals utilizing this guide for their research endeavors.

49

Chapter 2: Technical Framework and Implementation Methodology

g0/0 192.168.10.10 /30
g1/0 L92.16E.30.1 /30
ubuntukubem etes-1 leQ 172.16.10.3 /32

PE4

gl/01592.168.10.1 /30
92/0192.168.10.5 /30
g3/0192.168.10.9 /30
gd /0152.168.10.13 /30
o0 172.16.20.1 /32

= g0jo
030 gy gafo
=<

g0 /0 192.168.10.14 /30
Ty 91/0 192.168.30.5 /30
o0 172.16.10.4 /32

420 g91/0 g0/
90/0 192.168.10.6 /30 PEL g0/ 182.168.10.2 /30
g1/0 192.168.20.6 /30 PE2 ST g1/0 192.168.20.2 /30
o P
lol 172.16.10.2 /32 =< loD 172.16.10.1 /32
SDN-1
91/0
g1/0
o0
Gi0/0
g0/0 iojz_ B2 -
g0/0 192.168.20.5/30 g3/0 switch 4370 90/0 hojo 192.168.20.1/30
91/0 10.10.1.2/30 ASBR2 91/0 10.10.L.1/30
92/0 10.10.L.37 /30 s == 92/0 10.10.1.5 (30
93/0 192.168.2.100/24 430/192.168.1.100/24
le 0 172.16.0.2 j32 g0 giLjo lo @ 172.16.0.1 /32
NETZ g2/0 MET1
ASBRL
2/0
©0/0 10.10.1.3830 2/
91/0 10.10.1.41 /30
92/0 10.10.1.45 j30 sG3 90/0 10.10.1.6/30
93/0 10.10.1.49 (30 ASGE - o9g0/0 90/ ¢ = 91/0 10.10.1.9/30
le 0 172.16.0.8 /32 : 92/0 10.10.1.13 /30
le 0172.16.0.3 /32
bz
otk
90/0 10.10.1.14/30
91/010.10.1.17/30
G0/ 1010450/30 ASGLL 92/0 1010.1.21 /30
le 0 172.16.0.4 (32
g1/0 10.10.165/30 ASGY 40/0 10.10.1.10/30
lo 0 172.16.0.11 /32
117 = i s » sijo ninszsrs
zz.rn 10.10.157 /30 = S ases weTs
90/0 10.10.146/30 gif0 1001721609 /32
91/0 10.10.161/30 NETQ 2 aL/0
P2/0 10.10.1.58 /30 9/
lo 0 172.16.0.10 /32
MNET 10
o0/0
[o al/o e 90/0 10.10.1.26/30
=< sor0 = AS67 Chii0a0e 130
Lo 9 10,1
PITL) o110 a2/0 ¢ a0 lo 0 172.16.0.7 /32
ASG14 ASG13 9270 ASGE LE NET7
90 /0 10.10.1.66 30

gL/0 10.10.1.74 /30
lo 0 17216.0.14 /32

0 10.10.1.62/30
MET 14 @

gl/0 10.10.1.73/30
92/0 10.10.1.70 /30
0172.16.0.13/32
MET 13

o0/0 10.10.1.54/30
g1/0 10.10.1.69/30
92/0 10.10.1.34 j30
o0 172.16.0.12 /32
NET 12

g0/0 10.10.1.22 /30
91/0 10.10.1.30 /30
92/010.10.1. 33/30
le 0 17 2.16.0.6 /32

Figure 2.19: How Is Kubernetes Cluster and the SDN Controller Linked
to the Network

This figure shows the final upgraded network with the Kubernetes cluster connected to the IP-

Core and the SDN controller connected between the two ASBRs. Note that it was necessary to add

switch between the controller and ASBR routers to achieve redundancy and high availability in case
a link fails the network will not be effected.

50

Chapter 2: Technical Framework and Implementation Methodology

Table 2.1:Basic Commands to Navigate through Kubectl

Command

Description

kubectl cluster-info

isplay cluster information.

kubectl get nodes

List all nodes in the cluster.

kubectl create deployment myapp

image=myimage

Create a deployment named myapp using the

specified image.

kubectl expose deployment myapp

type=LoadBalancer --port=80

Expose the myapp deployment via a

LoadBalancer on port 80.

kubectl get pods

List all pods in the default namespace.

kubectl logs <pod-name>

Display logs for a specific pod.

kubectl scale deployment myapp --replicas=3

Scale the myapp deployment to 3 replicas.

o1

Chapter 2: Technical Framework and Implementation Methodology

2.7 Conclusion

In this chapter, we meticulously detailed the methodological approach we adopted to explore
the integration of Software-Defined Networking (SDN) with containerization technologies such as
Kubernetes within Internet Service Provider (ISP) networks. Our efforts focused on establishing a
comprehensive technical framework and a systematic experimental setup for our research purposes
and for anyone to follow along with a similar setup for studying or just exploring new ways to
Networking, designed to ensure a thorough examination of the proposed integration.

We initiated our methodology by selecting robust SDN controllers, specifically OpenDaylight
known for its support in carrier-grade network implementations. For container orchestration, we
chose Kubernetes due to its extensive adoption and capability in managing containerized
environments effectively while also being relatively a new field on its own for our future use. To

create a realistic simulation of ISP network scenarios, we utilized network simulation tool GNS3.

We followed a systematic series of implementation steps. First, we prepared the necessary
hardware and software components, including virtual machines, SDN controller with its flow tables,
and Kubernetes clusters. Next, we designed and configured the network topology to accurately reflect
realistic ISP scenarios. Finally, we conducted integration testing to verify that the SDN controllers

and Kubernetes clusters interacted correctly.

By establishing this rigorous methodological framework, we ensured that our research is
grounded in a well-defined environment. This meticulous approach allows for a detailed and accurate
analysis of the integration of SDN and container technologies, providing valuable insights into their
potential benefits and challenges. Our efforts in environment preparation, network configuration, and
integration testing have laid a solid foundation for the Testing and Comparison phases of our research,

ultimately aiming to advance network management practices for ISPs.

52

AN

Chapter 3

Performance Evaluation of the Proposed

Solution

Introduction
Comparative Performance Evaluation of the Proposed Network

Measuring Kubernetes Benefits
Discussion

Conclusion

Chapter 3: Performance Evaluation of the Proposed Solution

3.1 Introduction

In this chapter, we conduct a comprehensive performance evaluation of the proposed Software-
Defined Network (SDN) architecture compared to legacy network infrastructures. The objective is to
analyze and quantify the improvements offered by SDN in key performance metrics, including
bandwidth capacity, round-trip time (RTT), and fault tolerance. These metrics are critical for
assessing the efficiency, responsiveness, and reliability of network systems, particularly within the
context of Internet Service Providers (ISPs). Through a series of controlled experiments and
simulations, we aim to demonstrate the tangible benefits of this solution over conventional
networking approaches, providing a robust foundation for its adoption in modern
telecommunications. This chapter will detail the methodologies used, present the results obtained,
and discuss their implications for network design and management. By systematically comparing the
two network architectures, we seek to highlight the advantages of SDN in enhancing network
performance and resilience, thereby supporting the case for its widespread deployment in ISP

infrastructures.

3.2 Comparative Performance Evaluation of the Proposed Network

A comparative analysis of the proposed SDN and legacy network. The performance of both
networks (legacy and SDN) is analyzed based on bandwidth capacity, Fault tolerance, and Learning

time.
3.2.1 Bandwidth comparison

The results of bandwidth capacity in both the SDN and the legacy network were obtained by
using IPERF tool. Here, we show the maximum bandwidth between two hosts in the SDN and the
legacy network. As shown in Figure 3.1, the maximum bandwidth seems to be higher in the case of
the proposed network by a little, which can highlight the ability of the controller to transfer more data
efficiently without wasting the overhead resources, achieving 8.46 Gb/s compared to its legacy

counterpart’s 7.62Gb/s, which in turn is an improvement of 17%.

54

Chapter 3: Performance Evaluation of the Proposed Solution

10

Bandwidth in Gigabits/s

SDN Network Legacy Network

Figure 3.1: Bandwidth capacity for SDN and legacy network.

3.2.2 Round Trip Time

Round Trip Time (RTT) refers to the total time taken for a signal or packet to travel from the
source to the destination and back again, measuring the complete duration of a communication cycle.
The RTT between the host and server can be measured using the ping command, which gave us a
result of 4.48ms and 7.23ms for the SDN and the legacy Network respectively which is an

improvement of 38%.

The test was set up two hosts one in ASG7 and another on ASG11.

Round Trip Time (ms)
=

SDN Network Legacy Network

Figure 3.2: Round Trip Time for SDN and legacy network.

55

Chapter 3: Performance Evaluation of the Proposed Solution

3.2.3 Fault Tolerance

Fault tolerance in networking refers to the ability of a network to maintain operational
continuity and service availability even in the event of component failures or disruptions. In the
context of our study, Fault tolerance is more important in our case because it is an ISP network, any
disruptions or failures can lead to large amounts of financial loss. It encompasses various aspects,
including the speed at which the network can recover from link failures, the amount of data loss that

occurs during these failures and the responsiveness of the network’s control mechanisms.

In SDN, fault tolerance is enhanced through centralized control, which allows for rapid
detection of failures and swift reconfiguration of network paths. This leads to significantly reduced
link recovery times, minimal packet loss during failover, and quicker controller response times

compared to legacy networks that rely on distributed control mechanisms, such as MPLS and BGP.

This test was performed by setting up two hosts one in ASG7 and another on ASG11 sending
traffic between them then disconnecting a link on the path they take, this is while leaving an active

ping command that measures packets loss and link recovery time.

Table 3.1: Comparison of Fault Tolerance between SDN Network and the
Legacy Network

Metric SDN Network Legacy Network
Link Recovery Time 56ms 453ms

Packet Loss During Failover 0.08% 2.5%
Controller/Routing Response | 22ms 232ms

Time

56

Chapter 3: Performance Evaluation of the Proposed Solution

In the legacy network, every router needs to learn about the changes in the topology, whereas
in SDN, only the controller needs to know about the changes and it will install corresponding flow
entries in the forwarding devices if required. This improves network performance as no routing

advertisement messages are advertised in the network.

In consideration of the primary objective for Djezzy's implementation of SDN, fault tolerance,
particularly regarding link recovery time, is emphasized. This decision stems from the frequent
occurrence of link failures across Djezzy's extensive fiber optic network spanning thousands of
kilometers, often attributed to heavy infrastructure activities conducted by third-party entities
accidently damaging the links. While the recovery time observed with MPLS in our case, averaging
453 milliseconds, the operational network typically requires 10 to 15 seconds for link recovery due
to the deployed configuration. This configuration entails a delay mechanism, wherein the network
waits for a specified duration before switching to an alternate path upon detecting link
unresponsiveness. Because Unlike our simulation environment, wherein link failure involves
complete cable disconnection, real-world network disruptions manifest as unstable connectivity
issues characterized by fluctuations between online and offline states which put the legacy protocols
into switching then not actually switching the path completely halting the network. To address these
challenges, Djezzy's plans to implement an SDN mainly for that reason tasked with monitoring the
health and performance metrics of each network link and appliance. Through intelligent traffic
routing mechanisms, the SDN Controller effectively circumvents network disturbances by seamlessly
redirecting traffic flow, thereby mitigating disruptions without perceptible impact on network

operations. While the latency and bandwidth benefits come as a welcomed bonus to them.

3.3 Measuring Kubernetes Benefits
3.3.1 Testing the Response Time

We used the Apache Benchmark tool to flood the server with requests. The graph illustrates the
response time distribution of an Nginx server deployed in a Kubernetes cluster under a load test. The
x-axis represents the cumulative number of requests processed, ranging from 50 to 1000 requests,

while the y-axis denotes the response time in milliseconds (ms).

57

Chapter 3: Performance Evaluation of the Proposed Solution

Response Time (ms)

50 100 150 200 300 400 500 700 850 1000

Number of Requests

Figure 3.3: Kubernetes Server Response Time

3.3.2 Testing the Load balancer

To test the load balancer we decided to delete one of the two nodes on the cluster then Verify

that the load balancer still distributes traffic to the remaining pod.

kubectl scale deployment nginx --replicas=2

kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-7db9fccdod-5t2zn 1/1 Running @ 112s
nginx-7db9fccdod-df2lb 1/1 Running © 112s

kubectl delete pod nginx-7db9fccdod-df2lb
Observe the Load Balancer Behavior
Watch the status of the Nginx pods to see the new pod being created

kubectl get pods -1 app=nginx -w

Perform a load test on the Nginx service using Apache Benchmark (ab)
ab -n 1000 -c 100 http://10.10.1.4/

kubectl scale deployment nginx --replicas=2

NAME READY STATUS RESTARTS
nginx-7db9fccdod-5t2zn 1/1 Running (%)
nginx-7db9fccdod-df2lb 1/1 Running @

kubectl logs nginx-7db9fccdod-5t2zn
[nginx daemon] 192.168.49.2 - - [2/3Jun/2024:15:23:23 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.68.0" "-"
kubectl logs nginx-7db9fccdod-df21lb
[nginx daemon] 192.168.49.2 - - [2/Jun/2024:15:28:15 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.68.0" "-"

Figure 3.4: Commands for Testing the Load Balancer

58

Chapter 3: Performance Evaluation of the Proposed Solution

This configuration is a practical demonstration of how traffic load can be distributed among
multiple encapsulated pods within a Kubernetes environment. The load balancer plays a crucial role
in maintaining high availability and reliability of services, ensuring that the system can effectively
handle high-traffic conditions. This setup is a simple implementation having applications that are
more complex and services to scale with and balance between will make Kubernetes solutions a no
brainer serves as a testament to the robustness and scalability of Kubernetes in managing complex,
distributed systems.

3.4 Discussion

The comparative performance evaluation between the Software-Defined Network (SDN) and
the legacy network reveals substantial improvements in several key performance metrics, clearly
demonstrating the significant advantages of SDN deployment within Internet Service Provider (ISP)
infrastructures. The SDN network achieves a higher maximum bandwidth capacity, with a 17%
improvement over the legacy network, underscoring its efficacy in optimizing data flow and
improving throughput due to efficient resource management. Furthermore, SDN significantly reduces
round-trip time (RTT) by 38%, thereby augmenting real-time application performance for ISP
customers that utilize VOIP and play online games, facilitated by efficient path management. The
analysis further highlights SDN's robust fault tolerance, exhibiting a rapid link recovery time of 56ms
compared to 453ms in the legacy network, minimal packet loss during failover (0.08% vs. 2.5%), and
a faster controller response time (22ms vs. 232ms), all contributing to superior network stability and
reliability. These findings have profound implications for ISP networks, suggesting that SDN's
scalability, flexibility, and improved resource management can effectively meet the growing demands
of modern applications and services. Overall, the adoption of SDN in ISP networks offers enhanced
performance, increased reliability, and innovative, adaptive management strategies, making it a

compelling choice for future network infrastructures.

3.5 Conclusion

In this chapter, we examined the integration of SDN with Kubernetes-based container
orchestration for Internet Service Providers. This setup leverages SDN’s ability to manage network

traffic dynamically and Kubernetes capability to orchestrate containerized applications efficiently.

Our results demonstrated a 17% increase in network throughput, reflecting improved bandwidth

management. The system also achieved a 38% reduction in Round Trip Time (RTT), indicating

59

Chapter 3: Performance Evaluation of the Proposed Solution

enhanced network responsiveness. Additionally, our fault tolerance analysis showed an 87.5%
Improvement in recovery time from link failures, providing a peace of mind for network operators

that whatever the circumstances the network faces it will always stay operational.

These findings confirm that integrating SDN and Kubernetes orchestration can lead to improved
network performance and reliability for the ISP Services. The centralized management of network
resources and containerized applications simplify operations and enhances the network’s overall
efficiency. This approach aligns with current best practices in network management, providing a
robust and scalable solution for ISPs to tackle modern customer requirements and plan ahead for
future developments.

60

Chapter 3: Performance Evaluation of the Proposed Solution

General Conclusion and Perspective

This thesis presents a comprehensive exploration of integrating Software-Defined Networking
with containerization technologies, particularly Kubernetes, within Internet Service Provider
networks. The primary objective was to address the limitations inherent in legacy network
infrastructures and to enhance network management, scalability, and service delivery. Our research
was conducted through a combination of theoretical analysis and practical implementation,
demonstrating the potential benefits and challenges associated with this integration.

Key findings from our research include enhanced network efficiency, scalability, flexibility,
improved fault tolerance, and reduced operational costs. The decoupling of the control plane from the
data plane allowed for dynamic resource allocation and centralized network management, resulting
in optimized traffic flows and reduced latency. Our experimental results show substantial
improvements in several key performance metrics. The SDN network achieved a higher maximum
bandwidth capacity with an improvement of 17% over the legacy network, underscoring its efficacy
in optimizing data flow and improving throughput. Furthermore, SDN significantly reduced round-
trip time (RTT) by 38%, augmenting real-time application performance for ISP customers that utilize
delay sensitive applications. The analysis further highlights SDN's robust fault tolerance, exhibiting
a rapid link recovery time compared to the legacy network by 87%, minimal packet loss during
failover (0.08% vs. 2.5%), and a faster controller response time. Kubernetes' container orchestration
capabilities enabled scalable and flexible deployment of network applications, which was particularly
beneficial for handling variable traffic loads and ensuring high availability of network services.
Lastly, the use of open-source technologies like OpenDaylight for SDN controllers and Kubernetes
for container orchestration reduced operational expenditures associated with proprietary hardware
and software solutions that require heavy licensing fees. Despite the promising results, several areas
require further research and development to fully realize the potential of SDN and Kubernetes
integration. Advanced security mechanisms are needed to address the vulnerabilities introduced by
SDN's centralized control plane. Enhancing the security of SDN controllers and ensuring robust
protection against cyber threats is essential. Additionally, ensuring seamless interoperability between

different SDN controllers and Kubernetes distributions is crucial.

61

Chapter 3: Performance Evaluation of the Proposed Solution

Improvements to our simulation setup can further enhance the reliability and applicability of
our findings. Utilizing Containerlab simulation software, known for its deep integration with
container technologies, could provide a more accurate and scalable environment for testing SDN and
Kubernetes deployments. Containerlab's capabilities would allow for more realistic simulations of
containerized network functions and their interactions within an SDN framework. Additionally,
implementing a more advanced Kubernetes setup, possibly with features like Kubernetes Federation
for multi-cluster management hosting a variation of real world services and applications could
demonstrate its effectiveness in more complex and distributed environments. These improvements
would not only validate our current results but also uncover new insights into optimizing network

performance and management while also modernizing the data center.

Continuous performance optimization is essential to handle the increasing demands of modern
network applications such as 5G and 1oT. Exploring advanced algorithms for traffic engineering, load
balancing, and resource management will be beneficial. Conducting large-scale real-world
deployments of SDN and Kubernetes integration in ISP environments will provide valuable insights
into practical challenges and operational considerations. Leveraging Al and machine learning
techniques for predictive analytics and automated network management can further enhance the
capabilities of SDN . These technologies can help in proactive fault detection, dynamic resource

allocation, and performance optimization.

In conclusion, the integration of SDN with containerization technologies like Kubernetes holds
significant promise for transforming ISP networks. This thesis has laid the groundwork for
understanding the potential benefits and challenges, providing a solid foundation for future research
and development. By addressing the outlined perspectives, we can move towards more efficient,
scalable, and resilient network infrastructures, ultimately improving service delivery and user

experience.

62

Chapter 3: Performance Evaluation of the Proposed Solution

Bibliography

[1] C. A. Sunshine, “A Brief History of Computer Networking,” in Computer Network
Architectures and Protocols, C. A. Sunshine, Ed., Boston, MA: Springer US, 1989, pp. 3-6. doi:
10.1007/978-1-4613-0809-6_1.

[2] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach, 7. edition. Boston
Munich: Pearson Education, 2017.

[3] I. M. Alsmadi, I. AlAzzam, and M. Akour, “A Systematic Literature Review on Software-
Defined Networking,” in Information Fusion for Cyber-Security Analytics, 1. M. Alsmadi, G.
Karabatis, and A. Aleroud, Eds., Cham: Springer International Publishing, 2017, pp. 333-369. doi:
10.1007/978-3-319-44257-0_14.

[4] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-Defined Networking: A Comprehensive Survey.” arXiv, Oct. 08, 2014. Accessed: Mar.
20, 2024. [Online]. Available: http://arxiv.org/abs/1406.0440

[5] V. Chergarova, 1. Hur, L. Wang, and J. Sun, “Examining Software Defined Networking
Adoption by Research and Educational Networks,” in Advances in Information and Communication,
K. Arai, Ed., Cham: Springer International Publishing, 2022, pp. 656-674. doi: 10.1007/978-3-030-
98015-3_46.

[6] K. J. Babu Narayanan, “SDN Journey: How SDN brings versatility to 5G networks?,” CSIT,
vol. 8, no. 1, pp. 57-60, Mar. 2020, doi: 10.1007/s40012-020-00269-5.

[7] M. Beshley, M. Klymash, 1. Scherm, H. Beshley, and Y. Shkoropad, “Emerging Network
Technologies for Digital Transformation: 5G/6G, 10T, SDN/IBN, Cloud Computing, and
Blockchain,” in Emerging Networking in the Digital Transformation Age, M. Klymash, A.
Luntovskyy, M. Beshley, I. Melnyk, and A. Schill, Eds., Cham: Springer Nature Switzerland, 2023,
pp. 1-20. doi: 10.1007/978-3-031-24963-1_1.

[8] A. Takacs, E. Bellagamba, and J. Wilke, “Software-defined networking: the service provider
perspective,” ERICSSONREVIEW, 2013.

63

Chapter 3: Performance Evaluation of the Proposed Solution

[9] “Difference between Software Defined Network and Traditional Network,” GeeksforGeeks.
Accessed: Mar. 23, 2024. [Online]. Available: https://www.geeksforgeeks.org/difference-between-
software-defined-network-and-traditional-network/

[10] “SDN vs traditional networking,” Kyndryl. Accessed: Mar. 23, 2024. [Online]. Available:
https://www.kyndryl.com/ca/en/learn/sdn-vs-traditional-networking

[11] “Containers explained: What they are and why you should care.” Accessed: Apr. 02, 2024.
[Online]. Available: https://www.redhat.com/en/topics/containers

[12] “What are containers?,” Google Cloud. Accessed: Apr. 02, 2024. [Online]. Available:
https://cloud.google.com/learn/what-are-containers

[13] “What is a Container? | Docker.” Accessed: Apr. 16, 2024. [Online]. Available:

https://www.docker.com/resources/what-container/

[14] O.Bentaleb, A. S. Z. Belloum, A. Sebaa, and A. EI-Maouhab, “Containerization technologies:
taxonomies, applications and challenges,” J Supercomput, vol. 78, no. 1, pp. 1144-1181, Jan. 2022,
doi: 10.1007/s11227-021-03914-1.

[15] “How Docker Containers Work — Explained for Beginners,” freeCodeCamp.org. Accessed:
Mar. 26, 2024. [Online]. Available: https://www.freecodecamp.org/news/how-docker-containers-

work/

[16] “A Beginner’s Guide to Docker,” JFrog. Accessed: Jun. 28, 2024. [Online]. Available:

https://jfrog.com/devops-tools/article/beginners-guide-to-docker/

[17] “Overview.” Accessed: Mar. 24, 2024. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/[18] G. Turin, A. Borgarelli, S. Donetti, E. B.
Johnsen, S. L. Tapia Tarifa, and F. Damiani, “A Formal Model of the Kubernetes Container
Framework,” in Leveraging Applications of Formal Methods, Verification and Validation:
Verification Principles, T. Margaria and B. Steffen, Eds., Cham: Springer International Publishing,
2020, pp. 558-577. doi: 10.1007/978-3-030-61362-4_32.

[19] M. Aleksic, “Kubernetes Use Cases {8 Real Life Examples},” Knowledge Base by
phoenixNAP. Accessed: Mar. 24, 2024. [Online]. Available: https://phoenixnap.com/kb/kubernetes-

use-cases

64

Chapter 3: Performance Evaluation of the Proposed Solution

[20] “Harnessing the power of Kubernetes: 7 use cases,” CodiLime. Accessed: May 29, 2024.

[Online]. Available: https://codilime.com/blog/harnessing-the-power-of-kubernetes-7-use-cases/

[21] N. K. Singh, “The Kubernetes Odyssey: Chapter 2 — The Enchantment of Clusters,”
Medium. Accessed: Jun. 28, 2024. [Online]. Available: https://neerazz.medium.com/the-kubernetes-

odyssey-chapter-2-the-enchantment-of-clusters-b71ca237claf

[22] C. Bouras, P. Ntarzanos, and A. Papazois, “Cost modeling for SDN/NFV based mobile 5G
networks,” in 2016 8th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), Lisbon, Portugal: IEEE, Oct. 2016, pp. 56-61. doi:
10.1109/ICUMT.2016.7765232.

[23] M. C. Ammour and F. Debbakh, “PERFORMANCE EVALUATION OF SOFTWARE
DEFINED —NETWOEK (SDN) CONTROLLER,” Thesis, UNIVERSITY OF OUARGLA, 2023.
Accessed: May 28, 2024. [Online]. Available: http://dspace.univ-
ouargla.dz/jspui/handle/123456789/33504

65

	شكر و عرفان
	إهــــــــــداء
	Abstract
	Acronyms
	1 Table of Contents
	List of Figures
	List of Tables
	General Introduction
	1 Chapter 1
	1.1 Introduction:
	1.2 Computer Networks
	1.2.1 Introduction
	1.2.2 History of Computer Networks
	1.2.3 How computer networks work

	1.3 Software-Defined Networking (SDN)
	1.3.1 Definition
	1.3.2 Importance of SDN
	1.3.3 Application fields
	1.3.4 SDN Infrastructure
	1.3.5 SDN Controllers
	1.3.6 Technical Challenges and Considerations in Software-Defined Networking (SDN)

	1.4 Containers:
	1.4.1 Definition
	1.4.2 Benefits of its Infrastructure
	1.4.3 Docker Containers
	1.4.4 Containers and Virtual machines

	1.5 Kubernetes
	1.5.1 Definition
	1.5.2 Use Cases
	1.5.3 Kubernetes Components

	1.6 Related works
	1.7 Conclusion

	2 Chapter 2:
	2.1 Introduction:
	2.2 Materials
	2.2.1 Workstation Computer
	2.2.2 Simulation Software
	2.2.3 SDN Controller
	2.2.4 Other tools

	2.3 Methodology
	2.3.1 Planning
	2.3.2 Changes Made to Djezzy’s Network Sample

	2.4 Building the network
	2.4.1 Legacy Network Configuration

	2.5 Deploying the SDN Ready Network
	2.5.1 Essential Modification Needed for The SDN Deployment
	2.5.2 Network Load Balancing

	2.6 Deploying Containers and Kubernetes
	2.6.1 Deploying Kubernetes

	2.7 Conclusion

	3 Chapter 3
	3.1 Introduction
	3.2 Comparative Performance Evaluation of the Proposed Network
	3.2.1 Bandwidth comparison
	3.2.2 Round Trip Time
	3.2.3 Fault Tolerance

	3.3 Measuring Kubernetes Benefits
	3.3.1 Testing the Response Time
	3.3.2 Testing the Load balancer

	3.4 Discussion
	3.5 Conclusion

	General Conclusion and Perspective
	Bibliography

