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ABSTRACT: In space, numerous solid micro-particles called “dust” are among the constituents of space 
plasmas. The latter are called “dusty plasmas”, and this dust can help determine many of the properties of 
interstellar media, stars, planet formation regions, planetary rings, comets tails, etc. 
One of the important subjects in “dusty plasmas” is dust collisions which we will study using stochastical 
methods to obtain their statistical properties. We will use mainly the Fokker-Plank equation in order to derive the 
probability distribution which will provide us with all the information that is needed to study the phenomenon 
(stochastic process). 
The general form of the Fokker-Planck equations that we will use to study plasma collisions is [1]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
ΔΔ

∂
∂

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

∂
∂=

∂
∂ f

t
VV

VV
f

t
V

Vt
f

2
1 , 

where f  is the probability distribution and V  the dust velocity. 
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1. Introduction  
Plasmas that coexist with solid particles called dust are very important phenomena in space; 
the study of the collisions between the dust particles and the plasmas micro particles can help 
explaining many astrophysical phenomena. The Fokker-Planck theory developed by 
Rosenbluth, Macdonald and Judd [2] gives us the relation that governs the evolution of the 
mean velocity with time; we will use that relation to construct Langevin equation that will 
help us to obtain the expression of the probability distribution density via Wiener path 
integral. Also that Langevin equation is of the same form as the one we developed by our 
stochastic approach, which allows us to relate the electrical mobility to the mean velocity 
slowing down time of the plasma and calculate it as well as other electrical quantities like the 
electric field generated by the charged plasma.      
 
2. Exposition of the Fokker-Planck theory  

The Fokker-Planck equation is of the general form [1]: 
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To compute those latter quantities Rosenbluth, Macdonald and Judd [2] have used the centre 
of mass frame and the kinetic energy conservation, plus to the results from classical collisions 
theory to finally obtain the following expressions: 
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Where qT is the dust charge (called Test particle), qF  is the plasma particles charges (called 
Field particles), μ  is the reduced mass, mT is the test particle mass, V  and V '  are the test 
particle and the field particle velocities respectively, Λ  is the Debye length over the impact 

parameter with an angle 
2
π  and )( 'Vf F  is the field distribution density function. 

Now we define Rosenbluth potentials as the following: 
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Finally by taking in consideration the relations from (1) to (5), the Fokker-Planck equation 
will take the following form: 
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By integrating the latter Fokker-Planck equation over VVd  with the supposition that the test 
particles consist of a mono-energetic beam so that the distribution of the test particles 
becomes )()( 0UVV −= δnf TT , where nT represents the number of test particles and U0 is the 
initial velocity; the equation (6) becomes then 
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UT is the mean velocity of the dust particles. 

For a Maxwellian distribution of the field particles, Rosenbluth potential )(VhF will take the 
form 
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Evaluating )(VhF with some approximations, the relation (7) will lead us to following  
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τ S  is called the mean velocity slowing down time. 

For a mean velocity that depends explicitly only on the time variable we will have 
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τ Sdt
d UU −=                          (9) 

 
 
3. The stochastic treatment of the collisions 
Our contribution consists, in one hand on using the relation (9) from the Fokker-Planck theory 
to construct Langevin equation for the problem in consideration that reads [3]  
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Where f s represents the stochastic forces and x the position variable, it will be more 

convenient to denote the quantity 
τ S

m by k . 

By considering the quantity 
m
f s as another variable y&& that express only the stochastic forces, 

the relation between the new variable y and x is given by the following integral equation [4] 
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To evaluate the probability distribution expression via Wiener path integral method, we will 
use the variable transformation given by the integral equation (11), which gives the Jacobian 
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= 2  and the following conditional probability expression [5] 
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After the evaluation of the conditional Wiener path integral following Gel’Fand and Yaglom 
techniques [6] we will obtain the expression of the probability distribution density  
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In another hand we have developed a stochastical approach that gives us the same Langevin 
equation for the collisions in plasma, where we have used the electron-gas theory following 
relation [7] to obtain the electrical force expression  

μ
)(tvE =   where μ  is the electrical mobility. 
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The electrical force F is our dynamical term and the Langevin equation will be [3] 
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The Langevin equation (15) that we have obtained is the same as the previous equation (10), 

plus a simple dimensional analysis will show that the quantities 
τ S

m from the equation (10) and 

μ
qT from the equation (15) are of the same dimension. 

 
Conclusion 
In this paper we did evaluate the results from the Fokker-Planck theory for collisions in 
plasmas to obtain the probability distribution density, the latter is a very important result 
because it can help us to understand the forms of the dust that are observed in space plasmas, 
and important phenomena like the planets formation and planetary rings, also we could relate 
by our stochastical approach the slowing down time to the electrical mobility, that will help us 
to calculate it and other electrical properties of the plasma as the electrical field.   
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