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ABSTRACT: A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic 
fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to 
be consistent with the relativistic principle and consequently leads to a more general set of equations valid for 
fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due 
to electron relativistic effects, the localized structure may experience either a spreading or a compression. This 
latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the 
ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma 
structures that involve energetic plasma flows.  
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1. INTRODUCTION  
Recently, a fully and coherent relativistic set of two-fluid plasma equations derived from the 
covariant formulation of relativistic fluid equations has been established [1, 2]. This new 
approach has the characteristic to be consistent with the relativistic principle and consequently 
leads to a more general set of equations which is valid for fully relativistic plasmas with 
arbitrary Lorentz relativistic factor.  The set of equations then obtained is in general quite 
different from the equations derived from the covariant formulation of conservation of 
energy-momentum tensor, which can be regarded as fully relativistic in terms of the 
magnitudes of the speed and temperature of the fluid  element. The aim of the present paper is 
to bring a deep insight into the evolution of weakly nonlinear solitary waves in fully 
relativistic two-fluid plasmas by extending the reductive perturbation method to include 
higher order nonlinear effects.  
 
2. THEORETICAL MODEL AND BASIC EQUATIONS 
The start-point is the set of relativistic equations describing the behaviour of a fully 
relativistic two-fluid plasma. Within the theoretical framework of the covariant formulation, 
the relativistic dynamics of one-dimensional tow-fluid plasma is governed by 
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where n  is the particle density, u is the fluid velocity, p  is the pressure, and 
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the Lorentz relativistic factor. The quantity nh /ω=  (ω  being the enthalpy density) stands 
for the enthalpy per fluid particle and is given by 
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where α  is the polytropic index which is equal to 4/3 in the ultra-relativistic limit and 5/3 in 
the non-relativistic fluid, q  is the particle charge, m  is its rest mass, and φ  is the electrostatic 
potential. The subscript a  in Eq. (4) stands for the species of the plasma (e.g., electrons and 
ions). Note that in Eqs. (1)-(4),  (5), and (6) which hold for each species of the plasma, the 
subscript a is omitted for the sake of notational simplicity.  To get the desired nonlinear 
equation describing the evolution of small but finite-amplitude solitary wave from the above 
basic set of equations, we follow the standard procedure of reductive perturbation technique 
(RPT) by scaling the independent variables through the new stretched variables ξ  and τ  as 
 
 ,),( 3tVtx ετεξ =−=  (7)  
 
where ε  is a small expansion parameter which measures the weakness of the dispersion and 
V  refers to the unknown linear phase velocity to be determined later. In the new coordinate 
system, Eqs. (1)-(4) can be written as 
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where we have used the normalized velocities cu /=β  and cVv /= . The physical parameters 

,n ,β ,p  and φ are expressed as a power series inε  about the equilibrium as 
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where quantities with superscript 0 are equilibrium values at infinity. 
 
3. MK-DV EQUATION AND THE KINK-SOLITON SOLUTION 
Using the later expansion of the physical parameters into equations (8)-(10), we obtain the 
third order equations which can used to find expressions for )3(β and )3(n  in terms of  and 

,)1(β  ,)2(β  and )3(φ  as follows 
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As the lower order quantities are the same up to the second order for the two species 
considered here, the Poisson’s equation up to third order will be written as 
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Now, substituting the expressions of )3(β and )3(n , given by Eqs.  (13) and (14), respectively, 
into the last equation and after rearranging all terms, the later equation becomes 
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where the factors τC  and βC are just constants.  Finally, differentiating Eq. (16) with respect 
toξ , one can derive the following modified mK-dV equation: 
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where the constants A and B are given by 
 

 ),11215(
)(4

)( 224
233

22

α−+−
−

+= ss
TmTmcs

TTqA
ieei

eii  (18)  

 
44)0(4)0()0(2

255

)(]1[8
)(

eii

ieei

TTsnq
TmTmcsB

+−
−−=

βγπ
. (19)  

 

220



SIPP’2011 / UKM Ouargla / 13 - 15 February/Février 2011 

Performing the last step in deriving solitary solutions, namely, solving Eq. (17), one gets that 
the solution to the above equation is given by [3] 
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The amplitude )1(

mφ  and the width W are given by 

 ,
)11215()(

)(123
2242

232
)1(

αρε
μρεϑλφ

−+−+
−==

ss
s

e
cm

A
i

m  (21) 

 ,
)()1(

)(
4

2
34)0(4)0(

24

)0(2

2

ϑρεβγ
μρε

πλ +−
−=−=

s
s

ne
cmBW i  (22) 

 
while s  and 2α will be rewritten as 
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where 2/ cmT ie=ε (to not confuse with the expansion parameter), ie mm /=μ , c/λϑ = ( λ  
stands for the wave speed), and 2/ cmT ii=ρ . The solution (20) represents a kink-type solitary 
wave provided A>0 and B<0 [3]. Dependence of the kink-soliton characteristics (amplitude 
and width) on 2/ cmT ie=ε  is traced for different values of 2/ cmT ii=ρ . The variation of mφ  
and W with ε  for different values of  0.001=ρ (solid line), 0.01 (dotted line), and 0.1 (dot- 
dashed line) are shown in Fig. 1 and Fig. 2 respectively.   
 

 
 

 
 
Figure 1: Variation of the amplitude mφ  with 
respect to ε  for different values of ρ =0.001 
(solid line), 0.01 (dotted line), and 0.1 (dot-
dashed line), with μ =1/1836, ,3/4== ei αα  

ϑ =0.3, and )0(β =0.1. 

 
 

Figure 2 :  Variation of the width W with 
respect to ε  for different values of ρ =0.001 
(solid line), 0.01 (dotted line), and 0.1 (dot-
dashed line), with μ =1/1836, ,3/4== ei αα  

ϑ =0.3, and )0(β =0.1. 
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Figure 1 indicates that as ε  increases (i.e., the relativistic character of the electrons becomes 
important) the amplitude mφ  of the kink-soliton increases. An increase of ρ (i.e., the 
relativistic character of the ions becomes important) provides qualitatively the same results 
but with a shift of the kink amplitude towards lower values (it is worth to note that certain 
plasma parameters which make mφ  large enough to break the validity of the weakly nonlinear 
analysis have to be discarded). Figure 2 indicates that for relatively small values ofε , the 
kink-soliton experiences a spreading. At a certain critical value crε , the width W exhibits a 
local extremum beyond which the kink-soliton experiences a slight compression. This latter 
phenomenon (soliton compression) becomes less effective and less noticeable as the 
relativistic character of the ions becomes important. 
 
4. CONCLUSION 
To conclude, we have used a fully and coherent relativistic fluid model derived from the 
covariant formulation of relativistic fluid equations to study small but finite amplitude solitary 
waves. This approach has the advantage to be consistent with the relativistic principle and 
consequently leads to a more general set of equations valid for fully relativistic plasmas with 
arbitrary Lorentz relativistic factor. The dynamics of small but finite amplitude oscillations is 
governed by a modified K-dV equation. The latter admits kink-type solitary solution. Due to 
electron relativistic effect, the localized structure may experience either a spreading or a 
compression. For crεε < , the kink-soliton experiences a spreading. For crεε > , the electron 
relativistic effects tend to lower the kink-soliton width. Our results should help to understand 
the salient features of coherent nonlinear structures that may occur in fully relativistic 
plasmas. We recall that recently, there has been much interest in relativistic motion in 
plasmas. The latter are relevant in astrophysics as well as in many modern applications of 
plasmas and charged particle beams where high energy particles are involved. Of particular 
interest are the nonlinear behaviours which can lead to the transformation of energy through 
wave coupling and the formation of relatively stable and therefore long-lasting nonlinear 
structures such as waves, solitons, shocks, kinks, double layers, etc. Kink solitary waves 
(which are sometimes called shocks or double layers) occur naturally in a variety of space 
plasma environments (aurorae, solar wind, extra-galactic jets, etc.). The potential jump that 
they can sustain over a narrow region can energize and accelerate charged particles. It has 
been suggested that small-amplitude double-layers may account for a large portion of the total 
potential on auroral field lines and may explain the fine structure of auroral kilometric 
radiation. The results of our investigation may be relevant to the cosmic relativistic double-
layers [4] and the relativistic plasma structures that involve energetic plasma flows from 
accreting compact objects such as neutron stars and black holes [5]. 
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