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Preface

Many physical, chemical and biological phenomena are described by nonlinear partial dif-
ferential equations, however; many of them do not, in general, possess smooth solutions. It is,
therfore, essential to find another kind of appropriate solutions. Namely, the notion of weak
solutions.

The aim of this work is to discuss some nonlinear elliptic problems in bounded domains
with smooth boundaries and apply the maximum principal to their solutions. To do so, we
need to introduce some theoretical notions of partial differential equations and recall the main
properties of Sobolev spaces which are powerful tools to study these equations.

The first chapter is devoted to a short description of the physical and chemical aspect of
Laplace’s and Poisson’s equations, classification of PDE of second order and the different types
of boundary conditions. This chapter ends by a biological example which explains how to obtain
a PDE from the data.

In chapter 2, we introduce the definition of weak solution of elliptic problems and the
relationship between classical and variational formulation of PDE’s.

A large part of this chapter is devoted to the definition and some important properties of
WP (Q) and Wy 7 ().

The third chapter is devoted to illustrate the techniques used in the study of linear PDE’s
by applying them to a various elliptic problems. The last problem is an excellent example where
we applied simultaneously the Lax-Milgram lemma and the trace theorem.

In [7], Chipot studied the following problem

N
—Z% (a(x,u) %) =f inQ
i=1"" !
u=0 in 0N
By using the compacity method, he proved that, for every f € L?(Q2), this problem has a weak

solution

u € H} (Q).



In chapter4, we gave a detailed proof to the problem discussed by Chipot then we extended his

result to problem
N
-3 a%L (aij(x,u)g—;) =f inQ
ij=1

vw=0 in 0N

Chapter 5 is devoted to the study of some problems involving the p—Laplace operator. Precisely,

we studied the problem

ou

ox;

N p—2
—Z£<a(w,u) g;‘):f in Q
i=1 ‘

=0 1in 0N

which generalizes a similar problem studied by Lions in [17], namely

ou P2
8xi

N 0
_Z&n<
=1

%):f in Q
u=0 in 09

He proved, using the monotonicity method, that the problem has a weak solution u € VVO1 P()
for every f € W17 (Q).

In the 6" chapter we study the problem

ou p—2

ox;

_g;l 2 (a (5,u)

(%,t) +b(x)u=f inQ

=0 1in 0N

i

where we need to apply some Sobolev compact embedding theorems.
In chapter 7 we apply the maximum principal to the solutions of the above problems, in

particular the problems involving the p—Laplacian operator.
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Chapter 1

Introduction

1.1 Elliptic partial differential equations origins

The study of partial differential equations started in the work of Euler, d’Alembert, Lagrange
and Laplace as a central tool in the description of continum mechanics, and more generally, as
the principal mode of analytical study of models in physical science [6].

Many physical processes are described by equations that involve physical quantities together
with their partial derivatives. Among such processes are flow of liquids, deformation of solid
bodies, chemical reactions, electromagnetic and many others [23].

In this section we discuss the physical aspects of some problems that will be used later as
model problems. Among the most important of all partial differential equations are Laplace’s
equation

Au=0 (1.1)

and Poisson’s equation

—Au=f

where, in both equations u :  — IR is the unknown function defined in a domain Q ¢ IRY,

f:Q — 1R is a given function and A is the second-order operator defined by

N 82
A:Z;axg



In a typical interpretation u denotes the density of some quantity (e.g. a chemical concentration)

in equilibrium or the displacement of elastic membrane or electrostatic potential. Then if V is

any subregion within 2 with a smooth boundary, the net flux of u through the boundary 0V

is zero. That is,

/ F.nds = 0,
v

where F' denotes the flux density and 7 is the unit outer normal field.

In many instances it is physically reasonable to assume the flux F' is proportional to the

gradient of u, but points in the opposite direction F' = —aVu, where a > 0 is the constant of

proportion.

Using the Green formula, we have

/ divFdx —/ Fands =0
1% v

and so

divF =0 in Q

since V is arbitrary.

Substituting for F' into (1.2), we obtain
div (—aVu) =0,
thus,

which is the Laplace equation [14].

1.2 Partial differential equations classification

As the Laplace equation (1.1) is the prototype of elliptic equation, the heat equation

E—AUZO,



and the wave equation ,
?)tz Ay =
are respectively the prototypes of parabolic and hyperbolic partial differential equations, where
the variable ¢ describes the time.
In the middle of the second decade of the twentieth century, Hadamared proposed to find
general classes which are a generalizations of the Laplace equation, the heat equation and the
wave equation and having distinctive properties for their solutions in terms of characteristic

polynomials. We, thus, obtain a basic class of second-order operator [6].

Consider a second-order partial differential equation in the form

N

B Z @i 630,8% Zb

,j=1

(@) u = f(2), (1.3)

where a;j,b;,a0 and f are continuous functions defined in a domain Q C IRY. The principal

part of the left hand side is
N

2U
In(w) = Yy () 5y (1.4

ij=1

We can assume without loss generality that the matrix

A = (a5 (2)),

is symmetric [23].

The differential operator (1.4), or the equation (1.3) is said to be elliptic at x € Q, if the
matrix A (z) is positive definite, which means that all the eigenvalues of A are non-zero and
have the same sign. The parabolic case is characterized by one zero eigenvalue with all other
eigenvalues having the same sign. In the hyperbolic case, however, the matrix A is invertible
but the sign of one eigenvalue is different from the signs of all the other eigenvalues [15].

An equation is called elliptic, parabolic, or hyperbolic in € if it is elliptic, parabolic, or
hyperbolic everywhere in €2, respectively [21].

This classification was subsequently extended to nonlinear partial differential equations,

to linear PDE of arbitrary order, and to systems [6].

10



In particular, for second-order partial differential equations of general form

F(xvuapzapl]) 207 (]‘5)
where p; = %‘i and p;; = %auxj’ the equation (1.5) is called elliptic, parabolic, or hyperbolic

in €, if the matrix
OF

Opij

A(z) = (5— (z)),

has the same properties of A in the linear case, respectively [23].

1.3 Boundary conditions

In practical applications one does not usually want to solve problems posed in all the space;
rather one wants to solve these problems on some domain, subject to certain conditions. Thus,
we wish to impose additional conditions upon the solution w, typically prescribing the values
of u or of certain first derivatives of u on the boundary of the domain or part of it. One knows,
that there are very specific kinds of boundary conditions usually associated with each equations.
Here are some one [19]:

1) Dirichlet condition: it specifies the values of the solution on the boundary of the domain.
The question of finding solutions to the problem

{L (u) = fin Q
u = g in OS2

where L is a differential operator, is known as Dirichlet problem.

2) Neumann condition: it specifies the values of the derivative of a solution is on the

boundary of the domain. The problem of finding a function satisfying

L(u)=finQ
%zgin@ﬂ’

is known as Neumann problem. Here, f, g are given functions defined in 2 and 02 respectively,
and 7 the unit outer normal field to the boundary 0f2.

3) Robin condition: it is a specification of a linear combination of the values of a function

11



and the values of its derivative on the boundary of the domain. We suppose that the unknown

function w satisfies, in addition to the partial differential equation, the condition
0
au—i—ﬁ—u =g in 09,
o

where o and (3 are some non-zero constants.
4) Cauchy condition: specifies both the values that to take a solution and its normal deriva-
tive on the boundary of the domain. It corresponds to imposing both a Dirichlet and a Neumann

boundary condition,

L(u)=finQ
u =g in 0f)
9t = hin 00

where f is given in Q and g, h are given in 0f2.

Well-posed problems

We say that a problem is well-posed (in the sense of Hadamard) if there exists a solution,
the solution is unique and depends continuously on the data, if these conditions do not hold a
problem is said to be ill-posed [21].

The third requirement is important, because in applications, the boundary data are ob-
tained through measurements and thus are given only up to certain error margins, and small
measurement errors should not change the solution drastically [16].

A chemical aspect of second-order elliptic equation

The second order-elliptic partial differential equation

N N
0%u ou

generalizes Laplace’s and Poisson’s equations. As in the derivation of Laplace’s equation set
forth, u represents, for instance, the chemical concentration at equilibrium within a region

N
Q, the second-order term > aij% represents the diffusion of v within 2, the coefficients
ig=1 =

ou

N
a;; describe the anisotropic, heterogenous nature of the medium. The first order term ZbiaT,»
i=1

represents transport within €2 and the term cu describes the local creation or depletioniof the

12



chemical.

1.4 A problem in biology

As an example, let us consider a biological problem [7].

Let © be a bounded domain of IR?. Suppose that § is a Petri box filled with some nutrient
and a colony of bacteria. We denote by u(x1,22,x3) the density of bacteria at the point
(z1,22,23). In the microworld € there is three aspects of the life: birth, death and motion.
That is to say, in 2 some new bacteria are coming to life, some other are dying and some others
are moving from one place to another.

We will consider that these three phenomena balance each other in such a way that the
density of bacteria remains unchanged with time.

Let us analyze the phenomenon of diffusion. We note by u (x) the density of bacteria in z.

Then, the diffusion velocity v, of migration at a point x, in the direction 7, is given by

d
v = —a@) gul |

which we can write also

v(n) = —a(z)(Vu(z).n)n,

where a (x) is the coefficient of proportionality, which is a positive constant depending on x
and 7 is the unit vector in IR3. So, it is natural to assume that the average of the velocity v on
S, is given by

N 1
V= — v(n)do(n),
5l /s, (n) do(n)

where Sy is the unit sphere in R?, |Ss| its area and do () denotes the element of surface area
on SQ.

The i*" entry of the vector v is

1

m:wﬂé;ﬂmxwwwmmwmy

13



For obvious symmetry reasons, we have

1 S
/n?da(n)z/ (77?+773+77§)dff(77)=M
So 3Js, 3

and

/S nin;do (n) =0, Vi # j.

2

So, for ¢+ = 1,2, 3, we obtain

a Ou
v — 2
! 3 0x;
Thus, replacing § by a
v = —aVu.

Consider an elementary volume V included in € with outward unit normal 7.

The flux of bacteria through the boundary 0V of V is given by

.7 do () = / o (Vu.T) do(z),

ov ov

where do denotes the element of surface area on OV
The death in €2 occurs at a rate proportional to the density of population through a factor

A. So, in V we observe the disappearance of the quantity

)\/ udx,
1%

where dx = dridxodrs denotes the volume measure in R3.

If we denote by f the density of bacteria supplied from outside, then there appears in V a

| #e

So, clearly in order for the density w remain constant in time, we must have a balance of

quantity

population

/W —a (Vu.n) do + )\/Vudx = /Vfdx. (1.6)

14



Assuming u smooth we have by the divergence theorem

/Wa(vu.ﬁ)da:/ div (aVu) dz.

|4

So (1.6) can now be written

/ (—div (aVu) + Au) dz :/ fdx,
1% 1%
and this for any volume V', this implies that

—div (aVu) + A = f, in .

Since the density of bacteria has to vanish on the boundary 92 of 2, the problem to solve is to

find w which satisfies
—div (aVu) + Au = f, in Q

u =0, in 0N

which is a Dirichlet problem.

For more examples see [9], [10] and [13].

15



Chapter 2

Sobolev Spaces

2.1 Introduction

An important systematic machinery to carry through the study of PDE was introduced by S.
L. Sobolev in the mid of 1930’s: the definition of new classes of function spaces, named Sobolev
spaces.

Together with the LP spaces, Sobolev spaces became one of the most powerful tools in
analysis, they are indispensable for a theoretical analysis of partial differential equations, as
well as being necessary for the analysis of some numerical methods for solving such equations

[6].

2.2 Motivation

Assume that Q is a bounded domain with a Lipschitz boundary and consider the elliptic equation

Y9 du
—287 (aii (v) 83;) +au = f, (2.1)
i=1 " ¢

where a; € C1(Q), a and f belong to C (Q).
Suppose that u is a classical solution to the problem (2.1) with the homogeneous Dirichlet

boundary conditions

u(x) =0,Vz € 0. (2.2)

16



In the classical treatment of second-order partial differential equations, the solution and its
derivatives up to order two are required to be continuous functions, then, u mast be assumed
to belong to C? () N C* (), satisfy (2.1) everywhere in Q and vanishes in the boundary 9.

However, the requirement made on a;;, a and f do not guarantee the existence of a solution
to the problem (2.1), (2.2), with the strong regularity that « ¢ C?(Q) N CY(Q).

Weak formulation:

In order to reduce the strong regularity assumed on the classical solution, we multiply both

sides of (2.1) by a function ¢ € C¢ () and integrate over €2,

/ Z <0LZZ > wdx + / aupdr = / fedx
(9:17Z
thus, using the Green’s formula, the first term in the left-hand side becomes

N 9 du du o
- a A - 9% i 9% 2.
;/ﬂ%axi <a 3931') dx = / (iZa oz, 2 i ) do + Z/ a; 92 0z, —dzx, (2.3)

where 7 = (91,73, ...,n) is the unit outer normal field and do is an elementary surface in 0.

Since ¢ vanishes in OS2, the first term in the right-hand side of (2.3) vanishes and we have

N du Op
A(Z}aiiaxi.axi—i—auw) dr = /Qfgod:lc (2.4)

N
Ou Oy B
/g; <': a”%% + aup — f@) dr = O,

Thus, the identity (2.4) was derived under very strong regularity assumptions v € C? (Q) N

C' (Q) and ¢ € C} (), but all integrals in (2.4) remain finite when these assumptions are
weakened to a;;, a € L (), u, 8:}0 , f€LP(Q) and o, g—i e LV (Q).

Thus, we can change the given problem (2.1), (2.2) by the problem:

Given f € LP(Q), find u € L? (Q2) such that g—; € LP (), for all i, 1 <i < N, and satisfies

al ou Oy
1
i . = f , Vv Q).
/52 ( -1a Ox; Ox; ) e /sz iz 7 CO( )

1=

17



Notice that the assumption f € LP (£2) can be further weakened to an other assumption which
we will mention later.

The last formulation of the problem (2.1), (2.2) is called the weak formulation or variational
formulation of the given problem (2.1), (2.2).

So far we have said nothing about the existence and uniqueness of solutions in the variational
formulation of the boundary value problem (2.1), (2.2), because to deal adequately with these
topics it is necessary to work in the framework of new spaces called Sobolev spaces. In the
following sections we introduce these spaces and recall some of their properties which we need

to use later.

2.3 Weak derivative

Assume that u € C (€2), then, by integration by parts, we have

Op . ou 1 .
uagcid:c = /Q oz, edz, VoeCy(Q) fori=1,2,...,N (2.5)

where C’é () is the space of continuously differentiable functions with compact support in €,
there are no boundary terms, since ¢ vanishes near 0f2.

Notice that the left-hand side of (2.5) makes sense if u is only locally integrable i.e. u €
Lie

Definition: Let u € L} (), if there exists a function v; € L}, (Q) such that

(), then % has no obvious meaning if u is not C* (Q) function.

/ &pdx— /vigodx, Vo € Cy(Q) for 1 <i <N,
Q

we say that v; is the i*" weak first partial derivative of w.
More generally, suppose that u € LP (Q), since C{ (Q) is dense in L' () for all p’ such that
1 <p' < +oo, then ug W € L' (Q2) and the integral

Jyp
/Q oz, dx,

makes sense for all ¢ € Cg (Q2).

sth

Thus, we say that a function w € LP (), has an i""-weak first partial derivative, if there

18



exists a function v; € L" () for 1 <r < +o00, such that

/ u 00 dx = / vipdz, Yo € C3(Q), (2.6)
o O Q

v; is the it"-weak first partial derivative of u and denoted by g—;ﬁ.

Using the fact that if f € L} () satisfies

/ Fodz =0, Y € Co(),
Q

then,
f=0a.e. in €,

we can prove that the weak derivative is unique almost everywhere and if u € C* () the weak
partial derivative coincide with the usual partial derivative [19].

More generally, let m > 1 be an integer number and a = (a1, ag, ..., ay) € NV be a multi-
indix. We say that u has a weak partial derivative of order «, if there exists a function v, such

that

laf
/ 0% dz = (—1)l / vapdz, Yo € C(Q).
Q Q

u
0 110%x9...0Nx N

vy is denoted by
oledy,

or D%u.
0% 110%x9...0%N x N

2.4 Sobolev space

Let Q be an open subset of RY and p € [1,+00] a real number, the Sobolev space WP (Q) is
defined by

Wwip (Q) = {u € L?(Q);Vi=1,2,...N, Fv; € LP(Q), such that v; = gu } )

T

where % is the weak derivative of u.

Similarly we define Sobolev spaces of higher order WP (Q), for a given integer m > 1 and

19



a real p € [1, 400,
WP (Q) = {ue LP(Q), Yae NV |a| <m, Jv, € LP(Q), such that v, = Du },

where the derivative D%u must be understand in the weak sense.

We equip the space WP (), for 1 < p < +o0, by the norm

lallyms = lull e+ Y 1Dl s

1<|a|<m

or the equivalent norm

S =

s = | [lulPdes 3 [ Dol
Q Q

1<|al<m

S =

= (lulfe+ > ID%lp, |

1<|a|<m
W™ (Q) is equipped by the norm
m,00 — a; Da oo 9
[wllyym. ogrﬂyém [ D%ull,

where D% = u, when |a| = 0.

For p =2, W™P (Q) is denote by H™ ().

Remark: In the case where Q@ = RY, we can define H™ (IRN ) to be the subspace of
L? (IRN ) constituted by all functions v € L? (]RN ) such that

m

(1+ |§|2) *ael?(RY), £emV,

where @ is the Fourier transformation of u. Also,

2 2 ~
lulln = | (1+167) @

L2(RY)

For the proof see [20].

20



2.5 Elementary properties

In this section we recall some results and theorems which we need to use later. For the proofs
we refer the reader to mentioned references.

Proposition 1:

1) WP (Q) equipped with the norms defined above is a Banach space and H™ (2) equipped

with the inner product

(u,v) :/uvdas—l— Z /Do‘u.Davdm
Q Q

1<]a|<m

is a Hilbert space.
2) WP (Q) is separable space for 1 < p < +oo and reflexive for 1 < p < +o0.
Proof: see [5] and [14].

Theorem 2 (Meyers and Serrin): Let

S = {ueC®(Q) such that |jul|y1, < +oo}

= C®(Q)NWHP(Q),

then S is dense in W1 (Q).
Proof: See [1].
Proposition 3:
If Q is bounded then C™ (Q) C W™P(Q).
Proof:
Since  is bounded then Q is compact.
Let u € C™ (ﬁ), then u, D% € C(ﬁ) for every |a|] < m and u, D%u attained their

maximums in . Thus, there exists M > 0 such that

[1D%ullg(q) = max|[ D% (z)| < M, V]a| <m,
Q

S

then,
/ |DYu|P de < MPmeas () < +o0.
Q

21



Corollary 4: Assume that €2 is a Lipschitz domain, then for 1 < p < oo, C*° (ﬁ) is dense in
WmP(Q).

For the proof see [4].

Definition:

An open subset @ C IRY is said to be of class C! if for each € 9 there exists a

neighborhood U of z in R and a bijection H : Q — U such that

H e CY(Q),
H' ¢ CcYD),

H(Qy) = UNQ

and

H (Qo) = U N o,

where

Q = {z=(,zn); ‘a:"<1and |lzn| < 1},
Q+ = {ze@; z,>0},
Qo = {re@; =z,=0}.

Theorem 5 (Extension theorem) :
Suppose that € is of class C' with bounded boundary 0f). Then there exists a linear
extension operator

P W (Q) — WIP(IRN),

such that, for all u € WP (Q) we have
i) Pulg=1u
i) [Pl o gy < € ooy
ii) HPUHWI,p(]RN) < CHUHWLP(Q)'
where C depends only on p and (2.
Corollary 6: Suppose that 2 is of class C! and let u € WP () be given with 1 < p < +o0.

22



Then there exists a sequence {uy} C C§° (]RN ) such that
uglg — uw in WHP(Q).

Remark: The above corollary means that the restrictions of functions of C§° (IRN ) in Q is

dense in WP (Q). Note that it is not true if 2 is not of class C*.

2.6 Sobolev Inequalities

2.6.1 Continuous embedding :

Definition : Let X and Y be Banach spaces such that X C Y. We say that X is continuously

embedded into Y, and write X — Y, if the identity operator
I: X =Y
is continuous, i.e. 3C > 0 such that
lzlly < Cllzlly, VoeX.

Theorem 7 : (Gagliardo, Niremberg, Sobolev)
Let 1 < p < N and set

then
w7 (RY) — L/ (RY)

and there exists a constant C', depending on p and N only, such that
lull o < CIVullp,,  Yue WH(RY).

Theorem 8 : Let Q be a bounded and open subset of RY with C''-boundary. Assume that
1 <p< N, then
W (Q) — L7 (Q)

23



and there exists a constant C', depending on p, N and 2 only, such that
lull o < ClIVullyrp, Yue WH(Q).
Remark : For p and p* defined above, by using the fact that, if u € LP (U) N LP" (U) then
we LY(U), Vqelpp'],

we can prove that

WP (U) c LY(U), Vqé€ [p,p"],

with continuous embedding, where U = RY or U = Q and Q is bounded with C' bounded
boundary.
Corollary 9 : (p=N)

WY (RY) c L9 (RY), Vg€ [N, +ool, (2.7)

with continuous embedding [5].

Theorem 10 (Morrey) : Let p > N then
Wi (RY) ¢ L®(RY), (2.8)

with continuous embedding [5].
Remark :
Assume that € is an open subset of C! bounded boundary, then we have the same results

as in (2.7) and (2.8) with replacing R™ by Q.

for p = N wehave WY (Q) c LY(Q), Yq € [p, +ool,

for p > N wehave WP (Q) c L®(Q),

with continuous embedding [5].
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2.6.2 Compact embedding

Definition: Let X and Y be two normed spaces such that X C Y. We say that X is compactly
embedded in Y and write
X —<=Y,

if

i) There exists a constant C' such that
llzlly <C x|y, VrelX.

i7) Every bounded set in X is precompact in Y [4].
Theorem 11 (Rellich, Kondrachov): Suppose that € is bounded and of C!'-boundary.
We have

if 1 < p<N then W' (Q) c LYQ), Vqe[l,p,
if p = N then W (Q) C LYQ), Vg€ [1,+o0],

if p > N then WH (Q) C C(Q),

with compact embedding [5].
Remark : Using the compact embedding of W1 (Q) in L7 (Q), we can extract from every

bounded sequence {u,} C WP () a subsequence {u,, } such that

Up, — win LI(Q),

where u € W1P(Q), also
— y in WP(Q)

Unp,,

and

Up, — w a.e. in €.

Here, u,, — u means that {u,, } is weakly converges to u, which means that for every f in the
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dual of W1P(Q) we have
(fyun,) — (f,u) in RR.

2.7 W,"”(Q) and its properties

Definition :
Let 1 < p < 4o00. We denote by Wol’p (Q) the closure of C§° (Q) in WP (Q).
Thus, u € VVO1 P () if and only if there exists a sequence {uy} C C5° (), such that

up — u in WHP(Q).

Properties : 1) I/VO1 P () equipped with the norm induced by W1 (Q) norm is a separable
Banach space, it is reflexive for 1 < p < +oc.
2) Hi () = W01’2 (Q) is a Hilbert space with respect to the H! () inner product.
Remarks : 1) Note that since C§° (]RN ) is dense in WP (]RN ) then,

Wo? (RY) = whr(RY),
however, in general, for 2 & RV,
Wy () # W ().

2) We can prove, by using a regularized sequence, that the closure of C§ () in WP (Q) is
1,
WP ().

2.7.1 Trace theorem

Notice that a function u of W'* (Q) is only defined a.e. in €2, so if also u € C (), then clearly
u has usual values on 02, but there are no meaning to the restriction of u at 92, which is of
negligible measure. The notion of trace operator resolves this problem.

Theorem 12: (Trace theorem):

Suppose that 1 < p < +oo and assume that 2 is a bounded domain with C!—boundary.
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Then there exists a continuous linear mapping
v WP (Q) — LP (09)

such that
i) Ifue WP (Q)NnC (Q), then

YU = U\aﬂ

and

i1) There exists a constant C' depending only on p and € such that
vl ooy < Clullwrsgy, Yue WH(Q).

Proof : See [8],[7],[14] and [25].
Definition : We call yu the trace of u on 0f2.
Theorem 13: (Trace of functions in Wol’p ()
Let Q be a bounded domain with boundary of class C. Suppose further that v € W1» (Q),
then
u € Wol’p (Q) if and only if yu = 0 on 01.

2.7.2 Poincaré’s inequality

Suppose that €2 is bounded then for all p such that 1 < p < +o00 we have
lull e < ClIVully,, Ve WoP(9),

where C' is depending only on p and 2.

Proof: See [24], [2].

Remarks :

1) Poincaré’s inequality does not hold in VVO1 P(Q) if Q contains arbitrarily large balls; i.e.,
if there exists a sequence r, — oo and points x,, € Q such that B (z,,r,) C .

2) If Q is included in a strip of width d, i.e., there exists ¢ € RY with [¢] = 1 and
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Qc{zeRY/a< &z <pB}andd=p—aq,then
lull e < CollVullL,, YueWyP(Q),

where Cp is a universal constant; i.e., independent of which €.
3) If p = oo Poincaré’s inequality holds on I/VO1 "% (Q) if and only if there exists M < oo such
that
d(xz,00) <M, VzeQ,

where d (.,.) is the Euclidian distance.
Proof : See [24].
Corollary 14 : Suppose that 2 is bounded then ||Vu||;, is a norm on I/VO1 P (Q), equivalent
to the norm |[ully1p (-
Proof : We have
IVull g < lJulliprn s Yu € WoP(Q).

By using Poincaré’s inequality we have

lullpre = llullpe + Vel

IN

(C+D[[Vull -

Thus,

IVull o < llullwie < C" [ Vull -

Remark : The same result holds true if Q2 has a finite width.

2.7.3 Dual of W,” (Q)

Definition : For 1 < p < oo and its conjugate p/, we denote by W1+ (Q), the dual space of
Wol’p (Q), in particular the dual of H} (), is denoted by H ! ().
Properties :

1) By identifying L? () to its dual, we obtain
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HY} (Q) c L2(Q) c H(Q),

where the embedding is continuous and dense.

2) Suppose that €2 is bounded then,

WP (Q) € L2 (Q) ¢ W™HP(Q), if N SP<oo
where the embedding is continuous and dense.
3) If Q is unbounded then,
WP (Q) C L2 (Q) c WL (Q), if <p<2.

N +2

Proposition 15 : W% (Q) is a subspace of ®' () and it can be shown that the disrtibutions
in W= (Q) are of the form

N
F=fo+> f
=1

where f; € L' (Q) for 0 <i < N.
Thus,

N
Oy 1

F = i P(Q

(F, ) /QfoWr;:l/Qfaxi Vo € Wy ()

with

1y = maxc | fill o -

Moreover, if 2 is bounded we can take fo = 0.

Proof: See [5], [2] and [8].
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Chapter 3

Some linear problems

The aim of this chapter is to familiarize ourselves with some elliptic problems by studying

simple ones.

3.1 A homogeneous Dirichlet problem

Let us consider the problem:

Find u solution to
—Au4+u=f in Q

u = 0 in 992

(3.1)

where € is an open and bounded subset of RY and f is a given function defined on .

Recall that a classical solution to (3.1) is a function v € C?(Q) N C (), which verifies
—Au+u=f in Q

and vanishes on 92 and a weak solution is a function u € Hg (€2) which verifies

Z/ g;i 86; /uv:/ﬂfv, Vv € HY(Q). (3.2)

Before studying this problem let us recall some topological concepts which serve us later.
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3.2 Some topological concepts

Let H be areal Hilbert space, equipped with the inner product (.,.) and let |.|; be the associated

norn.

3.2.1 Riesz-Fréchet theorem

Theorem 1 (Riesz-Fréchet representation theorem) : For any continuous linear func-

tional ¢ on H there exists a unique u € H such that
v (v) = (u,v), YveH.

Moreover,

lpll gz = lulgr

Proof : If ¢ =0 it is sufficient to take v = 0.
Suppose that ¢ # 0 and let M = ¢~1(0), then M is closed and M # H. Thus, we can
choose w € M~ such that w # 0.

Let u = 2%, then v € M+ and for any v € H,

|wlg

¢ (v)

we M*.
¢ (w)
Also, there exists z € M such that
v=2z+ L4 (v) w;
o (w)
therefore,
G M,
@ (w)
hence
<u,v - v (v) w> 0,
¢ (w)
then
¢ (v)
U, vy = U, W
() = £ (u )



replacing v in the right-hand side we get

el few),
e = so<w><|w|;, ’ >

Moreover, by using Cauchy Shwartz inequality, we have

lell = sup [(u,v)]

[v]g=1

vl =1
lell < Julg, (3.3)
also,
U
el ) <lel.
|uly
and
(5) = (i)
28 s = Uy
|ul g |ul g
= |U|H7
then,
lulg < el (3.4)
Thus, from (3.3) and (3.4) we have
el = lulg -

To show the uniqueness of u, one simply notes that, if there exist u,u’ € H such that
o) = (uv), YoeH

and

ev)=(u,v), YWweH
then,
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<u—u’,v>:0, Yv € H.

By choosing v = u — u/ we get

(u—v,u—u) = 0,
‘“ - “/}H = 0,
therefore,
u=1u'
See also [18].

3.2.2 Lax Milgram lemma

Definition : A bilinear form a : H x H — IR is said to be:

i) continuous, if there exists a constant C' > 0 such that
la(u,v)| < Cluly vy, VYu,veH,
i1) coercive or H—elliptic, if there exists a constant o > 0 such that
a(u,u) > a|u\12q, Vu € H.

Theorem 2 : Let K C H be non empty, closed and convex subset. Then, for every f € H,

there exists a unique v € K such that

|f —uly :gél}r(l|f—v|H,
u is the orthogonal projection of f onto K. Moreover, u is characterized by

uec K
(f —u,v—u) <0, YoekK
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and the map Px : H — K defined by

is a Lipschitz function with

[P (f1) = Px (f2)| < |fi = fal, Vfi,fe € H, (3.5)

see [5].
Theorem 3 (Stampacchia theorem): Let a(.,.) : H x H — IR be a continuous bilinear
and coercive form and K C H be a non empty, closed and convex subset.

Then, for every ¢ € H' there exists a unique element u € K such that
a(u,v—u)>pv—u), YvekK.

If, in addition, a (.,.) is symmetric, then u is characterized by

ue K

ba (u,w) — ¢ (u) = min {§a (v,0) o ()}

Proof: By using Riesz-Fréchet theorem for ¢, there exists a unique f € H such that
o)== {(f,v), YveH.
Let uw € K be the orthogonal projection of f onto K, then, from Theorem 3
(f —u,v—u)y <0, YovekK (3.6)

Also, for a fixed w € H, the map

v — a(w,v)

is a linear and continuous form on H, then by Riesz-Fréchet theorem, there exists a unique

w' € H such that
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a(w,v) = <w',v>, Yv € H.
Let the operator A : H — H defined by

Aw = ',
it is a linear continuous operator and satisfies
a(w,v) = (Aw,v), Yv € H.
Indeed, it’s easy to show that A is linear. To prove the continuity, we use the fact that

la (w,v)] < Clw|y |v|ly, Yw,veH

and (3.7) to obtain

|(Aw, v)| < C'|w|y |v|y, Yw,veH,
by replacing v by Aw in the last equality we arrive at

|Aw|? < Clw|y |Aw|y, Yw € H,

So, if Aw # 0, we easily get
|Aw| < C'|w|y, YweH,

which still true even if Aw = 0. Therefore, A is continuous.

Moreover, from the coercivity property of a(.,.) we have
[(Aw, w)| > a|w|3;, Yw e H.
Let p be a positive constant, which will be fixed later, and define a map S by

S : K—K

(3.7)

(3.9)



S (w) is the orthogonal projection of pf — pAw + w onto K, then, from (3.6) we have

(pf — pAw+w — S (w),v—S(w)) <0, YveK. (3.10)

Also, from (3.5) we have

|5 (w1) = 5 (w2)]

IN

l(pf — pAwr +w1) — (pf — pAws +w2)|, VYwy,we € K,

< J(wy —wa) — p(Awy — Aws)|, Ywi,we € K,
then,

| (w1) = S (w2)|? < Jwr —wa| 2+ p? [Awy — Awg|? — 2p (Awy — Awa, w1 — wa) .
By inserting the inequalities (3.8) and (3.9) in the last inequality it becomes

S (w1) = S (w2)| ?

IN

lwy — 1U2|2 + p*C? |wy —wg|2 — 2pa jwq —w2|2, Ywy,ws € K,

IN

(1 + p*C? — Zpa) |wy — ws 2 Yu,wy € K
Therefore, if we choose p such that

0<1+p*C%—2pa <1,

we conclude, by setting /1 4 p2C? — 2pa = k, that
S (w1) = S (wa)| < k|wy —wal, Vwi,wy € K

which means that S is a contraction.
Thus, Banach fixed point theorem asserts that there exists a unique element u € K such
that
S (u) = u.

By replacing w and S (w) by w in (3.10) it becomes
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(pf — pAu,v —u) <0, YveK

and hence

plfiv—u) < plAuv—u), Woe K.

Therefore, since p is positive, we have
(fiv—u) < (Au,v—u), YveK.

This completes the proof of the theorem.
Remark : Besides the result aforementioned we can add the following one, where the proof
can be found in [9].

If K is a closed convex cone with vertex 0, then

a(wv)>pW), Yoek

a(u,u) = ¢ (u),

Lemma 1 (Lax-Milgram lemma) :
Let a(.,.) be a continuous bilinear and coercive form defined on H, then for every ¢ € H’

there exists a unique v € H such that
a(u,v) =¢ (W), VYveH.
Moreover, if a (.,.) is symmetric, u is characterized by

ue H

z0(u,u) — ¢ (u) =min {3a (v,v) = ¢ (v)}

Proof: By using Stampacchia theorem, there exists a unique v € H such that
a(u,v—u)>ew—u), YveH,

since tv € H for every t € R, then replacing v by tv we get
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a(u,tv—u) > (tv—u), YveH, VtelR,

S0,

t{a(u,v) —p(v)} >{a(u,u) —pu)}, VvVteR, VveH.

Suppose that a (u,v) — ¢ (v) # 0, then, we can make a(u,u) — ¢ (u) — —oo by making
t — +o0 or t — —o0, thus, a contradiction.
Therefore,

a(u,v) =¢ (), VreH.

Homogeneous Dirichlet problem
We are now ready to study the given problem (3.1).
Proposition 4 : Every classical solution to (3.1) is a weak solution.
Proof: Suppose that u € C? (Q) is a classical solution to (3.1).
Since € is bounded, then, from proposition II-3, we have C? (ﬁ) C H'(Q), hence,

ue H Q) NCOQ).
Furthermore, since u|yq = 0, we can use the trace theorem, to get
u € Hy(Q).

On the other hand, multiplying both sides of the first equation in (3.1) by v € C§° (), inte-

grating over €2 and using integration by parts, we arrive at

= ou Ov
pr— OOQ'
;/aniaxi‘f‘/guv /QfU, Vv € C§°(Q)

By density of C§° () in H{ (€2), this equality remains valid for every v € H} (). Thus, u is a

weak solution to (3.1).
Remark: In the above proof we used a result of the trace theorem in spite of the hypothesis

that the boundary will be of class C! is not satisfied, because in the proof of the mentioned
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theorem, the fact that if u|yq = 0, then u € HJ (2), doesn’t use this hypothesis, see [5].
Theorem 5: For all f € L?(Q), problem (3.1) has a unique weak solution.
To prove this theorem, we need to prove a lemma.

Lemma 2: For every u,v € H! (Q) we have

/Q|VU| Vol + [ul [o] <[]l g1y [0l gy »

where [|u[| g1y is the norm defined by

ou
ox;

N
lull gy = Il g2+ :
i=1 L?

Proof of lemma 2: Since

([ul [Vo] = o] [Vu)* = 0, Vu,0 € H'(Q),

then,
[l [Vol? + o [Vul® > 2 |ul Vo] [o] [Vul,
consequently,
[l [ + [Vul® Vo + [ul* [Vol* + v [Vul? > (|Vu] [Vo] + [u] |v])?,
thus,

(1l +19u?) (Jo + 1Vol?) > (1Vul [Vo] + [ul [o])?,

then, by integration over {2 we have

1 1
(a2 19a) (1o +1902)" = [ (9l 190l + fullol) . Vv € HY9)
Q Q

by using Cauchy Schwarz inequality, for the left-hand side, we have

</Q (’u\2+ \Vu|2>>é (/Q (,v|2+ |Vv|2)>é Z/Q(Wu\ Vol + Jul o]), Va0 € HY(S).

(3.11)
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Also,

2
ull 4
—_— u
8.’132 .2 L?

2>é+(/gru2)é .

by developing of the square in last parenthesis we easily show that

? 2
- +/ u ,
i1 /9 O Q| |
/|Vu]2+/ ul®. (3.12)
Q Q

N
2
lulln = (
i=1

N

>(f

=1

ou
8.731‘

\%

2
[l =

AV

Thus, from (3.11) and (3.12), we get
lall g ol = /Q (V] [Vl + [ul [o]),  Yu,0 € HY(Q).

This completes the proof of Lemma 2.
Proof of theorem 5:
a) A bilinear form:

In the Hilbert space H} (), the form a defined by

ou Ov
(u,v) Z/ 91, 0z, /uv,

is bilinear, continuous and coercive form.

Indeed,

1) Continuity: For every u,v € H} (), we have

a(u,v)—/Vu.Vv—i—/uv,
Q Q
/Vu.Vv—i—/uv
Q Q
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a(u,)| < [ [Vl Vol + ful o], Va0 € HY(S)
Q

by using Lemma 2 we have
ja (u,0)| < llull gy ol ) Vu,v € HY(Q),

therefore, since H} () € H! () and H} norm is induced by H'! norm, the last inequality holds
in H} (Q); that is,

la (u, )| < llull gz ) 10l ey, Yuv € Hy ().

Thus, a(.,.) is continuous.

2) Coercivity:

ou
c%si

2
+/u2, Vu € Hy (),
Q

N
a(u,u) = Z/
i=1 7%
= [ 1vul s [, vee H©.

Q Q

/Q|vu\2, Yu € Hi (),

v

then,
a(u,u) > |Vullze, Vu € Hg ().

Since €2 is bounded, ||Vul|;» define a norm in Hg () equivalent to the norm reduced by H! (Q)

norm, thus, there exists a constant « > 0 such that
a(u,u) > allulfy, Yue Hy(Q).

b) A linear form:

Let ¢ be the form defined on H{ () by

wwzém,We%mx

then ¢ is a linear continuous form.

Indeed, it is easy to show that ¢ is linear.
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Also, by using Cauchy Schwarz inequality

</Q\f|2>é</ﬂvl2)é, Yu € HLY(Q),

o) <
< fllgelole, Vo€ HYQ),
< Clolg. Yoe HIQ).

where C' = || f|| 2. Thus, ¢ is continuous.
By using Lax-Milgram lemma for the bilinear form a (.,.) and the linear form ¢, problem
(3.2) has a unique solution u € H} ().

Moreover, the bilinear form a (.,.) is symmetric, then « minimizes the functional

in Hy (), which is the Dirichlet principle.

3.3 Problem 2

Let L be the elliptic operator on the divergence form

Y9 du
Lw=-3 5 (45 @) g ) + an o
where a;; and ag are in L* () and consider the problem:

Find u which satisfies,

N
-2 %(aij(m)%)+ao(fﬂ)u=ﬁ in

ij=1 (3.13)

u =0, in 0}

Definition: We say that the functions a;; verify the coercivity property, if there exists a

constant o > 0 such that

N N
Y aégi>a) &, VoeQ and VEeRY,
i=1

i,j=1
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or, in the equivalent form
((aij) .£) £ > atl, YzxeQ, VEcRY.

Theorem 6: Suppose that the functions a;; verifies the property of coercivity and ag () > 0
in Q, then, for every f € L? (Q2), problem (3.13) has a unique weak solution u € H} ().

Proof: It’s easy to show that every classical solution to (3.13) verifies

8u ov B 1
Z/ 8—%8% /anuv/va, Vv € Hy(Q), (3.14)

i,0=1

and then, it is a weak solution.

We define a bilinear form a (.,.) on H} (Q) by

8u v
u v Z / 8% aa:j +/ aguv,

1,j=1
z/fv,
Q

then, a (.,.) and ¢ verify the hypotheses of Lax-Milgram lemma.
Indeed,

and a linear form ¢ by

1) a(.,.) is continuous,

a(u,v) = /Q (aij (z) .Vu) . Vv + /Q aou,

we can show that,

la (u,v)] < M Z /

+m/ ul o], Vu,o € H(Q),

1<i,j<N 833'1 ax]
where M = sup |a;; (z)] and m = sup|ag (2)].
1<i,j<N zeQ

€
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Consequently,

IN

|a (u, )]

MN2/|Vu] |Vv|+m/|u| lv|, Vu,ve HY(Q),
Q Q

IN

max { MN? m} /Q |Vu| Vol + |ul [v], VYu,v e HLQ),
By using Lemma 2, we arrive at

la (u,v)| < max {MN2,m} lull go |0l g1y Yu,v e H&(Q),
then, since ||ul| 1 = HUHHS , for u € H} (Q),

la (u,v)| < max {MNQ,m} Hu||Hé HUHH(} , Yu,ve Hol(ﬂ),
Thus, there exists a positive constant C = max {M N2, m} such that
0 (u,0)] < Clullgy [0l . Vv € HYQ).

Therefore, a(.,.) is continuous.
2) a(.,.) is coercive,

by using the coercivity property we have

N

ou Ou
a(u,u) = Z/aij(m)amﬁac-+/ao(x)UQ’ Vu € H ()
i,j=1"% LR
a ou |?
>« /+/au2, Yu e H(Q),
; O 656'1 o 0 0( )

since ag is positive then,

a(uu) 2 al|Vuljz, Vue Hy(9),

from corollary II-14, |[Vu| ;2 define an equivalent norm in Hg (€2). Then,

auu) = afully, Yue HYQ).
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which completes the proof of the coercivity of a (.,.).
Remark : In what is above we denote HVuH(LQ)N by [|[Vul| 2.
3) ¢ is continuous, as in N° 3 of the proof of theorem 5.
Thus, by using Lax-Milgram lemma there exists a unique solution u € H} (Q) to problem

(3.14), which is a weak solution to (3.13).

3.4 Problem 3: Nonhomogeneous Neumann problem

Consider the problem
—Au+agu = fin Q
ou={ (3.15)
%Z = g in 02
where ag € L® (), f € L?(Q) and g € L? (99).
Multiplying both sides by v € C! () N H! (Q) and integrating over €2, by using Green’s

formula, we arrive at

ou 81} ou
Z/ oz, axl /69 877vda—i—/gaguvdgc—/vadac,

then,

N

g / Ou v dx +/ apuvdr = / fodz + Ou —uvdo, Yve CH(Q)NHY(Q), (3.16)
— | Ox; O; Q Q a0 01

i=1

since C* (2) N H' () is dense in H! (), the last equality holds for every v € H* (Q).
Definition : We say that a function u € H' () is a weak solution to the problem (3.15) if
u verifies (3.16) Vv € H! (Q).
Study of Problem 3:
Let a(.,.) be the bilinear form defined on H' (Q) by
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ou 0
a(u,v):Z/ 8; a;dx—i—/ﬂaguvdx, Vu,v € H' (Q)

and ¢ be the linear form defined by

gp(v)z/fvdx—k/ @Ud()', Vo € HY(Q).
Q a0 On

Theorem 6: In addition to the assumptions on ag, f and g, suppose that there exists a constant
ag > 0 such that

ap (x) > ap, almost everywhere in €.

Then problem (3.15) has a unique weak solution in H* (£2).
Proof : It suffices to prove that a and ¢ verify the hypotheses of Lax-Milgram lemma.
1) Continuity of a(.,.)

la (u,0)] < / Vul [Vo| + / aguv|, Vu,v e HY(Q),
Q Q

la (u,)] < / [Vl Vo] + flaoll / |, Vu,v e H(Q),
Q Q

therefore,
la (u,v)] < max{l, |laol} </Q |Vul |Vo| + /Q |uv|> , Yu,v € Hl(Q),
by using Lemma 2 we get
la (u,v)] < max {1, laoll o} 1ull a oy 101l 1) > Vv € HY(Q),
then, for C' = max {1, ||ag|| .} the last inequality takes the form
la(u,0)| < Cllullg ol Yu,v € HY(Q).

Thus, a(.,.) is continuous.
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2) Coercivity of a(.,.)

N 2
)
a(u,u) = }:/ﬂ aT: +/Qa0(x)\u|2, Yu € HY(Q),
=1

/\Vu]2+ao/u2, Vue H' (Q),
Q Q

> min{l,ap} (/ |Vu2+/ |u|2>, Yu € HY(Q),
Q Q

Vv

therefore, using the equivalent between the norms

1
2
[ull g1 ) = (/ |Vu!2+/u2>
Q Q

N

lul gy =

=1

and

Oull 4l
_ u
833i 1,2 L

in H! (Q), we assert that there exists a constant 3 > 0 such that

a(wu) > min{l a0} ([Vulfs + ul}:), Vue H'(@),
> 8D o] lulpe] . vueHY(SQ),
i=1 Oz || >

then,
a(uu) > Bllul gy Vue H(Q).

Thus, a(.,.) is coercive.
3) Continuity of ¢: Recall that from the trace theorem, there exists a constant B > 0
such that
loll 2200y < Bllvllg(q), Yo € HY(Q).
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Therefore,

@l < [ 1o+ [ ool voem @),
< N Fllzag Iollzz@) + 190 r2on) 10l 260y Yo € HY(Q),
< W llpz) Ivllpz@) + B llgllz@o) 10l gi@)y, Yo e H'(9),

hence,

lp (v)] < (||f||L2(Q) +B ||g||L2(6Q)) ||UHH1(Q) , Ywe HY(Q).

Set B = || fl| 2 + B llgll 20 - then,
o ()| < B'vll (), Yo € HY(Q).

Thus, ¢ is continuous.

By Lax-Milgram lemma, problem (3.15) has a unique solution u € H! (Q).

3.5 Problem 4: A nonsymmetric case

Let us consider the problem

> 2 (a0 () £2) + S (@) 22 + a0 (0)
— | ai 5 ) +2obi(x) 55 +ao(z)u=fin Q
=t AN N = on (3.17)

v =0 in 9N

where a;j,b;,a9 € L (Q) and f € L? (Q).
As in Dirichlet problem, multiplying the equation by v € C§° (2) and integrating over €2,

using Green’s formula, we have

Z/ gai g; Z/ 83:1 /an(x)UUZ/va, Vo € C§°(9).

,j=1

By density of C§° () in H} (), the above equality holds for every v € H} () and a function
u € Hi (). So we get

48



Z/a” g;g; Z/ axvar/ao( uv—/fv Yoe HYQ).  (3.18)

i,j=1
In this case, u is said to be a weak solution of problem 4.
Let a;j, bi, ap belong to L™ (Q) and f € L? (Q).
Theorem 7: Suppose that a;; verify the coercivity property. Then, there exists a constant
v > 0 such that, if ag(z) > v a.e. in Q, the problem (3.17) has a unique weak solution
u € Hi () [14].

Proof : Define a bilinear form a (.,.) and a linear form ¢ on H} (Q) by

8u ov
(u,v) Z/a” 0:Bj 0x; Z/ 0:@ /Q 0 (@) uv,

2,j=1
[ 5

It suffices to prove that a (.,.) and ¢ verify the hypothesis of Lax-Milgram lemma.

and

1) Continuity of a(.,.):

ou
o 8761 MOE:/ ' |v|+m/ lul o] (3.19)
1,7=1
where M = max |laill, Mo = max [|b;, and m = ||agl|
1<4,5<n %

By using Cauchy Schwarz inequaﬁty, (3.19) can be written

8:U y ox; Ox;

v = w2 (FL2F) (AI3T) -85 (A1) (o)
+m</w> (1) N
M )(z ) (2 o ) ol

+m ||U||L2 [o]] .2
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N
ou
la(u,0)] < M (Z o —i—||uHL2 +Hvlle Ve HAQ).
i=1 v
< Millullg ol Yu,ve OQ,

where M7 = max {M, My, m}.
Thus, a(.,.) is continuous.

2) Coercivity:

8u ou 2 1
(u,u) Z / a;j (x &rj oz, Z/ 8&:1 /an (x)u®, Yue€ Hy(Q),

i,j=1

by the coercivity property we have

(u,u >a/|Vu] +Z/ 89: /ao(ﬂ,’)UZ, Vu € Hy ()
4 Q

it is easy to show that

Vv

a(u,u)—/ﬂao(w)u2

/\w -
o [[ 19l ~ ma 0 2/\

recall that from Young’s inequality we have

J ‘u'—/ﬂ

if we insert this estimate of fﬂ

8@3

Vv

o (u, ) — /Q a () u? W, (3.20)

ou |?
8:@

ou

1
+/yu|2, Ve >0, Yue HHQ),
4e Q

in (3.20) we have

MoN
a(u,u)—/ﬂao(x)ﬁ > a/QWUF—MOs/QWuF— 405 /Q|u|2, Ve > 0, Yu € HE(Q),

MoN
(o — M()E)/ |Vu\2 — 0/ ]u\z, Ve >0, Yu € H&(Q%
Q e Jo

v
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then for ¢ < i we have @ — Mye > 0 and
0

a(u,u) > (@ — Mgs)/Q\VuIQ +/Q (ag (z) — ]‘iogN) W, Yue HAQ). (3.21)

To get ag (z) — M%EN > ( it suffices that ag satisfy

MoyN

>
ag ($) = Ye )

so, from the above estimate for ¢, the estimate for ag becomes

MZN

0%

ap (z) > for a.e. x € Q.

M2N
4o

Then, if ag (z) > v a.e. in Q, for any v > it suffices to choose ¢ such that

S MoN S MgN
7= 4e vi¥e"
to get

MoN

ao (z) - 4e

and (3.21) implies that
a(u,u) > (a0 — Mope) /Q Vul*, Vue H(Q).
Thus, because |, |Vul® define a norm in H} (€2), the last inequality can be written
a(u,w) 2 o July o

for some positive constant o/. Therefore, a (.,.) is coercive in H} ().
3) Continuity of ¢: As in problem 1.
We have showed that a(.,.) and ¢ fulfilled the hypotheses of Lax-Milgram lemma. Thus,

problem (3.18) has a unique solution u € Hg (£2).
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Chapter 4

Nonlinear problems

4.1 First Problem

Let Q be an open bounded subset of R with a boundary 9Q. We consider the following

nonlinear elliptic boundary value problem

_iéaii (a (z,u) %) =f inQ

uw =0 in 99

(4.1)

where f is a given function to be specified later.
To get the weak formulation of problem (4.1) we multiply both sides of the equation (4.1)

by v € C§° (), integrate over Q and use the integration by parts to get

N
;fga(m,u) g;(%’i :fov, Yo e C§° (Q)

u =0 in 99

(4.2)

by using the density of C§°(Q) in H} (Q), (4.2) holds for every v € H} (). Then, a weak

solution to (4.1) is a function u € H} () which satisfies

al ou Ov
gw ov 1
Z/Qa(x,u) oz, 9z, /va, Yv € Hy(Q). (4.3)
=1
Definition : Let a be the function a : 2 x R — IR.
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We say that a is a Caratheodory function, if

i) for every ¢t € IR, the function a(.,t) : @ — IR is measurable,

i1) for almost everywhere x € ), the function a (z,.) : R — IR is continuous.

Theorem 1: Suppose that a is a Caratheodory function and that there exist two constants

m and M such that
0<m<a(zx,t) <M, forae xecQandVtelR.

Then, for every f € H~1 (), the problem (4.2) has a solution u € H} (Q).

Proof :

To study this problem we use a technique frequently used for nonlinear partial differential
equations. We will use a priori estimate for the solution of such problem and to do so one can
use a fixed point theorem to solve approximative problems in finite dimensional spaces where
one can obtain various results, then, one has to pass to the limit in the dimensional by using a
compact embedding theorem of Sobolev.

H} () is a separable Hilbert space, so it has a Hilbertian basis [5], that is to say, there
exists a sequence

feain € N'} C H(Q),

such that

(en,em) = Onm, Vn,m € N*

and the space generated by {e,;n € N*} is dense in H}(€2), where &, is the Kronecker delta.
Also,

(u,ex) ex, Yu € HY(Q)

B
Il

1

and

]uHH1 Z u,er)?, Yue HH Q).
k=1

Let V,, = Span [e1, €2, ..., e, ]; that is the space generated by {e1, e, ..., e, }.
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In each subspace V;, we consider an approximate problem to the given problem (4.2),

up € Vp,
N ou. (4.4)
afﬂa(x,un) %8& = fov, Yv eV,
1=
it is a nonlinear problem in a finite dimensional space V,.
A linear approximate problem:
Let w € V,, and change the problem (4.4) to a linear one
Uy € Vi
(4.5)

N
nga(m,w) %ﬁ?% :fﬂfv, VUEVH.
=1

Proposition 2: For every f € H~!(Q), problem (4.5) has a unique solution wu,, € V.
Proof: Note first that, since V, is a finite-dimensional space, all the norms are equivalent,

then, we equip Vj, by the norm induced by H{ (€2) norm, i.e.

N

lully, =

=1

ou
&’E,‘

12()

Let b(.,.) be the bilinear form defined in V;, by

N ou Ov
b(u,v)zz Qa(:L",w)a—wiami, Yu,v €'V,
i=1

and let ¢ be the linear form defined by
v (v) —/fv, Yv € V.
Q

To use the Lax-Milgram lemma we must prove that b (.,.) and ¢ verify the hypotheses of lemma
1 in chapter 2.

1) b is continuous,
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b (u,v)| < i/ @ w) | 222 e,
) — — Q ) 8:1:1 61’1 ) ) n
N
< MZ/ |Vu| V], Vu,v €V,
i=1 7%
< MN/ |Vul||[Vv|, Yu,veV,,
Q

by using Cauchy Schwarz inequality for the right-hand side we get

2 : 2 :
MN </ |Vul > </ |V > , Yu,v €V,
Q Q

MN Jlull g 1ollgzg s V0 € Vi,

IN

b (u, v)|

A

hence,

[b(w, 0)| < Cully, [lolly, ,  Yu,v € Va,

where C = M N. Thus, b is continuous in V.

2) b is coercive,

2
, YueV,,

b(u,u) = é/ﬁa(w,w)‘gz

m/ Vul*, YueV,.
Q

AV

Since Q2 is bounded, [, |Vu|? defines an equivalent norm to ||ul| 3 I Vi, then, the last inequality

takes the form

b(u,u) >mluli, , Yue V.

Therefore, b is coercive.

3) ¢ is continuous,

e ()] = [{f,0)]
=1 vl gz s Vo € Ho(9),

A
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then, by setting C' = || f|| ;-1 we have
o ()| < C' vl , Vv e Hy(9),

which means that ¢ is continuous in H}(2), consequently in V;,.
Thus, by using the Lax-Milgram lemma in V,,, we assert that there exists a unique solution
Uy to problem (4.5)
b(uw,v) =p(v), YveV,.

Furthermore, if we replace v by u,, in the last equality, we have

b(uwa uw) =@ (uw> 5

then, by using the coercivity property of b and the continuity of ¢, we get

mlluwlly, < b (Uw, )
< ‘P(uw)
< N - Nwwlly,, (4.6)

80, if [|[uwlly, # 0, by dividing (4.6) by [uwl|y; , we obtain the estimation
ool < 0=, @)

which holds even if |luyl[y, = 0.
Remark: Note that V,, is a Hilbert space equipped by the inner product induced by H*!
inner product, so one can apply the Lax-Milgram lemma.

Let T be the mapping defined in V,, by
T w — Uy,

where w and u,, are those mentioned above.

Provided we choose w in the ball B (0, Hf”TH_1> C Vp, the solution u,, = T (w) will be also
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in this ball. Therefore, by the Brouwer fixed point theorem, the mapping 7" has a fixed point
in V,,, provided we can prove its continuity.
Lemma 1 : T is continuous.

Proof : Let {w,} be a convergent sequence in V;, such that
< Wi
m
and let w € V,, be its limit in V,,, i.e.
wp — w with H}-norm.
To prove the continuity of 7" it suffices to prove that
T (wp) — T (w) in V.
Let u), be the solution to (4.5) associated to wp. From (4.7) we have
w, < W=t ooy
m

then, the sequence {u,} is bounded in V;, which is of finite dimension. Thus, we can extract a

convergent subsequence {u,, }. That is,
Up, — U, in Vp,

see [22].
Let {wp, } be the subsequence extracted from {w,}, it is a convergent sequence to w in
H} (), consequently in L2 (Q),

wy, — w in L*(Q).

Therefore, from {wy, }, we can again extract a subsequence, which we still denoted {w,, }, such
that
— w almost everywhere in 2,

Wpy,
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see [5]. Thus, there exists Q' C Q such that
wp, (z) = w(z), Vee

where

meas (2/Q') = 0.

Recall that for almost everywhere 2 € €', a (z,.) is continuous, then, there exists Q" C Q' such

that
meas (' /Q") =0
and
a(z,.):t— a(x,t) is continuous Vz € Q.
Thus,
0 (@, wpy (2) — a (0 (2)), Vo€ 9,
also, since

meas (/") < meas (Q/Q') + meas (' /Q")

then, meas (Q/Q") = 0 and

a(z,wp, (z)) = a(z,w(x)) almost everywhere in . (4.8)

For any v € V,,, multiply both sides of (4.8) by agif) to get

ov ()

a(z,wp, (x)) oz, — a(z,w(x)) oz, a.e. in €, (4.9)
furthermore,
ov () ov () )
a(z,wp, (x)) o, oz, a.e. in Q
In the other hand, v € H} (2), gives,
v (z) 2
M oz, € L“(Q)




satisfy the hypotheses of the

Then, the sequence {a(m,wnk) %}’ a(z,w) z%)i and M ‘57”

dominated convergence theorem.

Thus,
alewn) o alow) € ()
and
M@%ggbea@mgsz%m. (4.10)

In the other hand we have

Up, — u in Vp,

which implies that
Oup, N ou

in L? (Q).

Set fp, = a(x,wp,) g—;, f=a(z,w) o Gpp = Ou p’“ and g = 336 , by using the fact that if
foo — fin L*(Q)

and

gp, — g in L? (Q)

then
JorGp, — g in Ll(Q)a

we arrive at

Ouy, Ov ou Ov ., 4
a ('vapk) 8% 8$Z —a (.’,U,'U)) a:UZ axz in L (Q)?
after a summation over i, we get
ZN:/a(mw )aupkav Z/ T, W) 3u0v Yo eV, (4.11)
~ Ja PR Dy Oy Ox; Ox;’ " '

Recall that wuy, is the solution to (4.5) associated to wy,, so, for the left hand-side we have

i/a(xw )aup’C aU:/fv Yo eV,
i=1 7% CP Owy Oy o' "
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Passing to the limit in the last equality and using (4.11) we arrive at

ol Oou Ov
— = Yo € Vp, 4.12
;/ﬂa(x’%mmi | #o we (1.12)
which implies that u is the solution to (4.5) corresponding to w, hence,
u="T(w),

which proves that T is continuous. Then, by using the Brouwer fixed point theorem, we conclude

that there exists u, € B (0, ”fLLliH,_l) C V,, such that
U = T(up).

Thus, the corresponding problem (4.12) to w = w,,, has u,, as a solution in V,,, this fact can be

written by

al Ouy, Ov
;/Qa(x,un)axiaxi :/va, Vv € V. (4.13)

Therefore, u, is a solution to (4.4) in V,,.

4.2 The nonlinear problem in H;] (Q)

Now one would like to show that at the limit wu,, will provide us with a solution to the given
problem (4.3).

Let {u,} be the sequence in H} () constructed by choosing in each V;, the solution to the
nonlinear problem (4.13), then, {u,} is bounded in H{ (2),

1l -1
ol g < *

By using the compact embedding of H} (Q) in L? (Q2) we can extract a subsequence of {u,},
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which we still denote {u,}, such that there exists u € Hg (€2) and
u, — wuin H}(Q), (4.14)

u, — uin L?(Q)

and
Uy — U a.e. in £,
see [3], [20] and [5] respectively.
Thus, by using (4.8) we have

a(x,up () — a(z,u(z)) ae x el

In the other hand, let v be in H} () and {v,} C H}(Q2) be a convergent sequence to v in
HE (€2), then,

ov v
= in L2(Q). 4.1
oz, oz, ML) (4.15)
We want to show that
a(x,up (x)) gq;j —a(z,u(x)) 88;}1 in L*(Q),
To do this, we use Minkowski’s inequality to get
ovy, ov

a(x,uy)

1
2)2

1 1
2\ 2 2\ 2
ov ov
) + </Q a(x,up) pr a(x,u) oz, ) . (4.16)

1) m(hlse-5)"

(/.

%_a(mu )@
al‘i o 8:@

87;1%_0/(:(:7111)87;1;7;

a(x,up)

(/

Note that

-

ovy, B ov
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So, by (4.15) we conclude that

(] Q)LO.

The convergence of the second term in the right hand-side of (4.16) to zero, is a consequence

Un, ov
a(x,up) e a(x,up) .

of (4.10). Therefore,

lim </
n—-+o00o QO

and this completes the proof of

Ovp 0
a(z,up) aLZ — a(z,u) a;i in L2(Q). (4.17)
Weak-strong convergence:
Note that from (4.14) we easily get
ou ou
o, oz L@ (4.18)
From (4.17) and (4.18) we have
ouy, ovy, ou ov
<8$i,a(:1:,un)axi> — <axi,a(ac,u)8xi>. (4.19)

Indeed, it is easy to see that

dup ( )% _ [ 9Ou ( )@ <
8:13i7a o tn Ox; 8$i’a T ox; -

Oun ( )%_( )@ 4 Qup _ Ou ( )@
8l‘i7a s Un 8$Z a\L,u 8231 &rl a$i7a ik 8$l

then, it suffices to show that every term in the right-hand side converges to zero.

(4.20)

)

For the fist term we have

Oouy,

8:@

L2

Oun ( )%_( )@ <
8mi,a T, Unp, oz, a(z,u oz, /)| =
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and the convergence to zero is established by the fact that %Lz? is bounded in L? () and
a(z,un) 52 % strongly converges to a (z,u) 8‘9—; in L2 (Q).

For the second term recall that the weak convergence of a“" to a“ in L? (Q), means that

lim <a“” - 8“>g =0, Vg e LX(Q).

n—oo Jo \ Or; Oz

Then, by replacing g by a (z,u) 88“7_, which is in L? (), we establish the convergence of the

second term in (4.20) to zero.

By summation over 4, (4.19) takes the form

N N
un vy, Ou Ov
;/Qa(x,un) . O — ;/Qa(w,u) Oz, 9z, (4.21)

From (4.13) we have

N
ou,, Ov,
;/Q“@’“)axiaxi [0 (422)

then, passing to the limit in (4.22), using the continuity of the linear form ¢ in H} (Q) and

(4.21), we arrive at

8u ov 1
Z/ x,u) 92 0z, /va, Yv € Hy(Q).

Therefore, u is a solution to (4.2).

4.3 Second problem

In this section we will generalize the result obtained for problem (4.1) to

N

_iJZlaﬂC (aij (w,u) Gt) = [ in Q (4.23)

u =0 in 99

Let © be a bounded domain of R with a boundary 9Q and let f € H~!(Q) be given.

Theorem 3 : Suppose that a;;(.,.) are such that

aij(z,u) € L2 xR), 1<4,j<N
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and satisfy the following properties:
1) a;j(.,.) is Charathéodory, for 1 <4i,j < N

2) there exists a positive constant « such that

> ay(@u) &g > al¢?, VEeRY forae zeQ, VueR.
ij=1
Then, problem (4.23) has a weak solution u € H} ().
Weak formulation :
To obtain the weak formulation of problem (4.23), we assume that v« c C2?(Q)NC (Q)
is a strong solution to (4.23). By multiplying both sides of the above equation by a function

v € C§° () and integrating over €2, we get

au ov o
Z/aw x,u) 33@ o2, /va, Yo € C§°(92),

1,5=1

by using the density of C§° () in H} (Q) we arrive at

au ov 1
Z/aw x,u) axj oz, /va, Vv € Hy(92), (4.24)

1,5=1

which is the weak formulation of problem (4.23).

Thus, we a priori estimate that the solution of problem (4.24), if it exists, belongs to H} ().

Proof of theorem 3:

As in the first problem, we construct a family {V,,} of finite-dimensional subspaces of Hg (€2),
change the given problem to a linear one, prove that this linear problem has a weak solution in
each subspace V,,, then, pass to the limit using a result of the compact embedding theorem of
Sobolev.

Since H{ () is a separable Hilbert space, so, it has an infinite Helbertian basis {e;,}. Let

V,, be the finite-dimensional subspace of H} (Q) generated by {e1, ez, ..., €}
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Let w € V,, be fixed and define an approximate problem to (4.24) by

N

ou Ov
Z /Qaij (z,w) 87]-8% = [ fo. (4.25)

i,j=1

It’s a linear problem for which we prove the existence of a unique solution u € V,.

Let a(.,.) be a bilinear form defined on V,, by

and let ¢ be a linear form defined in V,, by

:/va.

To prove that problem (4.25) has a solution in V,,, it suffices to prove that a(.,.) and ¢ fulfill
the hypotheses of the Lax-Milgram lemma.

It’s easy to show that a(.,.) is bilinear. We just need to check the continuity and the
coercivity of a (.,.).

All the norms in V;, are equivalent, so, we equip Vj, by the norm induced by Hg (€2) norm

= 4.2
= ¥ o] (1.26)
1<i<N
1) Continuity of a(.,.):
la (u,v)] < Z ]a xT,w) Ov Yu,v €V,
y = i 8.’137, y ) X
3,7=1
< M v ns
< ”Z:I / 9z, 8:132 , Yu,v eV,

where M = max_las; ()l = (a)-
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By using Cauchy Schwarz inequality we get

al ou |? 2 v |2\ 2
< Rl
a(uol < MY (/Q oo ) (/Q - ) A
2,j=1 J
v : :
< MZ (/ \Vu|2) (/ Vv]2> , Yu,v eV,
Q Q

ij=1

1
Since 2 is bounded < Jo ]Vu\Q) * defines an equivalent norm to (4.26) and

ja (u,0)] < MN? ||ull g [0l gz, Vu,v € Va,
then, there exists a positive constant C' = M N? such that

la (u,0)] < Cully, lvlly, » Yu,v € Va.

Thus, a(.,.) is continuous.

2) Coercivity:

ou
aﬂji

ou
8$j

a(u,u)

5 | Jog )

1,7=1

a/ Vul?, YueV,.
Q

Y

(4.27)

Jo |Vu|2 defines an equivalent norm in Hg (2), consequently in Vj,, so, (4.27) takes the form

a(u,u) >« Hu||%/n , YueV,.

Thus, a(.,.) is coercive.

3) Continuity of ¢ :

o @) < fllg-1llvlly, Vo€ Va,
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then, by setting C’ = || f|| ;-1 , we get
e () < Colly, , Vo€ Va.

Thus, ¢ is continuous.
By using the Lax-Milgram lemma, problem (4.25) has a unique solution u,, € V,,.

Furthermore, from (4.28) we have
o ”uw”%/n <a (uwauw)

and from (4.29) we have

a (U, uw) = ¢ ()

< Al llwwlly, -

Thus, for the solution u,,, we have the estimate

[wwlly,, <

e
TH' (4.30)

Let T be the map defined on V,, by

T:w — Uy,

then, provided we choose w such that

fuly, < M=,

Uy = T (w) will be in the ball B (0, Hf”THfl) and we can apply Brouwer fixed point theorem,
provided we can prove that 7' is continuous.

Let {w,} be a convergent sequence to w in V;, and let u, be the solution of (4.25) associated

to wy

N
Z/ai-(x w)%(% —/fv Yo € V,. (4.31)
Q I 8a:j8xi 0 ’

i.j=1
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From (4.30) the sequence {u,} is bounded in V;, which is a finite-dimensional space. Then,

we can extract from {u,} a convergent subsequence {u,, }, where we denote its limit by v € V;,,
lim u,, =w in V. (4.32)

k—o0

The subsequence {wy, } converges to w in V,, C H} (), consequently in L? (2), then, we

can extract again a subsequence, still denoted {wyp, }, such that
Wp, — W, a.e. in (.
Therefore, there exists Q' C € such that
meas (Q/Q) =0

and

wy, () > w(z), Voe. (4.33)

In the other hand, since a;; (z,.) is continuous for a.e. z in 2, there exists Q" C €’ such that
aij (2, wp, (¥)) = aij (z,w (z)), Vo e (4.34)

where meas (' /Q") = 0.
Thus, from (4.33) and (4.34), we can easily show that

aij (x, wp, () — aij (z,w(z)) ae. in Q, (4.35)

consequently, for every v € V,, and 1 < i < N, we get

ov .
aij (z,wp, (z)) G — a;j (z,w (z)) - a.e. in Q.
Furthermore,
ov ov
i o (2) | < 21| 2°
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and

v
M € L*(Q
pr ().
Thus, by dominated convergence theorem apply to {aij (., wp,) g—;}, a;j (., w) g—; and M 887“ ,
we have
ov ov . 2 .o
a;j (., wp,) By, i (., w) 5, B L“(Q), 1<i4,j5<N. (4.36)
By summation over ¢ we get
N
Zaij (.,wpk - — ZCLU a in L2(Q>; 1 < ] < N. (437)
— T
Also, from (4.32) we have
Oup, ou . ,
——inL*(Q), 1<j<N. (4.38)
a$]‘ al‘j
Thus, from (4.37) and (4.38) we get
ou ov o ov
Pk . o7l .
oz, ZZ:aU , Wy, ) P %;aw (., w) oz, in L°(Q), 1<j<N,
by summation over j we arrive at
ou,, 0 ou 0
Z aij (x, wp,) Upe 9, Z aij (z,w) — © 9 LYQ),Yv € V,. (4.39)

Ox; Ox; Oxj Ox;

1<i,j<N 1<i,j<N

Therefore, passing to the limit in (4.39), using the fact that wu,, is the solution of (4.31) corre-

sponding to wy, , we get

then, u is the solution of (4.25) associated to w

u="T(w).
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Thus, T is continuous.

Now, we are able to use the Brouwer fixed point theorem and guarantees that 7" has a fixed

un € B (0, ”f”H1> C V.

«

point

Thus, u, is the solution of problem (4.25) corresponding to w = w,. This fact can be written

by

Oup v
Z /Qaij (, up) 876]-8331' = /va, Yv e V,.

1<i,j<N

Therefore, u, is a solution to the nonlinear problem (4.24) in V.

4.4 Nonlinear problem in H}(Q)

Now, after we solve problem (4.24) in V,,, one would like to show that, at the limit, the solution
u,, provide us with a solution to problem (4.23). For that let v € H}(Q2) and let {v,} be a

convergent sequence to v in H}(€2), then

vy, ov

in L2(Q). (4.40)

In the other hand, for any n € N*, let u,, be a solution to (4.24) in V,,, then, from (4.30)
the sequence {u,} is bounded in H}(€).
Thus, by using the compact embedding of H}(Q) in L? (Q), we can extract from {u,} a

subsequence {uy, } such that

U, — uwin HY(),

U, — uin L*(Q)

and

Up, — w a.e. in

where u is an element of H}(£2), see [3], [20] and [5].
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As we did in (4.35) we can show that

aij (x,un,) — aij (z,u) ae. in Q. (4.41)

Moreover, from (4.40) and (4.41) we get

Ov
aij (x,un,,) 8;; — a;j (z,u) - in L?(Q)
Indeed, by using Minkowski’s inequality we can show that
N ~
Ovp,, v 2 vy, ov 2
. - < . Z Nk qs -
(/Q al] (337 unk) awi al] (m, u) axi ) — /Q al] (337 unk) awi al] ($’ unk) al‘i

ov ov

1
2)2
)
X

aij (2, Un,) 5 = aij (2,u) 5—

(4

the first term in the right-hand side converges to zero because

J R

Ovn, D0

For the convergence of the second term it suffices to replace wy, by u,, in (4.36) and taking

Ovp,, ov 2

L R ) _
aiEi ”( ’ nk) a$Z

v, Ov

aij (T, Un,)

and in L? ().

into account the density of C§° () in HE(Q).
Weak-strong convergence :

From the weak convergence of u,, to u in H}(Q) we get

%1;’";’“ 5::]’ 1<j<N
Also, we have
aij (2, tny,) %v;’“ — ajj (z,u) &Z in L?(Q), 1<i<N, (4.42)
then,
<(?;“L$,aij (2, Uny) 8;;;> . <;;,aij (z,u) §;>’ 1<i,j<N. (4.43)
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Indeed,
ouy, ovy, ou ov
‘< 8%; y Qg (xa unk) aw: > <a$] Qij (37 u) 8$Z>' <
Ouny, vy v Ouny, _ Ou v

6:5,-
we just need to check that each term in the right-hand side converges to zero.

For the first term we use the fact that {u,, } is bounded in HE(Q) to get

Oune || Wfll=r
0xj |2~ «
also, we have
ouy, ovy, ov Ouy, Ovy, Ov
‘< ail?j y Aij (SC, unk) axlk — Q45 (J:) u) axl>‘ ’ 8$Jk L2 Qg (LI?, unk) a.’]ﬂ'f Qg (1‘7 ’LL) 871131 Lo
[P vy, v
< .
> o Z]( ) nk) 0, Qg (w,u) 0z, L2

so, by (4.42) we conclude that

) 0 0

The convergence of

Oupy, _ Ou aij (z u)@
8£Cj a.il,‘j7 K ’ 8.7}1

to zero results from the weak convergence of 2 "’“ to 8:17 , which completes the proof of (4.43).

By summation over i and j, (4.43) takes the form

Gun vy, au ov
Z /CLZ] T Unk axjk ax: Z /a” x, u al‘j 81‘1‘. (4.44)

1<4,5<N 1<4,j<N

Furthermore, since u,, is a solution to problem (4.24) in V;, we have

Bunk (%nk _/
Z /aU x unk 8$] 8352 = vanky

1<i,5<N

passing to the limit in the last equality, using (4.44) and the continuity of the linear form ¢ in
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H(Q), we arrive at

ou ov 1
Z /(;04] (fL‘,U) 87:1;']61;1 = /Qf’l), Yv € Ho(Q)

1<ij<N

This completes the proof that u is a solution to problem (4.24) in HZ (), consequently u is a

weak solution to the given problem (4.23).
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Chapter 5

Nonlinear problem involving

p-Laplacian operator

5.1 Introduction

In this chapter, we study a problem involving the p-Laplacian operator of the form:

—%i <a(x u) | 2% e 8”) =f inQ
izlazi ’ ox; ox; (51)
u=0 in 090
where Q is a domain in RY, N > 2, with a smooth boundary and 1 < p < co.
In [17], Lions studied a similar problem; namely,
N -2

0 ou [P7° ou

— = in . 5.2

By using the monotonicity method, he was proved that for every f € W1 (Q) and for the
boundary condition u = 0, problem (5.2) has a unique solution u € WO1 P(Q). For the boundary
condition u = gl,q,, where g € L? (99), the solution of problem (5.2) belongs to W1?().
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P-Laplacian operator:

For u € WHP(Q), the gradient Vu, is defined by

Gu_ (2w u
N 8$178$27"‘78$N

and the Euclidian norm of Vu is

ou
al‘i

1
2)2

In RY, all the norms are equivalent, thus there exists a constant C' > 0 such that |Vu\p <

1
p)?

- (%

=1

C'|Vu|, where

ou
8.%'7;

=1

For |Vu| we have

/Q|vu|p < 0/Q|vu|§
c(i i

=1

ou
81’1'

IN

p
< 0.

Thus,
|Vu| € LP(Q).
Furthermore, we have

p/

ou
p—2 Y%
/Q ‘|Vu] e

p/
< VulP~2|Vu
[ (rvu19u)
/Wu’(p—l)p’
Q

/ VP < oo.
Q

IN

IA

Consequently,
0 /
Va2 S e 1P(Q), 1<i<AN.
81’1'
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The p-Laplatian is the operator denoted by A, and defined by

Apu = div (|Vu|p72Vu>

— 4 p-2 Ou

1<i<N

this operator acts from Wol’p (Q) into W17 (Q) via
(Apu,v) = / VulP "2 Vu.Vo, VYu,v e WyP(Q).
Q

For more properties of the p-Laplacian see [11] and [12].
Description of the operator defining the main problem:

Let u € WP (Q) and define a vector Z by

g (2u] ou [ou P ou | ou P ou
N 31‘1 31‘1’ 8$2 8m2"”’ aﬂjN a:BN ’
then,
Z e (L (Q)V.
Indeed,
p—2 v (p—1)p
/ ou ou _ / ou L 1<i<N
ou |P

-

ox;

Problem (5.1) takes the form

—div(a(z,u)Z)=f inQ
u =0 in 09 ‘

Let V be a real Banach space of finite-dimensional with basis {e1, ez, ...,en} and let (.,.) be
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the bilinear form defined on V' by

(6777) = Zgznza Véﬂ? € Vva
=1

m m
where £ = > &,e; and n = > n;,e;, clearly,
i=1 i=1

(&) =) &=
=1

Lemma 1:
Let P:V — V be a continuous mapping and suppose that there exists a constant p > 0

such that
(P(£),€) >0, Y€V, [{]=p. (5.3)

Then, there exists £ € V, || < p such that
P(E) =0,

Proof :
Let K = {¢,|¢| < p} C V and suppose that

P(§) #0, V{eK,

then, the function defined from K into itself by

P)p

G

is continuous.

By using Brouwer fixed point theorem, there exists £ € K such that
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Therefore, || = p and
(P(£),8) = —p|P (&) <0;

which is a contradiction with (5.3). See also [17].
Definitions :
Let V' be a Banach space and let A:V — V' be an operator.
We say that

1) A is monotone if and only if
(A(u) — A(w),u—v) >0, YuveV
2) A is hemicontinuous if, for all u, v, w in V, the real-valued function defined on IR by
A— (A(u+ ), w),

is continuous.

Note that (.,.) is the duality pairing.

Theorem 1 :

Let V' be a finite-dimensional Banach space and let A : V' — V' be an operator satisfying
the following proprieties

A is hemicontinuous and

(A(u),u)

— o0 as |ull, — oo.
[lly v

Then,
VfeV' JueV such that A(u) = f.

u is a weak solution.
Proof :
Let P be the mapping in V' defined by

P(U):Z<A(U)—f,€i>€i,

=1
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m
where {ej, e, ...,en} is a basis for V. For u= ) &e; € V, we have
i=1

(6158255 €m) — ((A(u) = frer) , (A(u) = frez), ., (A(u) = frem)) -

We will show that P satisfies the property of Lemma 1. Thanks to the hemicontinuity of A,
all the functions

fi_><A(§iei+vi),ej>_<f7€j>, 1§17.]§m

are continuous, where

m
vy = Z §xCh-

k=1,k£i
Thus, P is continuous.
Furthermore,
m m
(P (u),u) = Z(A(U%@Dfi - Z<f76i>§i
i=1 i=1
= (A(u),u) = (f,u).

Since % — 00, as ||ul|;, — oo, then, Va > 0 there exists p > 0 such that

(A(u),u)

Z «, VU € V7 ||U’HV Z P,
[[ully

hence,

(Aw),u) 2 allully, YueV, |uly =p.

Let a be chosen such that a > || ||, then, there exists p > 0, such that
(Au),uw) —alluly 20, VueV, |ully, > p,

which implies that

(A(u),u) = fllyr lully = 0, for ully, = p.
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By virtue of the inequality (f,u) < f|ly ||u|l,/, we establish that

(Au),u) = {f;u) = (A (u),w) = |[flly: [ully = 0, for allw € V, Jully, = p.

So, by using Lemma 1, there exists u € V' solution to the problem

Au) = f.

5.2 The main Problem

Consider the problem

—%i (a(x u) | 2 e 8“) =f inQ
u=0 in 09
where a (.,.) is a function satisfying the following properties
1) a(.,.) is Carathéodory.
2) There exists two constants « and M such that
0<a<a(zr,u) <M, forae z€Q, Yucl.
Let w € Wol’p (©) be fixed and change problem (5.1) to
—szji (a(:z: w) ou P72 8“) =f inQ
izlaxi ’ ox; ox; ) (55)

=0 1in 0N

It is a linearization to problem (5.4).

Define an operator A; from Wol’p (Q) into W17 (Q) by

N 2

Z 0 du [P7° du
Al (u) - 81’1 (a ($7 w) 8371 8%)

=1

Theorem 2 : The operator A; is
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1) bounded and hemicontinuous.
2) monotone.

3) coercive, i.e.
(Ar (u),u)

— o00,as |ull,, — oo.
[y ’ v

Moreover, for each f € W= (Q), Ju € Wol’p (©2) such that

Also, if

then, u is unique.

Proof :

Let V = Wy?(Q), with a dual V! = W= (Q). V and V' are reflexive and separable
Banach spaces. Wol’p (©) has a basis {ej, e, ..., €m, ... }.

Let V;,, be the finite-dimensional subspace of V' generated by {ey, ea, ..., e, }; that is,
Vin = span le1, €2, ..., em],

then, for u,, € V;;,, we have
m
i=1

1) Boundedness :
Let S = {u € Wol’p (Q), Jul < C}. To prove that A; is bounded, it suffices to prove that
{A; (u),u € S} is bounded in W1 ().
Indeed,
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for the right-hand side, we have

(A1 (u) , 0]

<
By Holder’s inequality, we get
(A1 (u),0)] <
<
<

Since 2 is bounded [, |[Vu|” defines an equivalent norm in I/VO1 ’

(A1 (u),

Also, for u € S, we have

(A1 (u),

Then,

sup

ou
ox;

D

i=1

N

(e

[
!

P=2 9y

89{:1-

) vdx

i o (. up_28ué7va7
i—1 ’ 8:61 81‘1 8:61
N
M;/ Ox; 6:1:Z dz,
1 1
Mi / ou (—1p" \ ¥ / v |P P
X 8$i 8.7}7;
=1 \"q Q
1 1
N p’ P
ou P ov |?
M
Z (/ Ox; ) (/ 0x; da:)
=1 \'q Q

b
MN |[Vul[gp [[Vol s -

V)| < NMCV o]y, .

V€V Jolly =1

Thus, A; is bounded.
2) Hemicontinuity :

Set g (t) = (A1 (u+tvr),

o) = [ ate

vg), then,

P(Q); then, (5.6) becomes

P
/
v)| < MN Jlully; o]y -

(A1 (u) )] < NMCV = C".
ou o [P72 [ du Ovy\ Ovy
w> ‘ c‘)a:i am‘i <8xl +t 8&% c‘)a:,- '

82
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To prove that A; is hemicontinuous, we suppose that {¢,} is a convergent sequence to tg
in IR and show that

g (tn) — g(to)-

For this, let h,, and hg be defined by

d o [P (8 dvr\ 9

hn(z) = a(z,w) afg—i-tn% (£;+tn8;1~> 81::’ n € N*,
ou vt |P2 [ du Ovr\ Ov

ho(z) = a(”C’w)’amHOaxl- (5‘m+t08xl‘) (93:2-

and prove that h, converges to hg in L' (Q).
Recall that the convergence of the sequence {t, }, implies that there exists a positive constant
B such that
ltn] < B, Vn e N*.

Using this fact and that a (z,w) is bounded by M, we get

ou ov ||P -1 Ovoy
hn <M B , 5.7
since g—; and % are in LP (), then,
ou ov1
B LP(Q
83:,- + 81‘1 < ( )’
consequently, .
ou ovy ||~ ,
B LP (Q
‘ 6:@ 81‘2 < ( ),
also, gix?i € LP (Q), therefore,
8u 81)1 p-1 8112 1
L (). 5.8

In the other hand, let ¢ be defined by



where p = 6% and n = gixli.

Thanks to the continuity of ¢, for p > 1, we get, for fixed x in §2,

¢ (tn) — ¢(to),

then, for every x € €2, we have

hy () — ho(z).

From (5.7), (5.8) and (5.9) we assert that {h,}, ho and M‘ +B

hypotheses of the dominated convergence theorem in L' ().
Thus, hn, ho € L' (Q) and
hy — ho in LY(),

consequently,

g (tn) — g(to)-

Therefore, Ay is hemicontinuous.
3) Monotonicity :
Let’s first prove a lemma, which we need later.

Lemma 2 : Let a, b be two real numbers and let ¢ > —1, then
(la|”a — |b|*b) (a —b) >0, Va,be R.

Moreover,

(la]?a — |b|*b) (a — b) = 0 if and only if a = b.

Proof :

v
ox;

o,
ox;

(5.9)

fulfil the

1) Suppose that b # 0 and |a| > |b]. Divide (Ja|?a — [b|?b) (a — b) by [b|?b? and set & = ¢,

we get

(lal*a —[b]7b) (@ = b) = (|z[*z — 1) (z — 1),

where |z| > 1.
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If z > 1, then, since ¢+ 1 > 0,

2|72 =297 > 1

and we easily get the result.
If x < —1, then

|z|7z < 0,

SO

(Jz|*z —1) <0 and (z—1)<0,

hence,

(|z|*z = 1) (x — 1) > 0.

If |b] > |a|, we take x = 2 and repeat the same proof.
2) Suppose that
(lz*2 = 1) (- 1) =0,

then,

|z|z—1=0o0rx—1=0.

If x > 0, then |z|?2 — 1 = 0 implies that

2t = 1.

If x <0, then |z|?2 < 0 and

Therefore,

Monotonicity:

To prove that

P=2 9y
8:1:Z-

ou
8&%

ov
81‘@

(Al(u)—Al(v),u—U>—Z/a(a:,w)(
Q

=1

P=2 9y du  Ov
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is nonnegative, it suffices to use the above lemma with ¢ = p— 2, a = 2% and b = % to get

Oz

P=2 ou  Ov
_ >0,

then, using the fact that a (z,w) > «, we arrive at

that
P=2 oy,
(9:1%

ou
8:@

ov
8951-

P2 9y

8:1%

ou
8$i

ov
8l‘i

N
<A1(u)—A1(v),u—v)2aZ/<
1=1"0

This completes the proof of the monotonicity of Aj.

4) Coercivity :

N -2
0 ou |P7° du
(A1 (u),u) = —Z;/axi (a(w,w) 9%, 8xi>Ud$
=
S
- - ’ (9.%'1 8:(}1 8.%'1
1=1"q
N P
= Z/a(x,w) g;:i dx
i=1"q
N
ou |P
> a Z/‘am do | = o lull?,,
i=1"q
which gives
Ay (u),u _
B 5 g

lully,,

Therefore
A
M—M)O as [lully, — oo, if p>1.
[Jwlly "

5.3 The approximate problem in I/VO1 7(Q)

P72 By ou ov
— > 0.

(5.10)

Let {e1,e2,...,em, ...} be a basis for Wol’p(Q), and let V,,, = span [e1, ea, ..., ], equipped with

the norm induced by the W,” () norm.

In V,,, which is of finite-dimension, the hemicontinuity and the coercivity properties are
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enough to assert the existence of a weak solution wu,, to the problem
Aq (u) = f.
Notice that for this solution we have
(A1 (um),ej) = (f,ej) forall j, 1<j<m,
furthermore, from (5.10) we have
(A1 (um) , um) > @ HumHI\)/ .

On the other hand,

(A1 (um) yum) = (fyum)

[ f vl ly

IA

then,

allumlly < 11 £llv/ llumlly

1
£l \ 7
mmws(;% -

Thus, the sequence {u,,} is bounded in V', consequently, by using the boundedness of A;, the

hence

sequence {A;1 (u,)} is bounded in V.

Since V and V / are reflexive spaces, we can extract a subsequence {u,, } such that

Um, —u inV and Aj (up,) =1 in V', (5.11)

Passing to the limit in the equality

(Al (umk) 76j> = <fa ej)
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we get

hence,

On the other hand, we are not able to pass to the limit in the left-hand side of the equality

(Al (umk) 7umk> = <f7 umk> )

however, using the weak convergence of {uy,, }, we can pass to the limit in the right-hand side,

hence

<A1 (umk) 7umk> = <fa Umk> - <f7 u> . (5'12)

Now, using the monotonicity, we have

lim {<A1 (umk) 7umk> - <A1 (umk) ,1)) - <A1 (U) 7umk> + <A1 (U) 7U>} >0

k—o0
and using (5.11) and (5.12) we obtain

(f—A1(v),u—v) >0 foralveW

Let v =u+ Az, where A > 0 and z € V. Using the hemicontinuity of A; and passing to the

limit A — 0, in the inequality

{(fru=v) = (A1 (v),u—0)

we get,

<f7 Z> > <A1 (u) )Z> : (513)

Changing z by —z in the last inequality, we obtain

(A1 (u),z) < (f,z). (5.14)
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From (5.13) and (5.14) we get
(A1 (u),2) = (f,2).

Thus, u is a solution to problem (5.5).
5) Uniqueness :

For u,v € V we have seen that

(A1 (u) = Ay (v) ,u —v)

= P Qa T, w 8.’131 8.%'1 axz 8331 axZ 8.’13Z
N L .
au p 8u 61) P av au 81)
> . B o |

Suppose that u and v are two solution to problem (5.5), then
(A1 (u),2) = (f,2) = (A1 (v),2), Vz€V,

consequently,

(A1 (u) — A1 (v),u—v) =0. (5.16)

By using (5.15) and (5.16), we arrive at

P=2 9y ou  Ov
— = <1<
( 8$Z> <8:c, 8@) 0, l<is<h,

then, by lemma 2, we have
0 0
Y% 1<i<N,

o0x; - 8.21?@" -

P=2 9y
8.%’1‘

ou
aa:i

ov
895,-

hence,

u—v=ce WP,

which implies that
u=wv in LP(Q).
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Therefore,

u = v a.e. in €.

5.4 The main problem in W, (Q)

Note that the solution u to problem (5.5) is bounded

_1
full < ()™ — ¢y

(07

Let T' be the function defined on V' by

T (w) = u,

where, u is the solution to problem (5.5) corresponding to w.
Let w be chosen such that

lwlly < Ci,

then, by vertue of Brouwer fixed point theorem, the mapping

T:B(0,Cy) — B(0,Ch)

has a fixed point, provided we can show its continuity.

Let {wy} be a convergent sequence to w in V and let {ug} be the sequence of solutions

associated to {wy}; i.e.

U — T(wk),

{ux} is bounded in V, which is reflexive space , then we can extract a subsequence still

denoted {ug} and there exists u € V' such that

up — win V.
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The subsequence {wy} converges strongly to w in VVO1 P(Q), hence wy — w in LP(Q), so we can
extract again a subsequence {wy, } such that, wy, () — w (z) almost everywhere in 2.

Using the proprieties of a (.,.) we can prove; as we showed in problem 1; that
a(z,wy,) — a(z,w) ae. in

then, for v, € Wy*(Q), we get

( ) 8?)1 p=2 8?)1 ( ) 61)1 6@1 Q.
a(x,wy,) | =— —a(r,w a.e .in
PR O 0x; ’ 0x; 0x;
Furthermore,
(‘91}1 p=2 avl 82}1 p-1 87)1 p=1 /
— <M d € LP (Q).
@ (x’ wkl) 8@- 6@ - axi an 8xi ( )
vy p—2 ovy 81;1 v -1
Thus, the sequence ¢ a (z,wy,) |52 0w (0 alz,w) |5 o fulfil the
hypotheses of the dominated convergence theorem, consequently,
Ay P72 vy vy P72 Oy ,
— LP (Q
a(z,wy,) oz, 9z, —a(z,w) o2, o2, in LP ()
Therefore, for v € WO1 P(Q), we get
vy P72 Oy v ovy P2 ovy Ov . 1
— L (Q
@ (:E’ wkl) 8951 8.%'1 ém - (:L" w) 6:31 8:31 0.%'1 - ( ),
which we can write as
N N 2
vy P72 vy O / Ovy [P7° Ovy Ov
d 5.17
Z/ . wkl awz c‘):c,- 8$i v ; @ (:L', w) 8:1:1- 8xi 8a;z~ v ( )
- Q

If we define an operator Ag by
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(5.17) shows that
(A, (v1),0) — (A} (v1),0). Yo € WyP(Q). (5.18)

Also, because uy, is a solution to

Ak(u):fv

we have

(A (ug,) ,v) = (f,v), Yo € WyP(Q). (5.19)

Moreover, using the weak convergence of {u,} to u, we obtain

(A (up,) s ury) = (fyu) — (fru) - (5.20)
Recall that
v [P~ dv v [P72 /
el in LP
a(z,wy,) oz, oz, —a(z,w) oz, oz, strongly in L* ()
and

8ukl N au . P
oz, Z weakly in LP(Q),

then, using the weak-strong convergence as we did in problem 1, we get

N

TRORTSED DY RICX™S
=1 Q

P=2 gy Ouy,

o
Gxi

dx — (Ay (v),u). (5.21)

By using (5.18)-(5.21) and

<Ak (ukl) — Ag (U) y Uky — U) = <Ak (ukl) ’ukl> - <Ak (ukz) 7U> - <Ak? (U> 7ukz> + <Ak (U) ,U) >0

and passing to the limit we get

(fyu) = (f,0) = (A1 (v) ,w) + (A1 (v) ,0) = 0,

therefore,

Vv

(A1 (v) ,v —u) (fyv—u).
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Replacing v in the last inequality by u + Az, for z € Wol P(Q), X > 0 and repeating the same
steps as in (5.13), (5.14), we obtain

(A1 (u),v) = (f,v), Yo € Wy™"(Q).
Thus, u is the weak solution to (5.5) associated to w
w="T(w),

which shows that 7' is continuous.

Finally, by using the Brouwer fixed point theorem for T', there exists u € B (0, Cy) such that

u="T(u).
That is v 2
ou |’ Ou Ov .
;/ﬂa(:p,u) ox; ox; axid:”_/gf“’ Vo € Wy (€2).

Therefore, u is a weak solution to problem (5.4).

93



Chapter 6

Second problem involving

p-Laplacian operator

6.1 Introduction

In this chapter, we consider the problem

N b2
_Zaii(“(%u) % gZZ)—l—b(:n)u:f in Q
i=1

u=0 in 00

where € is a domain in R" with a smooth boundary.

Let A be the operator defined from Wol’p (Q) into WL (Q) by

p—2
Ou Ou ) +b(x)u.

O

)
Au) =—
w=-37; ( (&) -
Remark : Recall that a function u € VVO1 P (Q) satisfying, for a given f € W17 (Q),

<A(u),v> = <f7 U) , YvE W[)Lp(Q)v

is called a weak solution to problem (6.1).

We state some theorems which serve us later.
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Theorem 1: (Existence)
Let V be a finite-dimensional Banach space and let A : V' — V' be an operator satisfying
the following proprieties

1) A is hemicontinuous.
(Aw),u)
2) “Tully

Then

— 00 as |lully, — oo.

VfeV', JueV suchthat A(u) = f.

Theorem 2:(Rillich Kondrachov)

Let Q be an open bounded subset of RY with a C' boundary. Suppose that 1 < p < N

_ Np
and let p* = Nep

Then, for each 1 < g < p* the embedding
WP (Q) c L9 (Q)

is compact. Moreover we have the estimate

[ull Lagq) < B llullwre) - (6.2)

for some 8 depending only on p and N.
Also, by using (6.2) and the equivalence between the norms Hu||W1,p(Q) = [IVul[p(q) and
0

[ull ey in Wol’p (Q) we get, for u € Wol’p(Q),

HUHLq(Q) <p HVUHLP(Q) ) (6.3)

where 3’ is a positive constant depending only on p, N and €.

6.2 An approximate problem

For a fixed w € Wol’p (), let A; be the operator defined by

P=2 oy

ou
8@-) +b(z)u (6.4)
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Properties of A; in W, (Q):

Suppose that a (.,.) € L (Q x R) and b € L™ ().

Furthermore, suppose that a is Charathéodory and there exist two constants o and M such
that

0<a<a(x,u) <M, for almost every z € Q, Vu e R

and

0<a<b(zr) <M, for almost every x € Q.

Proposition 3:

Let V = Wol’p (Q) and Ay : V — V' be the operator defined by (6.4), then for p satisfying

22+NN <p<N, N>3
a) The operator A; is
1) bounded and hemicontinuous.
2) monotone.
3) coercive; i.e.
G ORY) — 00, as |jully, — oo.
[lly

b) for each f € W1 (Q), Ju € Wol’p (©) such that

Ar(u) = f. (6.5)

Proof: 1) Boundedness :
Set S = {u e WyP(Q), Huuwolp < C}, then A (S) = {A;(u), u € S} is bounded in W~1#" (Q).
Indeed,
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for every v in W, (Q), we have

duf?
ox;

ol = |-% [ 4 (a(a:,uo
T Q

ou
ox;

MZ/ ou |P7t
i=1

8:@
Q

2 du
vdac—i—/b(a:) uvdx
&ri (9]

p—2
Ou Ov /b(w) uvdx
Q

ox; 0x;
Ov dx + M/ luv| dz. (6.6)
81‘1‘ 0

—dx| +

AN
=
—

e

®

£

IN

In order to be able to use Holder’s inequality in each integral in the last inequality, we need to

choose v and v in Wol’p () N L2 (). So it suffices to choose p such that
WP (Q) = L2(Q).

From Theorem 2, p must satisfies the inequalities

1 < p<N,
N
Pt = P>
N-—p
therefore,
1 1 1
———
p N — 2
then,
2N
— < N.
TN =PS

Now, we are able to use Holder’s inequality for (6.6) to get

(P Dp av

(A1 (u) , v)| + Ml p20) [0l L2y

IN

MZ/

Ox;

1 p
l

(/ |w|1’) Vol |+ Mz ol
Q

IN
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which we can also write
L/
(A1 (w) ,0)| < MN [|Vull 7,0 IVl oy + M [[ull 20 0]l L2 () -
Since u € S then ||Vu||Lp(Q) < C, consequently, we get from (6.3) and (6.7)

2 2
(A () 0] < MNCT [Vol| ooy + M (8)* C | Voll ooy

(A1 (), 0)]

IN

d ”UHWOLP(Q)a

where § = Mmax{NCﬁ, (5')20}, S0,

[A1 (Wly = sup  [(A1(u),v)| <.
veV,||v]|=1

Therefore, A; is bounded.

2) Hemicontinuity:

Set g (t) = (A1 (u+ tv1),v2); that is
ou 8’[)1

t
a$i + 8:6,

p—2 < 8u avl) 81)2

8$i +t8£lli axZ —i—/gb(x) (u+tv1)v2.

N
g0 =3 [ o)

Suppose that {t,} is a convergent sequence to to in IR. We will show that

g (tn) — g (to) -

Let (hy), (kyn), ho and ko be defined by

B ou (z) vy (z)|P2 [ Ou (z) ovy (x) Ove () .
hn(x) = a(z,w) oz, +ty oz, oz, +tn oz, 0z, forn e N
B ou (z) vy (z) P2 [ Ou (z) ovy (x) Ove ()
hO (:L”) - ¢ (SC, w) 83:1 + tO 89:1 &vl + to (9.%1 8:1:1
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and

kn(x) = b(z)(u(z)+tyv (x))ve (z), for n € N*

ko(z) = b(x)(u(z)+ tovy () ve (x).
We have already proved in Theorem 2 of the previous chapter, that
By — ho in LY(€). (6.8)

Let us prove that
kyp — ko in L1(Q).

Set ¢ (t) = b(z) (u(x) + tpv1 (x)) v2 (z) for fixed z in Q, clearly ¢ is continuous, consequently,
kn (x) — ko (z) every where in €.
Also, since {t,,} is a convergent sequence, there exists a constant B > 0 such that
ltn| < B, Vn € N¥,

then, by using the boundedness of b and t,, we get

JACICIEE

IN

M/ (Ju| + B [or]) |va] da
Q

A

M{[ful + B o]l g2a) [v2ll 2@y < o0,

therefore,

kneLl(Q), Vn € N*

and there exists a function

k= M (Ju| + Bluvy|) Jv2| € L ()
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such that

|kn ()] < k(x) a.e. in Q.

Thus, the sequence {k, (z)}, ko () and k (z) satisfy the hypotheses of the dominated conver-

gence theorem, hence

ko € L' (Q) and k, — ko in L1(Q). (6.9)

From (6.8) and (6.9) we conclude that

which means that

B 4 kn — ho + ko in L (Q)

g (tn) — g(to),

therefore, Ay is hemicontinuous.

3) Monotonicity :
We have

(A1 (u) = Ay (v) ,u = v)

p=2 ou
ox;

Ou
ox;

v
ox;

since <

Y

p—2

al /a(sc w)( ou P72 du | ov P2 81}) (811, B (%)dm
=14, ’ Oz; Ox; |0z, 0x; Ox;  Ox;
+ [ b(z) (u—v)?
Q
ia/< ou P72 du | ov P2 81}) <8u B 8v>dx
= Oz; Ox; |0z Ox; Ox; Ox;

—l—oz/ lu —v|? d,

Q

gﬁ) (% — %) > 0, as we have proved in Lemma 1 of the

previous chapter, a > 0 and |lu — 'UH%2(Q) > 0, then

Therefore, Ay is monotone.

(A1 (u) — Ay (v) ,u—v) > 0.
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4) Coercivity :

By using the properties of a (.,.) and b, we easily show that

) = Y [atew |2

\
Q

2
> (Il + ol
S (010
which gives
A
M — OO as ”'LLHWI,p — +OO7 lfp > ]'
Tl °

Therefore, A; is coercive.

6.3 The approximate problem in finite-dimensional space

Let {e1,e2,...,€m, ...} be a basis for Wol’p (Q) and let V;,, = span [e1, ez, ..., en], SO,
m
U = Zfiei, Yum € V.
i=1

We equip V;,, with the norm induced by I/VO1 ?(Q) norm.
By using Theorem 1 for V;,, which is of finite-dimension, the problem A; (u) = f has a
weak solution u,.

This solution satisfies
(A1 (um) ,e5) = (f,ej) forall j, 1 <j<m.

Also, from (6.10) we have

(At (um) , tm) 2 allumlly 1, -
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On the other hand, we have
<A1 (um> ?um> = <fa um> )

consequently,

ol < (Futm)

< v e

Thus,

IN

1f - 71
<Vg> : (6.11)

therefore, the sequence {u,,} is bounded in T/VO1 P(Q1). As a consequence of the boundedness

property of Ay, {A; (um,)} is bounded in W17 (Q).

il

1 —1p :
Because W,"? and W Lp" are reflexive spaces, we can extract a subsequence {tum, } from

{um}, such that
Uy, — w in WoP(Q) and Aj (up,) — 1 in WH'(Q), (6.12)
thus, using the weak convergence of {up, } and {A; (um, )}, we arrive at
(A1 (V) Um,) — (A1 (), u), Yo € WP (Q)

and

(A1 () ,v) — (L),  Yoe WP (Q). (6.13)

Recall that u,,, is a weak solution to problem (6.5), then

(A1 (umy ) s e5) = (f,€5) -

Replacing v by e; in (6.13) and passing to the limit in the last equality, we arrive at

(Lej) = (f,ej), Vi=>1,
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which implies that
f=1L (6.14)

Also, using the weak convergence of {u,,, }, the right-hand side in the equality

(A1 (umk) 7umk> =(f, umk)

converges to (f,u), so

<A1 (umk) 7umk> = <f7 umk> - <f7 u> : (615)
Thus, we are able to pass to the limit in each term in the inequality
(A1 (Umy) s umy) = (A1 (um,,) ,0) = (A1 (V) , Umy,) + (A1 (v),0) 20,

which; by using (6.12), (6.14) and (6.15); gives

(fyu) = {f;0) = (A1 (v),u) + (A1 (v) ,0) = 0.

Thus,
<f - Al (U) P U> Z Oa Vv € W()l’p(Q)v

therefore,

(fru—2v) > (A (v),u—v), YoeW,?(Q). (6.16)

Let A > 0 and take v = u 4+ Az in (6.16) we get
(f,2) > (A1 (u+A2),2), VzeWyP(Q).

Passing to the limit for A — 0 in the last inequality and using the hemicontinuity of A;, we
arrive at

(f,2) > (A1 (u),2), Yze WyP(Q), (6.17)
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changing z by —z in (6.17) we obtain

(f,2) < (A1 (u),2), YzeWyP(Q). (6.18)
From (6.17) and (6.18) we get

(fi2) = (A1 (u),2), VzeWP(Q),

which means that

6.4 The problem in IV, (Q)

Let T' be the function T : w — u, where u is the weak solution of problem (6.5) associated to
w.

From (6.11) we can assert that the solution u is bounded,

1

||fHW*1vP p-t
< (Wlw=te — .
lullyyar < < o C1

If we choose w such that |lwl|;;1» < C1, then the mapping
0
T:B(0,C1) — B(0,CY)

is continuous.
To prove the continuity of T, we consider a convergent sequence {wy} to w in Wy (Q) and
prove that
T (w) — T'(w).

For that let {uy} be the sequence of weak solutions to (6.5) associated to {wy}, i.e.
N

;/a(%wk)

Q

p=2 Oup, Ov

0Uk _ 1,p
0z; Ot +/b(az) URY = /fv, Yo e Wy (2) (6.19)
Q Q

81‘1
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and define an operator A by

0 ou 0
() == ( (o, w) | o a;‘,) Fo@)u ),
i=1 7 7 7
then, (6.19) takes the form
<Ak (uk) 7U> = <f7 ’U> , WYwe W(]LP(Q) (620)

Recall that {ug} is bounded in T/VO1 P (Q), which is a reflexive space, then we can extract a

subsequence still denoted {uy} and there exists u € VVO1 P (Q) such that
up — u in Wol’p(Q).
By using the compact embedding of I/VO1 P(Q) in L2 (Q), we get
up — u in L*(9).

In the previous chapter we showed that for every v,v; € VVO1 P (Q) we have

N —2

o P72 dv v P~ 9v Ow
Z a(z,wy) | 5— B 8x1d — Z/ T, w) 8x 2. axl.dx
Z:1 Q T A (3 KA 1

Therefore, since v, v, € Wol’p () € L?(Q) and |bvvy| < M |vvy|, the integral/ b(x)v(z)v (z)dx
Q

makes sense and

N -2
ov |7 ov Ovy
Z/a(x W) P oz, azidaz—}-/b(:c)v(:z:) vy (x) dx
=1"g Q
converges to

N p—2

z;/a(x,w) ngl 3;)2 (32 dx-i—/b(x)v(:c) v1 (z) dz
=t a Q

which means that

(A (v),v1) — (A1 (v),v1), Yo, € Wol’p(Q),
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in particular, for v1 = v we have

(Ap (V) ,0) — (A1 (v),0), Yo e WiP(Q).

Moreover, using (6.20) and the weak convergence of {ug} to u in I/VO1 P (Q) we obtain

(Ag (ur) ug) = (f,ur) — (f,u) .

We have already seen that

p=2 v /
strongly in L¥ (2)
T

P2 9y

ov
ox;

a(x,w)

and
ZZI: — g{z weakly in LP(Q),

then, using the weak-strong convergence as we have used in problem 1, we get

P=2 90 uy, N
o1, axidxﬁzl/a(x,w)
=10

P2 9 Ou

ov

83:Z-

T

ov
axi

N
;éa(l‘,wk)

Moreover, for v € L? (), we have |bv| < M |v], then

b € L*(Q),

since uj, — u in L? (), then
upbv — ubv in LY(Q),

which yields
/b () ug (x) v (x) de — /b () u(x)v(x)de.
Q

Q

From (6.23) and (6.24) we get

(Ar (v) u) — (A1 (v) ,u).
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By using (6.22), (6.20), (6.25) and (6.21), we are able to pass to the limit in each term in the

inequality
(Ag (ug) — Ak (v) s u — v) = (Ag (ug) yug) — (Ak (ur) ,v) = (Ag (V) ug) + (A (v) ,v) >0,

to get
(fyu) = (f;0) = (A1 (v),u) + (A1 (v) ,0) = 0.

Therefore,

(A1 (v),v—u) > (f,v—u).

Replacing v by u+ Az for A > 0 and repeating the same work as in (6.17) and (6.18), we obtain
(A1 (w),2) = (f,2), VzeW;"(Q).

Thus, u is the weak solution to the problem

therefore,

which completes the proof that 7" is continuous.
Since T is continuous from B (0, C}) into itself, the Brouwer fixed point theorem guarantees

the existence of u € B (0,C1) such that
u="T(u).

Thus, problem (6.5) corresponding to w = u, takes the form

P=2 9y Ov

ou _ 1,p
oz, axi—k/ﬂb(x)uv—/ﬂfv, Yo € Wyt(2),

aﬂS‘i

iil/ﬂa@,u)
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which implies that
Au) = f.

Therefore, problem (6.1) has u as a weak solution.
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Chapter 7
Maximum principle

7.1 Introduction

The maximum principle asserts that solutions of certain elliptic equations of second order cannot
have a maximum or a minimum in the interior of the domain of definition [19]. The basic idea
is quite simple, if a solution u, to an elliptic equation, has a maximum at a point x and the

second derivatives of v do not all vanish at x, then the matrix <af_25; ) must be negative
1O j

definite at x, in contradiction to the equation.

However, maximum principle can be used to show that solution to certain equations must
be nonnegative. This is important for quantities which have physical interpretation as densities
and concentrations [21].

The aim of this chapter is to formulate a maximum principle for solutions of nonlinear

elliptic equations of the form

N -2
0 ou |7 du
_ — in Q Nl
and N )
0 ou [P7° ou
- oupt o ou —f mQ.
;8@ (a (z,u) oz, 89,3) +b(z)u=f in

We start with a proposition which serves us later.
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Proposition 1: Let  be an open set of R and 1 < p < co. Suppose that h € Wol’p (Q)
and VA =0 in (Q, then

h=01in Q.

Proof :

We extend h to RY by

~ o [h(z)inQ
h(x)_{Oin]RN/Q

then,
he W (RY) and Vh = Vh,

see [5].
Under the assumption made on Vh, we have Vh = 0, consequently % is constant in R™ 5],

since h € LP(RY), then

=2
Il
]

7.2 Maximum principle for solutions to p-Laplacian problem

Now, we derive a maximum principle for the problem

> (e "8 ) =1 ma
=25 \al(z,u) |5 o | — m
=19 O] O (7.2)
U =9
where a (.,.) is in L (©Q x IR) and satisfies the property
Ja > 0 and 8 > 0, such that a < a(z,u) < for a.e. z € Q, and u € R,

the weak form of (7.2) is

N —2

ou [P7° Ou Ov 1p
;/ﬂa (z;u) pr oz, Oxid$ = /vadx, Yo e Wy*(Q). (7.3)
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Theorem 2: Assume that u € WP (Q) N C (Q) is a solution to (7.2) and f, g are such that

f < 0a.e. in Q,

u = ¢g<0 a.e. in 0,

then,

Proof :
Let G be a C! (R) function satisfying the following properties
1) G is strictly increasing in (0; 400),
2) G(s) =0 for s <0,
3) there exists M > 0, such that |G’ (s)| < M, Vs € (0;+00).

Under the assumptions made in G, we have
G (u) € WyP().

Indeed,

A
Q
o™
£

IN
=
=

then, we get

G (u) € LP(Q2).

Also,
oG (u) ou
8:@ =G (u) al‘i’

by using the third property of G, we have

<M

dG (u)
8.%'
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Since g—; € LP (), we conclude that
VG e (LP ()N .
By using the fact that v € C' (Q) and G € C* (R) we get
G (u) € WHP (Q) N C(Q).
Furthermore, since g < 0, we have u (z) < 0 for z € 91, then
G(u(z)) =0, VaedQ,
since 2 is bounded, we have
G (u) € Wy™(9).

By choosing v = G (u) in (7.3), we arrive at

ou
8:1:i

pG' (u)dx = /QfG (u) dz,

gfﬂm;w

P
using the property of a (.,.) and the signs of 38—;‘2_ and G’ (u) we get

ou
8581'

pG/(u)de/QfG(u)d:E,

> [

therefore, since f < 0, a and G are positives, we conclude that

/ Vulph G' (u) dz <0,
Q

N
where ||, is the p-Euclidian norm in IRY defined by lzlp = > |zal”.
i=1
Define H by
s 1
H(s) = / (G' () dt,
0
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then

HeC'(R).

1

By using the fact that H' (s) = (G’ (s))?, we easily get

H(s)=0, Vs<O0,
and

H(s) >0, Vs>0.
On the other hand, we have

H (u)] < M7 [ul
and
OH (u) 0 RSN ou y
= g () (€0 a) g = @ w)

consequently,

OH (u) 1] 0u

<M
‘ o0x; - ' ox;

From (7.6) and (7.8) we conclude that

H(u) e WhP(Q)NC (Q).

Furthermore, u () < 0 in 92, which implies that

H (u) =

Thus,

0,

YV € 0.

H (u) € WP(Q).

Moreover, from (7.7) we have

VH (u) = (G (u))% Vu,

hence, using the fact that G’ (u) > 0, we get
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IVH (u)[) = G’ (u) [Vulp,

then (7.4) becomes
/ IVH (u)[; dz < 0.
Q

Since |[VH (u)|} is nonnegative the last inequality isn’t true unless that |[VH (u)[}) = 0.

By using the result of Proposition 1 for H we get
H(u) =0, Vzxe,
then, using (7.5) the last equality implies that
u(z) <0in .
Corollary 3: Suppose that € is bounded, and the solution u to problem (7.2) is such that
ue WhH (Q)nC(Q).

If
f <0 a.e. in Q,

then

u(z) < sup g(a).
€00

Proof: Let K = sup g (), then w = u— K € WP (Q) (because  is bounded) and % = gg,
e i i
which implies that w satisfies the equation

P=2 w v

ow
ox;

Zi:\;/ga(an;w—i—K)

mz/ﬂm,WGMWm. (7.9)
Q
If we set b (z,w) = a(x;w+ K), then

b(z,w) > a, for a.e. x € Q, and w € R;
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consequently the equation (7.9) becomes

v ow v

dz = / fudz Vv e WyP(Q).
Q

N
ow
b(z;w
> [ ) o

The last equation has the same form and the same assumptions as (7.3), therefore, by using

the result of Theorem 2 we conclude that the solution w verifies

which means that

Remarks :

1- Notice that if Q is of C'-boundary, or u € WO1 P (Q), then it is not necessary to suppose

that u € C(Q2), because there is a possibility to assigning a boundary values along 02 to a
function u € WHP(Q).

2- If we change the assumptions made on the signs of f and g by
f>0in Q and g > 0 on 012,

then we get

7.3 A maximum principle for second p-Laplacian problem
In this section we derive a maximum principle for the following problem

—2
ou P

ox;

—ﬁ&@@@

Ou = in Q
8“) Th@u=1 (7.10)

Uon — 9

where Q is bounded domain of RY, a(.,.) is Charathéodory and there exist two constant a

and [ such that
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0<a<a(x,u),b(x) <p, for almost every z € 2, Vu € RR.

The weak form of problem (7.10) is

P2 9u v

ou B »
agciaxi—i-/ﬂb(x)uv—/ﬂfv, Yo e Wyt (Q). (7.11)

ox;

zﬁ;/ﬂa(x,u)

Theorem 4 : Suppose that u € W7 () N C () is a weak solution to (7.10), then

u < max {sup (f/b) ,supg} .
Q o0

Proof : We use the truncation method of Stampacchia.

Let G be the function defined in the proof of Theorem 1 and let

K = max {sup (f/b) 7supg} ,
Q E)

then
G(u—K)eWyP(9Q).

Replace v by G (v — K) in (7.11) and subtracting [, b(z) KG (u — K) we get

ou
69{:1-

pG’(u—K)+/b(x)(u—K)G(u—K):/Q(f—b(x)K)G(u—K).

Q

é/ﬂa(a:,u)

By using the fact that 0 < o < a (x,u), taking into account that |Vul’ G’ (u — K) > 0 and that

b(x) # 0 the last equality becomes

a/Q|Vu]pG’(u—K)—I—/Qb(m)(u—K)G(u—K)g/

Q
then,
b(z)(u—K)G(u—K) < b(x) m—K G(u—K)
/n /ﬂ <b($)
—a/Q]VuV’G'(u—K). (7.12)
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The last integral in right-hand side of (7.12) is nonnegative

a/ |VulP G' (u— K) >0,
Q

for the first integral in the right-hand side we notice that b(z) > 0, G(u — K) > 0 and

% — K <0 for every z € Q, then

Thus,
/Qb(x)(u—K)G(u—K) <0,

but G (u— K)=0if u — K <0, then

/b(m)(u—K)G(u—K): b(@) (u— K)G (u—K),
Q Qy

where Q4 = {z € Q;u — K > 0}.
By using the fact that b (z) (v — K) G (u — K) > 0 in Q4 we have

b(z)(u—K)G(u—K)>0.
Qy

From (7.13), (7.14) and (7.15) we get

/ b(@) (u— K)G (u—K) =0,
Q4

which implies that
u— K =0,

or

b(x)G(u—K) =
Since b (x) > 0, the last equality implies that
G(u—K)=0,
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so, u < K, or

meas (Q4) =0,
which means that u < K a.e. in , hence everywhere in ), because u € C(Q). Therefore,
u < max {sup (f/b) ,supg} , Vre. (7.16)
Q onN
Corolary: In addition to the assumptions of Theorem 4, suppose that u verifies
a(x,—u) =a(x,u), forae. x €,

then
min {inf (f/b) ,infg} < u < max {sup (f/b) ,supg} , Vre. (7.17)
Q o0N Q a0

Proof: By using the assumption made in a, (7.11) can be written

—Z/ Ou [ 0(—u) v —/Qb(x) (—u)v:/ﬂfv, Yo € WEP(Q),

consequently,

6.%1

(—uw)
0:@

P29 (—u) 0
((9;) 8::1- +/Qb(:13)(—u)v:/g—fv, Yo € WEP(Q),

2/ z,~u)

which has the same form as (7.11) with —u and —f in place of u and f respectively.

Therefore, (7.16) gives

—ugmax{sup( /8) sup (- g)}, vz € Q.

Thus, by using the fact that

sup (—f/5) = —inf (£/0).

Sup (—9) infg
and
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max {—\, —0} = —min {\,0}

we get easily (7.17).
Corollary 5: If f > A >0 a.e. in Q and g > «v a.e. in 90f) then

u(z) = min{A/B,7} .

In particular, if

f>0ae in Qand g > 0 a.e. in 012,

then,
u(z) > 0in Q.

Proof: It suffices to show that
inf > infg >
1?2 (f/b) > \/pB andlgbg 7,

then, from (7.17) we get
u(z) = min{A/B,7}.
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