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Preface

Many physical, chemical and biological phenomena are described by nonlinear partial dif-

ferential equations, however; many of them do not, in general, possess smooth solutions. It is,

therfore, essential to �nd another kind of appropriate solutions. Namely, the notion of weak

solutions.

The aim of this work is to discuss some nonlinear elliptic problems in bounded domains

with smooth boundaries and apply the maximum principal to their solutions. To do so, we

need to introduce some theoretical notions of partial di¤erential equations and recall the main

properties of Sobolev spaces which are powerful tools to study these equations.

The �rst chapter is devoted to a short description of the physical and chemical aspect of

Laplace�s and Poisson�s equations, classi�cation of PDE of second order and the di¤erent types

of boundary conditions. This chapter ends by a biological example which explains how to obtain

a PDE from the data.

In chapter 2, we introduce the de�nition of weak solution of elliptic problems and the

relationship between classical and variational formulation of PDE�s.

A large part of this chapter is devoted to the de�nition and some important properties of

W 1;p (
) and W 1;p
0 (
).

The third chapter is devoted to illustrate the techniques used in the study of linear PDE�s

by applying them to a various elliptic problems. The last problem is an excellent example where

we applied simultaneously the Lax-Milgram lemma and the trace theorem.

In [7], Chipot studied the following problem

8><>: �
NP
i=1

@
@xi

�
a (x; u) @u@xi

�
= f in 


u = 0 in @


:

By using the compacity method, he proved that, for every f 2 L2(
); this problem has a weak

solution

u 2 H1
0 (
) :
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In chapter4, we gave a detailed proof to the problem discussed by Chipot then we extended his

result to problem 8><>:
�

NP
i;j=1

@
@xi

�
aij (x; u)

@u
@xi

�
= f in 


u = 0 in @


:

Chapter 5 is devoted to the study of some problems involving the p�Laplace operator. Precisely,

we studied the problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
= f in 


u = 0 in @

;

which generalizes a similar problem studied by Lions in [17], namely

8><>: �
NP
i=1

@
@xi

���� @u@xi ���p�2 @u
@xi

�
= f in 


u = 0 in @

:

He proved, using the monotonicity method, that the problem has a weak solution u 2W 1;p
0 (
)

for every f 2W�1;p0 (
) :

In the 6th chapter we study the problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
+ b (x)u = f in 


u = 0 in @

;

where we need to apply some Sobolev compact embedding theorems.

In chapter 7 we apply the maximum principal to the solutions of the above problems, in

particular the problems involving the p�Laplacian operator.
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Chapter 1

Introduction

1.1 Elliptic partial di¤erential equations origins

The study of partial di¤erential equations started in the work of Euler, d�Alembert, Lagrange

and Laplace as a central tool in the description of continum mechanics, and more generally, as

the principal mode of analytical study of models in physical science [6].

Many physical processes are described by equations that involve physical quantities together

with their partial derivatives. Among such processes are �ow of liquids, deformation of solid

bodies, chemical reactions, electromagnetic and many others [23].

In this section we discuss the physical aspects of some problems that will be used later as

model problems. Among the most important of all partial di¤erential equations are Laplace�s

equation

�u = 0 (1.1)

and Poisson�s equation

��u = f

where, in both equations u : 
 ! IR is the unknown function de�ned in a domain 
 � IRN ,

f : 
! IR is a given function and � is the second-order operator de�ned by

� =
NX
i=1

@2

@x2i

8



In a typical interpretation u denotes the density of some quantity (e.g. a chemical concentration)

in equilibrium or the displacement of elastic membrane or electrostatic potential. Then if V is

any subregion within 
 with a smooth boundary, the net �ux of u through the boundary @V

is zero. That is, Z
@V
F:�ds = 0;

where F denotes the �ux density and � is the unit outer normal �eld.

In many instances it is physically reasonable to assume the �ux F is proportional to the

gradient of u, but points in the opposite direction F = �aru, where a > 0 is the constant of

proportion.

Using the Green formula, we have

Z
V
divFdx =

Z
@V
F:�ds = 0

and so

divF = 0 in 
 (1.2)

since V is arbitrary.

Substituting for F into (1.2), we obtain

div (�aru) = 0;

thus,

�u = 0;

which is the Laplace equation [14].

1.2 Partial di¤erential equations classi�cation

As the Laplace equation (1.1) is the prototype of elliptic equation, the heat equation

@u

@t
��u = 0;
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and the wave equation
@2u

@t2
��u = 0;

are respectively the prototypes of parabolic and hyperbolic partial di¤erential equations, where

the variable t describes the time.

In the middle of the second decade of the twentieth century, Hadamared proposed to �nd

general classes which are a generalizations of the Laplace equation, the heat equation and the

wave equation and having distinctive properties for their solutions in terms of characteristic

polynomials. We, thus, obtain a basic class of second-order operator [6].

Consider a second-order partial di¤erential equation in the form

�
NX

i;j=1

aij (x)
@2u

@xi@xj
+

NX
i=1

bi (x)
@u

@xi
+ a0 (x)u = f(x); (1.3)

where aij ; bi; a0 and f are continuous functions de�ned in a domain 
 � IRN . The principal

part of the left hand side is

L0 (u) =
NX

i;j=1

aij (x)
@2u

@xi@xj
: (1.4)

We can assume without loss generality that the matrix

A = (aij (x));

is symmetric [23].

The di¤erential operator (1.4), or the equation (1.3) is said to be elliptic at x 2 
, if the

matrix A (x) is positive de�nite, which means that all the eigenvalues of A are non-zero and

have the same sign. The parabolic case is characterized by one zero eigenvalue with all other

eigenvalues having the same sign. In the hyperbolic case, however, the matrix A is invertible

but the sign of one eigenvalue is di¤erent from the signs of all the other eigenvalues [15].

An equation is called elliptic, parabolic, or hyperbolic in 
 if it is elliptic, parabolic, or

hyperbolic everywhere in 
, respectively [21]:

This classi�cation was subsequently extended to nonlinear partial di¤erential equations,

to linear PDE of arbitrary order, and to systems [6]:

10



In particular, for second-order partial di¤erential equations of general form

F (x; u; pi; pij) = 0; (1.5)

where pi = @u
@xi

and pij = @2u
@xi@xj

, the equation (1.5) is called elliptic, parabolic, or hyperbolic

in 
, if the matrix

A (x) = (
@F

@pij
(x));

has the same properties of A in the linear case, respectively [23].

1.3 Boundary conditions

In practical applications one does not usually want to solve problems posed in all the space;

rather one wants to solve these problems on some domain, subject to certain conditions. Thus,

we wish to impose additional conditions upon the solution u, typically prescribing the values

of u or of certain �rst derivatives of u on the boundary of the domain or part of it. One knows,

that there are very speci�c kinds of boundary conditions usually associated with each equations.

Here are some one [19]:

1) Dirichlet condition: it speci�es the values of the solution on the boundary of the domain.

The question of �nding solutions to the problem

�
L (u) = f in 

u = g in @


;

where L is a di¤erential operator, is known as Dirichlet problem.

2) Neumann condition: it speci�es the values of the derivative of a solution is on the

boundary of the domain. The problem of �nding a function satisfying

�
L (u) = f in 

@u
@� = g in @


;

is known as Neumann problem. Here, f , g are given functions de�ned in 
 and @
 respectively,

and � the unit outer normal �eld to the boundary @
.

3) Robin condition: it is a speci�cation of a linear combination of the values of a function

11



and the values of its derivative on the boundary of the domain. We suppose that the unknown

function u satis�es, in addition to the partial di¤erential equation, the condition

�u+ �
@u

@�
= g in @
,

where � and � are some non-zero constants.

4) Cauchy condition: speci�es both the values that to take a solution and its normal deriva-

tive on the boundary of the domain. It corresponds to imposing both a Dirichlet and a Neumann

boundary condition, 8>>><>>>:
L (u) = f in 


u = g in @


@u
@� = h in @


where f is given in 
 and g; h are given in @
:

Well-posed problems

We say that a problem is well-posed (in the sense of Hadamard) if there exists a solution,

the solution is unique and depends continuously on the data, if these conditions do not hold a

problem is said to be ill-posed [21].

The third requirement is important, because in applications, the boundary data are ob-

tained through measurements and thus are given only up to certain error margins, and small

measurement errors should not change the solution drastically [16].

A chemical aspect of second-order elliptic equation

The second order-elliptic partial di¤erential equation

�
NX

i;j=1

aij (x)
@2u

@xi@xj
+

NX
i=1

bi (x)
@u

@xi
+ c (x)u = f

generalizes Laplace�s and Poisson�s equations. As in the derivation of Laplace�s equation set

forth, u represents, for instance, the chemical concentration at equilibrium within a region


, the second-order term
NP

i;j=1
aij

@2u
@xi@xj

represents the di¤usion of u within 
, the coe¢ cients

aij describe the anisotropic, heterogenous nature of the medium. The �rst order term
NP
i=1
bi
@u
@xi

represents transport within 
 and the term cu describes the local creation or depletion of the

12



chemical.

1.4 A problem in biology

As an example, let us consider a biological problem [7]:

Let 
 be a bounded domain of IR3. Suppose that 
 is a Petri box �lled with some nutrient

and a colony of bacteria. We denote by u (x1; x2; x3) the density of bacteria at the point

(x1; x2; x3). In the microworld 
 there is three aspects of the life: birth, death and motion.

That is to say, in 
 some new bacteria are coming to life, some other are dying and some others

are moving from one place to another.

We will consider that these three phenomena balance each other in such a way that the

density of bacteria remains unchanged with time.

Let us analyze the phenomenon of di¤usion. We note by u (x) the density of bacteria in x.

Then, the di¤usion velocity v, of migration at a point x, in the direction �, is given by

v (�) = �a (x) d
dt
u (x+ t�)

����
t=0

�;

which we can write also

v (�) = �a (x) (ru (x) :�) �;

where a (x) is the coe¢ cient of proportionality, which is a positive constant depending on x

and � is the unit vector in IR3. So, it is natural to assume that the average of the velocity v on

S2, is given by

�!v = 1

jS2j

Z
S2

v (�) d�(�);

where S2 is the unit sphere in IR3, jS2j its area and d� (�) denotes the element of surface area

on S2.

The ith entry of the vector v is

vi =
1

jS2j

Z
S2

�a (x) (ru (x) :�) �id�(�):

13



For obvious symmetry reasons, we have

Z
S2

�2i d� (�) =
1

3

Z
S2

�
�21 + �

2
2 + �

2
3

�
d� (�) =

jS2j
3

and Z
S2

�i�jd� (�) = 0; 8i 6= j:

So, for i = 1; 2; 3, we obtain

vi = �
a

3

@u

@xi

Thus, replacing a
3 by a

v = �aru:

Consider an elementary volume V included in 
 with outward unit normal �!n .

The �ux of bacteria through the boundary @V of V is given by

Z
@V

�!v :�!n d� (x) =
Z
@V
�a (ru:�!n ) d�(x);

where d� denotes the element of surface area on @V .

The death in 
 occurs at a rate proportional to the density of population through a factor

�. So, in V we observe the disappearance of the quantity

�

Z
V
udx;

where dx = dx1dx2dx3 denotes the volume measure in IR3.

If we denote by f the density of bacteria supplied from outside, then there appears in V a

quantity Z
V
fdx:

So, clearly in order for the density u remain constant in time, we must have a balance of

population Z
@V
�a (ru:�!n ) d� + �

Z
V
udx =

Z
V
fdx: (1.6)

14



Assuming u smooth we have by the divergence theorem

Z
@V
a (ru:�!n ) d� =

Z
V
div (aru) dx:

So (1.6) can now be written

Z
V
(�div (aru) + �u) dx =

Z
V
fdx;

and this for any volume V , this implies that

�div (aru) + �u = f , in 
.

Since the density of bacteria has to vanish on the boundary @
 of 
, the problem to solve is to

�nd u which satis�es 8<: �div (aru) + �u = f , in 


u = 0, in @


which is a Dirichlet problem.

For more examples see [9], [10] and [13].
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Chapter 2

Sobolev Spaces

2.1 Introduction

An important systematic machinery to carry through the study of PDE was introduced by S.

L. Sobolev in the mid of 1930�s: the de�nition of new classes of function spaces, named Sobolev

spaces.

Together with the Lp spaces, Sobolev spaces became one of the most powerful tools in

analysis, they are indispensable for a theoretical analysis of partial di¤erential equations, as

well as being necessary for the analysis of some numerical methods for solving such equations

[6].

2.2 Motivation

Assume that 
 is a bounded domain with a Lipschitz boundary and consider the elliptic equation

�
NX
i=1

@

@xi

�
aii (x)

@u

@xi

�
+ au = f; (2.1)

where aii 2 C1 (
), a and f belong to C (
).

Suppose that u is a classical solution to the problem (2.1) with the homogeneous Dirichlet

boundary conditions

u (x) = 0;8x 2 @
: (2.2)
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In the classical treatment of second-order partial di¤erential equations, the solution and its

derivatives up to order two are required to be continuous functions, then, u mast be assumed

to belong to C2 (
) \ C1
�


�
, satisfy (2.1) everywhere in 
 and vanishes in the boundary @
.

However, the requirement made on aii, a and f do not guarantee the existence of a solution

to the problem (2.1), (2.2), with the strong regularity that u 2 C2 (
) \ C1(
):
Weak formulation:

In order to reduce the strong regularity assumed on the classical solution, we multiply both

sides of (2.1) by a function ' 2 C10 (
) and integrate over 
,

�
Z



NX
i=1

@

@xi

�
aii

@u

@xi

�
'dx+

Z


au'dx =

Z


f'dx

thus, using the Green�s formula, the �rst term in the left-hand side becomes

�
NX
i=1

Z


'
@

@xi

�
aii

@u

@xi

�
dx = �

Z
@

'

 
NX
i=1

aii
@u

@xi
�i

!
d� +

NX
i=1

Z


aii

@u

@xi

@'

@xi
dx; (2.3)

where � = (�1; �2; :::; �N ) is the unit outer normal �eld and d� is an elementary surface in @
.

Since ' vanishes in @
; the �rst term in the right-hand side of (2.3) vanishes and we have

Z



 
NX
i=1

aii
@u

@xi
:
@'

@xi
+ au'

!
dx =

Z


f'dx (2.4)

Z



 
NX
i=1

aii
@u

@xi

@'

@xi
+ au'� f'

!
dx = 0;

Thus, the identity (2.4) was derived under very strong regularity assumptions u 2 C2 (
) \

C1
�


�
and ' 2 C10 (
), but all integrals in (2.4) remain �nite when these assumptions are

weakened to aii; a 2 L1 (
), u; @u
@xi
; f 2 Lp (
) and '; @'@xi 2 L

p0 (
).

Thus, we can change the given problem (2.1), (2.2) by the problem:

Given f 2 Lp (
), �nd u 2 Lp (
) such that @u
@xi

2 Lp (
), for all i, 1 � i � N , and satis�es

Z



 
NX
i=1

aii
@u

@xi
:
@'

@xi
+ au'

!
dx =

Z


f'dx; 8' 2 C10 (
):
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Notice that the assumption f 2 Lp (
) can be further weakened to an other assumption which

we will mention later.

The last formulation of the problem (2.1), (2.2) is called the weak formulation or variational

formulation of the given problem (2.1), (2.2).

So far we have said nothing about the existence and uniqueness of solutions in the variational

formulation of the boundary value problem (2.1), (2.2), because to deal adequately with these

topics it is necessary to work in the framework of new spaces called Sobolev spaces. In the

following sections we introduce these spaces and recall some of their properties which we need

to use later.

2.3 Weak derivative

Assume that u 2 C1 (
), then, by integration by parts, we have

Z


u
@'

@xi
dx = �

Z



@u

@xi
'dx; 8' 2 C10 (
) for i = 1; 2; :::; N (2.5)

where C10 (
) is the space of continuously di¤erentiable functions with compact support in 
,

there are no boundary terms, since ' vanishes near @
.

Notice that the left-hand side of (2.5) makes sense if u is only locally integrable i.e. u 2

L1loc (
), then
@u
@xi

has no obvious meaning if u is not C1 (
) function.

De�nition: Let u 2 L1loc (
), if there exists a function vi 2 L1loc (
) such thatZ


u
@'

@xi
dx = �

Z


vi'dx; 8' 2 C10 (
) for 1 � i � N;

we say that vi is the ith weak �rst partial derivative of u.

More generally, suppose that u 2 Lp (
), since C10 (
) is dense in Lp
0
(
) for all p0 such that

1 � p0 < +1, then u @'@xi 2 L
1 (
) and the integral

Z


u
@'

@xi
dx;

makes sense for all ' 2 C10 (
).

Thus, we say that a function u 2 Lp (
), has an ith-weak �rst partial derivative, if there

18



exists a function vi 2 Lr (
) for 1 � r < +1; such that

Z


u
@'

@xi
dx = �

Z


vi'dx;8' 2 C10 (
); (2.6)

vi is the ith-weak �rst partial derivative of u and denoted by @u
@xi
.

Using the fact that if f 2 L1loc (
) satis�esZ


f'dx = 0; 8' 2 C0(
);

then,

f = 0 a.e. in 
,

we can prove that the weak derivative is unique almost everywhere and if u 2 C1 (
) the weak

partial derivative coincide with the usual partial derivative [19].

More generally, let m � 1 be an integer number and � = (�1; �2; :::; �N ) 2 NN be a multi-

indix. We say that u has a weak partial derivative of order �, if there exists a function v� such

that Z


u

@j�j'

@�1x1@�2x2:::@�NxN
dx = (�1)j�j

Z


v�'dx; 8' 2 C10 (
):

v� is denoted by
@j�ju

@�1x1@�2x2:::@�NxN
or D�u:

2.4 Sobolev space

Let 
 be an open subset of IRN and p 2 [1;+1] a real number, the Sobolev space W 1;p (
) is

de�ned by

W 1;p (
) =

�
u 2 Lp (
) ;8i = 1; 2; :::; N; 9vi 2 Lp(
); such that vi =

@u

@xi

�
;

where @u
@xi

is the weak derivative of u.

Similarly we de�ne Sobolev spaces of higher order Wm;p (
), for a given integer m � 1 and
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a real p 2 [1;+1],

Wm;p (
) =
�
u 2 Lp (
) ; 8� 2 NN ; j�j � m; 9v� 2 Lp(
); such that v� = D�u

	
;

where the derivative D�u must be understand in the weak sense.

We equip the space Wm;p (
), for 1 � p < +1, by the norm

kukWm;p = kukLp +
X

1�j�j�m
kD�ukLp ;

or the equivalent norm

kukWm;p =

0@Z


jujp dx+

X
1�j�j�m

Z


jD�uj dx

1A 1
p

=

0@kukpLp + X
1�j�j�m

kD�ukpLp

1A 1
p

;

Wm;1 (
) is equipped by the norm

kukWm;1 = max
0�j�j�m

kD�ukL1 ;

where D�u = u, when j�j = 0.

For p = 2, Wm;p (
) is denote by Hm (
).

Remark: In the case where 
 = IRN , we can de�ne Hm
�
IRN

�
to be the subspace of

L2
�
IRN

�
constituted by all functions u 2 L2

�
IRN

�
such that

�
1 + j�j2

�m
2 bu 2 L2 �IRN� ; � 2 IRN ;

where bu is the Fourier transformation of u. Also,
kukHm =





�1 + j�j2�m2 bu




L2(IRN)

;

For the proof see [20].

20



2.5 Elementary properties

In this section we recall some results and theorems which we need to use later. For the proofs

we refer the reader to mentioned references.

Proposition 1:

1)Wm;p (
) equipped with the norms de�ned above is a Banach space and Hm (
) equipped

with the inner product

hu; vi =
Z


uvdx+

X
1�j�j�m

Z


D�u:D�vdx

is a Hilbert space.

2) Wm;p (
) is separable space for 1 � p < +1 and re�exive for 1 < p < +1.

Proof: see [5] and [14]:

Theorem 2 (Meyers and Serrin): Let

S = fu 2 C1 (
) such that kukW 1;p < +1g

= C1 (
) \W 1;p(
);

then S is dense in W 1;p (
).

Proof : See [1].

Proposition 3:

If 
 is bounded then Cm
�


�
�Wm;p(
).

Proof :

Since 
 is bounded then 
 is compact.

Let u 2 Cm
�


�
, then u, D�u 2 C

�


�
for every j�j � m and u, D�u attained their

maximums in 
. Thus, there exists M > 0 such that

kD�ukC(
) = max
x2


jD�u (x)j �M; 8 j�j � m;

then, Z


jD�ujp dx �Mpmeas (
) < +1:
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Corollary 4: Assume that 
 is a Lipschitz domain, then for 1 � p < 1, C1
�


�
is dense in

Wm;p(
).

For the proof see [4].

De�nition:

An open subset 
 � IRN is said to be of class C1 if for each x 2 @
 there exists a

neighborhood U of x in IRN and a bijection H : Q! U such that

H 2 C1(Q);

H�1 2 C1(U);

H (Q+) = U \ 


and

H (Q0) = U \ @
;

where

Q =
�
x =

�
x0; xn

�
;
��x0�� < 1 and jxnj < 1	 ;

Q+ = fx 2 Q; xn > 0g ;

Q0 = fx 2 Q; xn = 0g :

Theorem 5 (Extension theorem) :

Suppose that 
 is of class C1 with bounded boundary @
. Then there exists a linear

extension operator

P :W 1;p (
)!W 1;p(IRN );

such that, for all u 2W 1;p (
) we have

i) Puj
 = u

ii) kPukLp(IRN) � C kukLp(
)
iii) kPukW 1;p(IRN) � C kukW 1;p(
).

where C depends only on p and 
.

Corollary 6: Suppose that 
 is of class C1 and let u 2W 1;p (
) be given with 1 � p < +1:
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Then there exists a sequence fukg � C10
�
IRN

�
such that

ukj
 ! u in W 1;p(
):

Remark: The above corollary means that the restrictions of functions of C10
�
IRN

�
in 
 is

dense in W 1;p (
). Note that it is not true if 
 is not of class C1.

2.6 Sobolev Inequalities

2.6.1 Continuous embedding :

De�nition : Let X and Y be Banach spaces such that X � Y . We say that X is continuously

embedded into Y , and write X ,! Y , if the identity operator

I : X ! Y

is continuous, i.e. 9C > 0 such that

kxkY � C kxkX ; 8x 2 X:

Theorem 7 : (Gagliardo, Niremberg, Sobolev)

Let 1 � p < N and set

p� =
Np

N � p;

then

W 1;p
�
IRN

�
,! Lp

�
(IRN )

and there exists a constant C, depending on p and N only, such that

kukLp� � C krukLp ; 8u 2W 1;p(IRN ):

Theorem 8 : Let 
 be a bounded and open subset of IRN with C1-boundary. Assume that

1 � p < N , then

W 1;p (
) ,! Lp
�
(
)
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and there exists a constant C, depending on p, N and 
 only, such that

kukLp� � C krukW 1;p , 8u 2W 1;p(
):

Remark : For p and p� de�ned above, by using the fact that, if u 2 Lp (U) \ Lp� (U) then

u 2 Lq(U); 8q 2 [p; p�] ;

we can prove that

W 1;p (U) � Lq (U) ; 8q 2 [p; p�] ;

with continuous embedding, where U = IRN or U = 
 and 
 is bounded with C1 bounded

boundary.

Corollary 9 : (p = N)

W 1;N
�
IRN

�
� Lq

�
IRN

�
; 8q 2 [N;+1[ ; (2.7)

with continuous embedding [5].

Theorem 10 (Morrey) : Let p > N then

W 1;p
�
IRN

�
� L1(IRN ); (2.8)

with continuous embedding [5].

Remark :

Assume that 
 is an open subset of C1 bounded boundary, then we have the same results

as in (2.7) and (2.8) with replacing IRN by 
:

for p = N we have W 1;p (
) � Lq (
) ; 8q 2 [p;+1[ ;

for p > N we have W 1;p (
) � L1(
);

with continuous embedding [5].
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2.6.2 Compact embedding

De�nition: Let X and Y be two normed spaces such that X � Y . We say that X is compactly

embedded in Y and write

X ,!,! Y;

if

i) There exists a constant C such that

kxkY � C kxkX ; 8x 2 X:

ii) Every bounded set in X is precompact in Y [4].

Theorem 11 (Rellich, Kondrachov): Suppose that 
 is bounded and of C1-boundary.

We have

if 1 � p < N then W 1;p (
) � Lq(
); 8q 2 [1; p�[ ;

if p = N then W 1;p (
) � Lq(
); 8q 2 [1;+1[ ;

if p > N then W 1;p (
) � C(
);

with compact embedding [5].

Remark : Using the compact embedding of W 1;p (
) in Lq (
), we can extract from every

bounded sequence fung �W 1;p (
) a subsequence funkg such that

unk ! u in Lq(
);

where u 2W 1;p(
), also

unk * u in W 1;p(
)

and

unk ! u a.e. in 
.

Here, unk * u means that funkg is weakly converges to u, which means that for every f in the
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dual of W 1;p(
) we have

hf; unki ! hf; ui in IR:

2.7 W 1;p
0 (
) and its properties

De�nition :

Let 1 � p < +1. We denote by W 1;p
0 (
) the closure of C10 (
) in W

1;p (
).

Thus, u 2W 1;p
0 (
) if and only if there exists a sequence fukg � C10 (
), such that

uk ! u in W 1;p(
):

Properties : 1) W 1;p
0 (
) equipped with the norm induced by W 1;p (
) norm is a separable

Banach space, it is re�exive for 1 < p < +1.

2) H1
0 (
) =W 1;2

0 (
) is a Hilbert space with respect to the H1 (
) inner product.

Remarks : 1) Note that since C10
�
IRN

�
is dense in W 1;p

�
IRN

�
then,

W 1;p
0

�
IRN

�
=W 1;p(IRN );

however, in general, for 
  IRN ,

W 1;p
0 (
) 6=W 1;p(
):

2) We can prove, by using a regularized sequence, that the closure of C10 (
) in W
1;p (
) is

W 1;p
0 (
).

2.7.1 Trace theorem

Notice that a function u of W 1;p (
) is only de�ned a.e. in 
, so if also u 2 C
�


�
, then clearly

u has usual values on @
, but there are no meaning to the restriction of u at @
, which is of

negligible measure. The notion of trace operator resolves this problem.

Theorem 12: (Trace theorem):

Suppose that 1 � p < +1 and assume that 
 is a bounded domain with C1�boundary.
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Then there exists a continuous linear mapping


 :W 1;p (
)! Lp (@
)

such that

i) If u 2W 1;p (
) \ C
�


�
, then


u = uj@


and

ii) There exists a constant C depending only on p and 
 such that

k
ukLp(@
) � C kukW 1;p(
) ; 8u 2W 1;p(
):

Proof : See [8] ; [7] ; [14] and [25].

De�nition : We call 
u the trace of u on @
.

Theorem 13: (Trace of functions in W 1;p
0 (
))

Let 
 be a bounded domain with boundary of class C1. Suppose further that u 2W 1;p (
),

then

u 2W 1;p
0 (
) if and only if 
u = 0 on @
.

2.7.2 Poincaré�s inequality

Suppose that 
 is bounded then for all p such that 1 � p � +1 we have

kukLp � C krukLp ; 8u 2W 1;p
0 (
);

where C is depending only on p and 
.

Proof : See [24], [2] :

Remarks :

1) Poincaré�s inequality does not hold in W 1;p
0 (
) if 
 contains arbitrarily large balls; i.e.,

if there exists a sequence rn !1 and points xn 2 
 such that B (xn; rn) � 
.

2) If 
 is included in a strip of width d, i.e., there exists � 2 IRN with j�j = 1 and
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 �
�
x 2 IRN=� < �:x < �

	
and d = � � �, then

kukLp � C0 krukLp ; 8u 2W 1;p
0 (
);

where C0 is a universal constant; i.e., independent of which 
.

3) If p =1 Poincaré�s inequality holds on W 1;1
0 (
) if and only if there exists M <1 such

that

d (x; @
) �M; 8x 2 
;

where d (:; :) is the Euclidian distance.

Proof : See [24] :

Corollary 14 : Suppose that 
 is bounded then krukLp is a norm on W 1;p
0 (
), equivalent

to the norm kukW 1;p(
).

Proof : We have

krukLp � kukW 1;p , 8u 2W 1;p
0 (
):

By using Poincaré�s inequality we have

kukW 1;p = kukLp + krukLp

� (C + 1) krukLp .

Thus,

krukLp � kukW 1;p � C 0 krukLp .

Remark : The same result holds true if 
 has a �nite width.

2.7.3 Dual of W 1;p
0 (
)

De�nition : For 1 � p <1 and its conjugate p0, we denote by W�1;p0 (
), the dual space of

W 1;p
0 (
), in particular the dual of H1

0 (
), is denoted by H
�1 (
).

Properties :

1) By identifying L2 (
) to its dual, we obtain
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H1
0 (
) � L2 (
) � H�1(
);

where the embedding is continuous and dense.

2) Suppose that 
 is bounded then,

W 1;p
0 (
) � L2 (
) �W�1;p0(
); if

2N

N + 2
� p <1;

where the embedding is continuous and dense.

3) If 
 is unbounded then,

W 1;p
0 (
) � L2 (
) �W�1;p0(
); if

2N

N + 2
� p < 2:

Proposition 15 : W�1;p0 (
) is a subspace of D0 (
) and it can be shown that the disrtibutions

in W�1;p0 (
) are of the form

F = f0 +
NX
i=1

fi;

where fi 2 Lp
0
(
) for 0 � i � N:

Thus,

hF;'i =
Z


f0'+

NX
i=1

Z


fi
@'

@xi
;8' 2W 1;p

0 (
)

with

kFkW�1;p0 = max
0�i�n

kfikLp0 :

Moreover, if 
 is bounded we can take f0 = 0.

Proof: See [5], [2] and [8].
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Chapter 3

Some linear problems

The aim of this chapter is to familiarize ourselves with some elliptic problems by studying

simple ones.

3.1 A homogeneous Dirichlet problem

Let us consider the problem:

Find u solution to 8<: ��u+ u = f in 


u = 0 in @

(3.1)

where 
 is an open and bounded subset of IRN and f is a given function de�ned on 
.

Recall that a classical solution to (3.1) is a function u 2 C2 (
) \ C
�


�
, which veri�es

��u+ u = f in 


and vanishes on @
 and a weak solution is a function u 2 H1
0 (
) which veri�es

NX
i=1

Z



@u

@xi

@v

@xi
+

Z


uv =

Z


fv; 8v 2 H1

0 (
): (3.2)

Before studying this problem let us recall some topological concepts which serve us later.
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3.2 Some topological concepts

LetH be a real Hilbert space, equipped with the inner product h:; :i and let j:jH be the associated

norm.

3.2.1 Riesz-Fréchet theorem

Theorem 1 (Riesz-Fréchet representation theorem) : For any continuous linear func-

tional ' on H there exists a unique u 2 H such that

' (v) = hu; vi ; 8v 2 H:

Moreover,

k'kH0 = jujH :

Proof : If ' = 0 it is su¢ cient to take u = 0:

Suppose that ' 6= 0 and let M = '�1 (0), then M is closed and M 6= H. Thus, we can

choose w 2M? such that w 6= 0.

Let u = '(w)

jwj2H
w, then u 2M? and for any v 2 H,

' (v)

' (w)
w 2M?:

Also, there exists z 2M such that

v = z +
' (v)

' (w)
w;

therefore,

v � ' (v)

' (w)
w 2M;

hence �
u; v � ' (v)

' (w)
w

�
= 0;

then

hu; vi = ' (v)

' (w)
hu;wi
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replacing u in the right-hand side we get

hu; vi =
' (v)

' (w)

*
' (w)

jwj2H
w;w

+
= ' (v) :

Moreover, by using Cauchy Shwartz inequality, we have

k'k = sup
jvjH=1

jhu; vij

� sup
jvjH=1

jujH jvjH

k'k � jujH ; (3.3)

also,

'

�
u

jujH

�
� k'k ;

and

'

�
u

jujH

�
=

�
u;

u

jujH

�
= jujH ;

then,

jujH � k'k : (3.4)

Thus, from (3.3) and (3.4) we have

k'k = jujH :

To show the uniqueness of u; one simply notes that, if there exist u; u0 2 H such that

' (v) = hu; vi ; 8v 2 H

and

' (v) =


u0; v

�
; 8v 2 H

then,
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u� u0; v

�
= 0; 8v 2 H:

By choosing v = u� u0 we get



u� u0; u� u0

�
= 0;��u� u0��

H
= 0;

therefore,

u = u0:

See also [18].

3.2.2 Lax Milgram lemma

De�nition : A bilinear form a : H �H ! IR is said to be:

i) continuous, if there exists a constant C > 0 such that

ja (u; v)j � C jujH jvjH ; 8u; v 2 H;

ii) coercive or H�elliptic, if there exists a constant � > 0 such that

a (u; u) � � juj2H ; 8u 2 H:

Theorem 2 : Let K � H be non empty, closed and convex subset. Then, for every f 2 H,

there exists a unique u 2 K such that

jf � ujH = min
v2K

jf � vjH ;

u is the orthogonal projection of f onto K. Moreover, u is characterized by8<: u 2 K

hf � u; v � ui � 0; 8v 2 K
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and the map PK : H ! K de�ned by

PK (f) = u

is a Lipschitz function with

jPK (f1)� PK (f2)j � jf1 � f2j ; 8f1; f2 2 H; (3.5)

see [5].

Theorem 3 (Stampacchia theorem): Let a (:; :) : H �H ! IR be a continuous bilinear

and coercive form and K � H be a non empty, closed and convex subset.

Then, for every ' 2 H 0 there exists a unique element u 2 K such that

a (u; v � u) � ' (v � u) ; 8v 2 K:

If, in addition, a (:; :) is symmetric, then u is characterized by

8<: u 2 K
1
2a (u; u)� ' (u) = minv2K

�
1
2a (v; v)� ' (v)

	
:

Proof: By using Riesz-Fréchet theorem for ', there exists a unique f 2 H such that

' (v) = hf; vi ; 8v 2 H:

Let u 2 K be the orthogonal projection of f onto K, then, from Theorem 3

hf � u; v � ui � 0; 8v 2 K (3.6)

Also, for a �xed w 2 H, the map

v ! a (w; v)

is a linear and continuous form on H, then by Riesz-Fréchet theorem, there exists a unique

w0 2 H such that
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a (w; v) =


w0; v

�
; 8v 2 H:

Let the operator A : H ! H de�ned by

Aw = w0;

it is a linear continuous operator and satis�es

a (w; v) = hAw; vi ; 8v 2 H: (3.7)

Indeed, it�s easy to show that A is linear. To prove the continuity, we use the fact that

ja (w; v)j � C jwjH jvjH ; 8w; v 2 H

and (3:7) to obtain

jhAw; vij � C jwjH jvjH ; 8w; v 2 H;

by replacing v by Aw in the last equality we arrive at

jAwj 2 � C jwjH jAwjH ; 8w 2 H;

So, if Aw 6= 0, we easily get

jAwj � C jwjH ; 8w 2 H; (3.8)

which still true even if Aw = 0. Therefore, A is continuous:

Moreover, from the coercivity property of a (:; :) we have

jhAw;wij � � jwj2H ; 8w 2 H: (3.9)

Let � be a positive constant, which will be �xed later, and de�ne a map S by

S : K ! K

S (w) = PK (�f � �Aw + w) :
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S (w) is the orthogonal projection of �f � �Aw + w onto K, then, from (3.6) we have

h�f � �Aw + w � S (w) ; v � S (w)i � 0; 8v 2 K: (3.10)

Also, from (3.5) we have

jS (w1)� S (w2)j � j(�f � �Aw1 + w1)� (�f � �Aw2 + w2)j ; 8w1; w2 2 K;

� j(w1 � w2)� � (Aw1 �Aw2)j ; 8w1; w2 2 K;

then,

jS (w1)� S (w2)j 2 � jw1 � w2j 2 + �2 jAw1 �Aw2j 2 � 2� hAw1 �Aw2; w1 � w2i :

By inserting the inequalities (3.8) and (3.9) in the last inequality it becomes

jS (w1)� S (w2)j 2 � jw1 � w2j 2 + �2C2 jw1 � w2j 2 � 2�� jw1 � w2j 2; 8w1; w2 2 K;

�
�
1 + �2C2 � 2��

�
jw1 � w2j 2; 8w1; w2 2 K

Therefore, if we choose � such that

0 � 1 + �2C2 � 2�� < 1;

we conclude, by setting
p
1 + �2C2 � 2�� = k, that

jS (w1)� S (w2)j � k jw1 � w2j ; 8w1; w2 2 K

which means that S is a contraction.

Thus, Banach �xed point theorem asserts that there exists a unique element u 2 K such

that

S (u) = u:

By replacing w and S (w) by u in (3.10) it becomes
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h�f � �Au; v � ui � 0; 8v 2 K

and hence

� hf; v � ui � � hAu; v � ui ; 8v 2 K:

Therefore, since � is positive, we have

hf; v � ui � hAu; v � ui ; 8v 2 K:

This completes the proof of the theorem.

Remark : Besides the result aforementioned we can add the following one, where the proof

can be found in [9].

If K is a closed convex cone with vertex 0, then8<: a (u; v) � ' (v) ; 8v 2 K

a (u; u) = ' (u) ;

Lemma 1 (Lax-Milgram lemma) :

Let a (:; :) be a continuous bilinear and coercive form de�ned on H, then for every ' 2 H 0

there exists a unique u 2 H such that

a (u; v) = ' (v) ; 8v 2 H:

Moreover, if a (:; :) is symmetric, u is characterized by

8<: u 2 H
1
2a (u; u)� ' (u) = minv2H

�
1
2a (v; v)� ' (v)

	
Proof: By using Stampacchia theorem, there exists a unique u 2 H such that

a (u; v � u) � ' (v � u) ; 8v 2 H;

since tv 2 H for every t 2 IR; then replacing v by tv we get
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a (u; tv � u) � ' (tv � u) ; 8v 2 H; 8t 2 IR;

so,

t fa (u; v)� ' (v)g � fa (u; u)� ' (u)g ; 8t 2 IR; 8v 2 H:

Suppose that a (u; v) � ' (v) 6= 0, then, we can make a (u; u) � ' (u) �! �1 by making

t �! +1 or t �! �1; thus, a contradiction.

Therefore,

a (u; v) = ' (v) ; 8x 2 H:

Homogeneous Dirichlet problem

We are now ready to study the given problem (3.1).

Proposition 4 : Every classical solution to (3.1) is a weak solution.

Proof: Suppose that u 2 C2
�


�
is a classical solution to (3.1).

Since 
 is bounded, then, from proposition II-3, we have C2
�


�
� H1 (
), hence,

u 2 H1 (
) \ C(
):

Furthermore, since uj@
 = 0, we can use the trace theorem, to get

u 2 H1
0 (
):

On the other hand, multiplying both sides of the �rst equation in (3.1) by v 2 C10 (
), inte-

grating over 
 and using integration by parts, we arrive at

NX
i=1

Z



@u

@xi

@v

@xi
+

Z


uv =

Z


fv; 8v 2 C10 (
):

By density of C10 (
) in H
1
0 (
), this equality remains valid for every v 2 H1

0 (
). Thus, u is a

weak solution to (3.1).

Remark: In the above proof we used a result of the trace theorem in spite of the hypothesis

that the boundary will be of class C1 is not satis�ed, because in the proof of the mentioned
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theorem, the fact that if uj@
 = 0, then u 2 H1
0 (
), doesn�t use this hypothesis, see [5] :

Theorem 5: For all f 2 L2 (
), problem (3.1) has a unique weak solution.

To prove this theorem, we need to prove a lemma.

Lemma 2: For every u; v 2 H1 (
) we have

Z


jruj jrvj+ juj jvj � kukH1(
) kvkH1(
) ;

where kukH1(
) is the norm de�ned by

kukH1(
) = kukL2 +
NX
i=1





 @u@xi





L2
:

Proof of lemma 2: Since

(juj jrvj � jvj jruj)2 � 0; 8u; v 2 H1(
);

then,

juj2 jrvj2 + jvj2 jruj2 � 2 juj jrvj jvj jruj ;

consequently,

juj2 jvj2 + jruj2 jrvj2 + juj2 jrvj2 + jvj2 jruj2 � (jruj jrvj+ juj jvj)2 ;

thus, �
juj2 + jruj2

��
jvj2 + jrvj2

�
� (jruj jrvj+ juj jvj)2 ;

then, by integration over 
 we have

Z



�
juj2 + jruj2

� 1
2
�
jvj2 + jrvj2

� 1
2 �

Z


(jruj jrvj+ juj jvj) ; 8u; v 2 H1(
);

by using Cauchy Schwarz inequality, for the left-hand side, we have

�Z



�
juj2 + jruj2

�� 1
2
�Z




�
jvj2 + jrvj2

�� 1
2

�
Z


(jruj jrvj+ juj jvj) ; 8u; v 2 H1(
):

(3.11)
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Also,

kuk2H1 =

 
NX
i=1





 @u@xi





L2
+ kukL2

!2

=

0@ NX
i=1

 Z



���� @u@xi
����2
! 1

2

+

�Z


juj2
� 1

2

1A2 ;
by developing of the square in last parenthesis we easily show that

kuk2H1 �
NX
i=1

Z



���� @u@xi
����2 + Z



juj2 ;

�
Z


jruj2 +

Z


juj2 : (3.12)

Thus, from (3.11) and (3.12), we get

kukH1 kvkH1 �
Z


(jruj jrvj+ juj jvj) ; 8u; v 2 H1(
):

This completes the proof of Lemma 2.

Proof of theorem 5:

a) A bilinear form:

In the Hilbert space H1
0 (
), the form a de�ned by

a (u; v) =

NX
i=1

Z



@u

@xi

@v

@xi
+

Z


uv;

is bilinear, continuous and coercive form.

Indeed,

1) Continuity: For every u; v 2 H1
0 (
), we have

a (u; v) =

Z


ru:rv +

Z


uv;

then,

ja (u; v)j =
����Z


ru:rv +

Z


uv

����
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ja (u; v)j �
Z


jruj jrvj+ juj jvj ; 8u; v 2 H1(
);

by using Lemma 2 we have

ja (u; v)j � kukH1(
) kvkH1(
) ; 8u; v 2 H1(
);

therefore, since H1
0 (
) � H1 (
) and H1

0 norm is induced by H
1 norm, the last inequality holds

in H1
0 (
); that is,

ja (u; v)j � kukH1
0 (
)

kvkH1
0 (
)

; 8u; v 2 H1
0 (
):

Thus, a (:; :) is continuous.

2) Coercivity:

a (u; u) =

NX
i=1

Z



���� @u@xi
����2 + Z



u2; 8u 2 H1

0 (
);

=

Z


jruj2 +

Z


juj2 ; 8u 2 H1

0 (
);

�
Z


jruj2 ; 8u 2 H1

0 (
);

then,

a (u; u) � kruk2L2 ; 8u 2 H1
0 (
):

Since 
 is bounded, krukL2 de�ne a norm in H1
0 (
) equivalent to the norm reduced by H

1 (
)

norm, thus, there exists a constant � > 0 such that

a (u; u) � � kuk2H1
0
; 8u 2 H1

0 (
):

b) A linear form:

Let ' be the form de�ned on H1
0 (
) by

' (v) =

Z


fv; 8v 2 H1

0 (
);

then ' is a linear continuous form.

Indeed, it is easy to show that ' is linear.
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Also, by using Cauchy Schwarz inequality

j' (v)j �
�Z



jf j2

� 1
2
�Z



jvj2
� 1

2

; 8v 2 H1
0 (
);

� kfkL2 kvkL2 ; 8v 2 H1
0 (
);

� C kvkH1
0 (
)

; 8v 2 H1
0 (
):

where C = kfkL2 . Thus, ' is continuous.

By using Lax-Milgram lemma for the bilinear form a (:; :) and the linear form ', problem

(3.2) has a unique solution u 2 H1
0 (
).

Moreover, the bilinear form a (:; :) is symmetric, then u minimizes the functional

J (v) =
1

2
a (v; v)� '(v);

in H1
0 (
), which is the Dirichlet principle.

3.3 Problem 2

Let L be the elliptic operator on the divergence form

L (u) = �
NX

i;j=1

@

@xj

�
aij (x)

@u

@xi

�
+ a0 (x)u;

where aij and a0 are in L1 (
) and consider the problem:

Find u which satis�es,

8><>:
�

NP
i;j=1

@
@xj

�
aij (x)

@u
@xi

�
+ a0 (x)u = f; in 


u = 0, in @


(3.13)

De�nition: We say that the functions aij verify the coercivity property, if there exists a

constant � > 0 such that

NX
i;j=1

aij�j�i � �

NX
i=1

�2i ; 8x 2 
 and 8� 2 IRN ;
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or, in the equivalent form

((aij) :�) :� � ��:�; 8x 2 
; 8� 2 IRN :

Theorem 6: Suppose that the functions aij veri�es the property of coercivity and a0 (x) > 0

in 
, then, for every f 2 L2 (
), problem (3.13) has a unique weak solution u 2 H1
0 (
).

Proof : It�s easy to show that every classical solution to (3.13) veri�es

NX
i;j=1

Z


aij (x)

@u

@xi

@v

@xj
+

Z


a0uv =

Z


fv; 8v 2 H1

0 (
); (3.14)

and then, it is a weak solution.

We de�ne a bilinear form a (:; :) on H1
0 (
) by

a (u; v) =

NX
i;j=1

Z


aij (x)

@u

@xi

@v

@xj
+

Z


a0uv;

and a linear form ' by

' (v) =

Z


fv;

then, a (:; :) and ' verify the hypotheses of Lax-Milgram lemma.

Indeed,

1) a (:; :) is continuous,

a (u; v) =

Z


(aij (x) :ru) :rv +

Z


a0uv;

we can show that,

ja (u; v)j �M
X

1�i;j�N

Z



���� @u@xi
���� ���� @v@xj

����+mZ


juj jvj ; 8u; v 2 H1

0 (
);

where M = sup
1�i;j�N
x2


jaij (x)j and m = sup
x2


ja0 (x)j :
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Consequently,

ja (u; v)j � MN2

Z


jruj jrvj+m

Z


juj jvj ; 8u; v 2 H1

0 (
);

� max
�
MN2;m

	Z


jruj jrvj+ juj jvj ; 8u; v 2 H1

0 (
);

By using Lemma 2, we arrive at

ja (u; v)j � max
�
MN2;m

	
kukH1 kvkH1 ; 8u; v 2 H1

0 (
);

then, since kukH1 = kukH1
0
; for u 2 H1

0 (
),

ja (u; v)j � max
�
MN2;m

	
kukH1

0
kvkH1

0
; 8u; v 2 H1

0 (
);

Thus, there exists a positive constant C = max
�
MN2;m

	
such that

ja (u; v)j � C kukH1
0
kvkH1

0
; 8u; v 2 H1

0 (
):

Therefore, a (:; :) is continuous.

2) a (:; :) is coercive,

by using the coercivity property we have

a (u; u) =

NX
i;j=1

Z


aij (x)

@u

@xi

@u

@xj
+

Z


a0 (x)u

2; 8u 2 H1
0 (
)

� �
NX
i=1

Z



���� @u@xi
����2 + Z



a0u

2; 8u 2 H1
0 (
);

since a0 is positive then,

a (u; u) � � kruk2L2 ; 8u 2 H1
0 (
);

from corollary II-14, krukL2 de�ne an equivalent norm in H1
0 (
). Then,

a (u; u) � � kuk2H1
0
; 8u 2 H1

0 (
);
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which completes the proof of the coercivity of a (:; :).

Remark : In what is above we denote kruk
(L2)N

by krukL2 .

3) ' is continuous, as in N� 3 of the proof of theorem 5.

Thus, by using Lax-Milgram lemma there exists a unique solution u 2 H1
0 (
) to problem

(3.14), which is a weak solution to (3.13).

3.4 Problem 3: Nonhomogeneous Neumann problem

Consider the problem 8<: ��u+ a0u = f in 


@u
@� = g in @


(3.15)

where a0 2 L1 (
) ; f 2 L2 (
) and g 2 L2 (@
).

Multiplying both sides by v 2 C1 (
) \ H1 (
) and integrating over 
, by using Green�s

formula, we arrive at

NX
i=1

Z



@u

@xi

@v

@xi
dx�

Z
@


@u

@�
vd� +

Z


a0uvdx =

Z


fvdx;

then,

NX
i=1

Z



@u

@xi

@v

@xi
dx+

Z


a0uvdx =

Z


fvdx+

Z
@


@u

@�
vd�; 8v 2 C1 (
) \H1(
); (3.16)

since C1 (
) \H1 (
) is dense in H1 (
), the last equality holds for every v 2 H1 (
).

De�nition : We say that a function u 2 H1 (
) is a weak solution to the problem (3.15) if

u veri�es (3.16) 8v 2 H1 (
).

Study of Problem 3:

Let a (:; :) be the bilinear form de�ned on H1 (
) by
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a (u; v) =

NX
i=1

Z



@u

@xi

@v

@xi
dx+

Z


a0uvdx; 8u; v 2 H1 (
)

and ' be the linear form de�ned by

' (v) =

Z


fvdx+

Z
@


@u

@�
vd�; 8v 2 H1(
):

Theorem 6: In addition to the assumptions on a0; f and g, suppose that there exists a constant

�0 > 0 such that

a0 (x) � �0; almost everywhere in 
.

Then problem (3.15) has a unique weak solution in H1 (
).

Proof : It su¢ ces to prove that a and ' verify the hypotheses of Lax-Milgram lemma.

1) Continuity of a (:; :)

ja (u; v)j �
Z


jruj jrvj+

Z


ja0uvj ; 8u; v 2 H1(
);

ja (u; v)j �
Z


jruj jrvj+ ka0k1

Z


juvj ; 8u; v 2 H1(
);

therefore,

ja (u; v)j � max f1; ka0k1g
�Z



jruj jrvj+

Z


juvj

�
; 8u; v 2 H1(
);

by using Lemma 2 we get

ja (u; v)j � max f1; ka0k1g kukH1(
) kvkH1(
) ; 8u; v 2 H1(
);

then, for C = max f1; ka0k1g the last inequality takes the form

ja (u; v)j � C kukH1 kvkH1 ; 8u; v 2 H1(
):

Thus, a (:; :) is continuous.

46



2) Coercivity of a (:; :)

a (u; u) =

NX
i=1

Z



���� @u@xi
����2 + Z



a0 (x) juj2 ; 8u 2 H1(
);

�
Z


jruj2 + �0

Z


u2; 8u 2 H1 (
) ;

� min f1; �0g
�Z



jruj2 +

Z


juj2
�
; 8u 2 H1(
);

therefore, using the equivalent between the norms

kukH1(
) =

�Z


jruj2 +

Z


u2
� 1

2

and

kukH1(
) =
NX
i=1





 @u@xi





L2
+ kukL2

in H1 (
), we assert that there exists a constant � > 0 such that

a (u; u) � min f1; �0g
�
kruk2L2 + kuk

2
L2

�
; 8u 2 H1(
);

� �

 
nX
i=1





 @u@xi





L2
+ kukL2

!2
; 8u 2 H1(
);

then,

a (u; u) � � kuk2H1(
) ; 8u 2 H1(
):

Thus, a (:; :) is coercive.

3) Continuity of ': Recall that from the trace theorem, there exists a constant B > 0

such that

kvkL2(@
) � B kvkH1(
) ; 8v 2 H1(
):
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Therefore,

j' (v)j �
Z


jfvj+

Z
@

jgvj ; 8v 2 H1 (
) ;

� kfkL2(
) kvkL2(
) + kgkL2(@
) kvkL2(@
) ; 8v 2 H1(
);

� kfkL2(
) kvkL2(
) +B kgkL2(@
) kvkH1(
) ; 8v 2 H1(
);

hence,

j' (v)j �
�
kfkL2(
) +B kgkL2(@
)

�
kvkH1(
) ; 8v 2 H1(
):

Set B0 = kfkL2(
) +B kgkL2(@
) ; then,

j' (v)j � B0 kvkH1(
) ; 8v 2 H1(
):

Thus, ' is continuous.

By Lax-Milgram lemma, problem (3.15) has a unique solution u 2 H1 (
).

3.5 Problem 4: A nonsymmetric case

Let us consider the problem

8><>:
�

NP
i;j=1

@
@xi

�
aij (x)

@u
@xj

�
+

NP
i=1
bi (x)

@u
@xi

+ a0 (x)u = f in 


u = 0 in @


(3.17)

where aij ; bi; a0 2 L1 (
) and f 2 L2 (
).

As in Dirichlet problem, multiplying the equation by v 2 C10 (
) and integrating over 
,

using Green�s formula, we have

NX
i;j=1

Z


aij (x)

@u

@xj

@v

@xi
+

NX
i=1

Z


bi (x)

@u

@xi
v +

Z


a0 (x)uv =

Z


fv; 8v 2 C10 (
):

By density of C10 (
) in H
1
0 (
), the above equality holds for every v 2 H1

0 (
) and a function

u 2 H1
0 (
). So we get
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NX
i;j=1

Z


aij (x)

@u

@xj

@v

@xi
+

NX
i=1

Z


bi (x)

@u

@xi
v +

Z


a0 (x)uv =

Z


fv; 8v 2 H1

0 (
): (3.18)

In this case, u is said to be a weak solution of problem 4.

Let aij ; bi; a0 belong to L1 (
) and f 2 L2 (
).

Theorem 7: Suppose that aij verify the coercivity property. Then, there exists a constant


 > 0 such that, if a0 (x) � 
 a.e. in 
, the problem (3.17) has a unique weak solution

u 2 H1
0 (
) [14] :

Proof : De�ne a bilinear form a (:; :) and a linear form ' on H1
0 (
) by

a (u; v) =

NX
i;j=1

Z


aij (x)

@u

@xj

@v

@xi
+

NX
i=1

Z


bi (x)

@u

@xi
v +

Z


a0 (x)uv;

and

' (v) =

Z


fv

It su¢ ces to prove that a (:; :) and ' verify the hypothesis of Lax-Milgram lemma.

1) Continuity of a (:; :):

ja (u; v)j �M
NX

i;j=1

Z



���� @u@xj
���� ���� @v@xi

����+M0

NX
i=1

Z



���� @u@xi
���� jvj+mZ



juj jvj (3.19)

where M = max
1�i;j�n

kaijk1 ; M0 = max
1�i�n

kbik1 and m = ka0k1.

By using Cauchy Schwarz inequality, (3.19) can be written

ja (u; v)j � M

NX
i;j=1

 Z



���� @u@xj
����2
! 1

2
 Z




���� @v@xi
����2
! 1

2

+M
NX
i=1

 Z



���� @u@xi
����2
! 1

2 �Z


jvj2
� 1

2

+m

�Z


juj2
� 1

2
�Z



jvj2
� 1

2

;

M

0@ NX
j=1





 @u@xj





L2

1A NX
i=1





 @v@xi





L2

!
+M0

 
NX
i=1





 @u@xi





L2

!
kvkL20

+m kukL2 kvkL2
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ja (u; v)j � M1

 
NX
i=1





 @u@xi





L2
+ kukL2

!0@ NX
j=1





 @v@xj





L2
+ kvkL2

1A ; 8u; v 2 H1
0 (
):

� M1 kukH1 kvkH1 ; 8u; v 2 H1
0 (
);

where M1 = max fM;M0;mg.

Thus, a (:; :) is continuous.

2) Coercivity:

a (u; u) =

NX
i;j=1

Z


aij (x)

@u

@xj

@u

@xi
+

NX
i=1

Z


bi (x)

@u

@xi
u+

Z


a0 (x)u

2; 8u 2 H1
0 (
);

by the coercivity property we have

a (u; u) � �

Z


jruj2 +

NX
i=1

Z


bi (x)

@u

@xi
u+

Z


a0 (x)u

2; 8u 2 H1
0 (
)

it is easy to show that

a (u; u)�
Z


a0 (x)u

2 � �

Z


jruj2 �

NX
i=1

Z



����bi (x) @u@xiu
����

a (u; u)�
Z


a0 (x)u

2 � �

Z


jruj2 � max

1�i�N
kbik1

NX
i=1

Z



���� @u@xi
���� juj ; (3.20)

recall that from Young�s inequality we have

Z



���� @u@xi
���� juj � "

Z



���� @u@xi
����2 + 1

4"

Z


juj2 ; 8" > 0; 8u 2 H1

0 (
);

if we insert this estimate of
R



��� @u@xi ��� juj in (3.20) we have
a (u; u)�

Z


a0 (x)u

2 � �

Z


jruj2 �M0"

Z


jruj2 � M0N

4"

Z


juj2 ; 8" > 0; 8u 2 H1

0 (
);

� (��M0")

Z


jruj2 � M0N

4"

Z


juj2 ; 8" > 0; 8u 2 H1

0 (
);
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then for " < �
M0

we have ��M0" > 0 and

a (u; u) � (��M0")

Z


jruj2 +

Z



�
a0 (x)�

M0N

4"

�
juj2 ; 8u 2 H1

0 (
): (3.21)

To get a0 (x)� M0N
4" � 0 it su¢ ces that a0 satisfy

a0 (x) �
M0N

4"
;

so, from the above estimate for ", the estimate for a0 becomes

a0 (x) >
M2
0N

4�
for a.e. x 2 
.

Then, if a0 (x) � 
 a.e. in 
, for any 
 > M2
0N
4� , it su¢ ces to choose " such that


 � M0N

4"
>
M2
0N

4�

to get

a0 (x)�
M0N

4"
� 0

and (3.21) implies that

a (u; u) � (��M0")

Z


jruj2 ; 8u 2 H1

0 (
):

Thus, because
R

 jruj

2 de�ne a norm in H1
0 (
), the last inequality can be written

a (u; u) � �0 kuk2H1
0 (
)

;

for some positive constant �0. Therefore, a (:; :) is coercive in H1
0 (
).

3) Continuity of ': As in problem 1.

We have showed that a (:; :) and ' ful�lled the hypotheses of Lax-Milgram lemma. Thus,

problem (3.18) has a unique solution u 2 H1
0 (
).
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Chapter 4

Nonlinear problems

4.1 First Problem

Let 
 be an open bounded subset of IRN with a boundary @
. We consider the following

nonlinear elliptic boundary value problem

8><>: �
NP
i=1

@
@xi

�
a (x; u) @u@xi

�
= f in 


u = 0 in @

(4.1)

where f is a given function to be speci�ed later.

To get the weak formulation of problem (4.1) we multiply both sides of the equation (4.1)

by v 2 C10 (
), integrate over 
 and use the integration by parts to get8><>:
NP
i=1

R

 a (x; u)

@u
@xi

@v
@xi

=
R

 fv; 8v 2 C10 (
)

u = 0 in @

(4.2)

by using the density of C10 (
) in H
1
0 (
), (4.2) holds for every v 2 H1

0 (
). Then, a weak

solution to (4.1) is a function u 2 H1
0 (
) which satis�es

NX
i=1

Z


a (x; u)

@u

@xi

@v

@xi
=

Z


fv, 8v 2 H1

0 (
): (4.3)

De�nition : Let a be the function a : 
� IR! IR.
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We say that a is a Caratheodory function, if

i) for every t 2 IR, the function a (:; t) : 
! IR is measurable,

ii) for almost everywhere x 2 
, the function a (x; :) : IR! IR is continuous.

Theorem 1: Suppose that a is a Caratheodory function and that there exist two constants

m and M such that

0 < m � a (x; t) �M , for a.e. x 2 
 and 8t 2 IR.

Then, for every f 2 H�1 (
), the problem (4.2) has a solution u 2 H1
0 (
).

Proof :

To study this problem we use a technique frequently used for nonlinear partial di¤erential

equations. We will use a priori estimate for the solution of such problem and to do so one can

use a �xed point theorem to solve approximative problems in �nite dimensional spaces where

one can obtain various results, then, one has to pass to the limit in the dimensional by using a

compact embedding theorem of Sobolev.

H1
0 (
) is a separable Hilbert space, so it has a Hilbertian basis [5], that is to say, there

exists a sequence

fen;n 2 N�g � H1
0 (
);

such that

hen; emi = �nm; 8n;m 2 N�,

and the space generated by fen;n 2 N�g is dense in H1
0 (
), where �nm is the Kronecker delta.

Also,

u =

1X
k=1

hu; eki ek; 8u 2 H1
0 (
)

and

kuk2H1
0 (
 ) =

1X
k=1

hu; eki2 , 8u 2 H1
0 (
):

Let Vn = Span [e1; e2; :::; en]; that is the space generated by fe1; e2; :::; eng.
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In each subspace Vn we consider an approximate problem to the given problem (4.2),

8><>:
un 2 Vn

NP
i=1

R

 a (x; un)

@un
@xi

@v
@xi

=
R

 fv; 8v 2 Vn

(4.4)

it is a nonlinear problem in a �nite dimensional space Vn.

A linear approximate problem:

Let w 2 Vn and change the problem (4.4) to a linear one

8><>:
uw 2 Vn

NP
i=1

R

 a (x;w)

@uw
@xi

@v
@xi

=
R

 fv; 8v 2 Vn.

(4.5)

Proposition 2: For every f 2 H�1(
), problem (4.5) has a unique solution uw 2 Vn.

Proof : Note �rst that, since Vn is a �nite-dimensional space, all the norms are equivalent,

then, we equip Vn by the norm induced by H1
0 (
) norm, i.e.

kukVn =
NX
i=1





 @u@xi





L2(
)

:

Let b (:; :) be the bilinear form de�ned in Vn by

b (u; v) =

NX
i=1

Z


a (x;w)

@u

@xi

@v

@xi
; 8u; v 2 Vn

and let ' be the linear form de�ned by

' (v) =

Z


fv; 8v 2 Vn.

To use the Lax-Milgram lemma we must prove that b (:; :) and ' verify the hypotheses of lemma

1 in chapter 2.

1) b is continuous,
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jb (u; v)j �
NX
i=1

Z


ja (x;w)j

���� @u@xi
���� ���� @v@xi

���� ; 8u; v 2 Vn

� M

NX
i=1

Z


jruj jrvj ; 8u; v 2 Vn;

� MN

Z


jruj jrvj ; 8u; v 2 Vn;

by using Cauchy Schwarz inequality for the right-hand side we get

jb (u; v)j � MN

�Z


jruj2

� 1
2
�Z



jrvj2

� 1
2

; 8u; v 2 Vn;

� MN kukH1
0
kvkH1

0
; 8u; v 2 Vn,

hence,

jb (u; v)j � C kukVn kvkVn ; 8u; v 2 Vn,

where C =MN . Thus, b is continuous in Vn.

2) b is coercive,

b (u; u) =

NX
i=1

Z


a (x;w)

���� @u@xi
����2 ; 8u 2 Vn;

� m

Z


jruj2 ; 8u 2 Vn:

Since 
 is bounded,
R

 jruj

2 de�nes an equivalent norm to kukH1
0
in Vn, then, the last inequality

takes the form

b (u; u) � m kuk2Vn , 8u 2 Vn.

Therefore, b is coercive.

3) ' is continuous,

j' (v)j = jhf; vij

� kfkH�1 kvkH1
0
; 8v 2 H1

0 (
);
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then, by setting C 0 = kfkH�1 we have

j' (v)j � C 0 kvkH1
0
; 8v 2 H1

0 (
);

which means that ' is continuous in H1
0 (
), consequently in Vn.

Thus, by using the Lax-Milgram lemma in Vn, we assert that there exists a unique solution

uw to problem (4.5)

b (uw; v) = ' (v) , 8v 2 Vn.

Furthermore, if we replace v by uw in the last equality, we have

b (uw; uw) = ' (uw) ,

then, by using the coercivity property of b and the continuity of ', we get

m kuwk2Vn � b (uw; uw)

� ' (uw)

� kfkH�1 kuwkVn , (4.6)

so, if kuwkVn 6= 0, by dividing (4.6) by kuwkVn , we obtain the estimation

kuwkVn �
kfkH�1

m
, (4.7)

which holds even if kuwkVn = 0.

Remark: Note that Vn is a Hilbert space equipped by the inner product induced by H1

inner product, so one can apply the Lax-Milgram lemma.

Let T be the mapping de�ned in Vn by

T : w ! uw;

where w and uw are those mentioned above.

Provided we choose w in the ball B
�
0;
kfkH�1
m

�
� Vn, the solution uw = T (w) will be also
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in this ball. Therefore, by the Brouwer �xed point theorem, the mapping T has a �xed point

in Vn, provided we can prove its continuity.

Lemma 1 : T is continuous.

Proof : Let fwpg be a convergent sequence in Vn such that

wp �
kfkH�1

m
; 8p 2 N

and let w 2 Vn be its limit in Vn, i.e.

wp ! w with H1
0 -norm.

To prove the continuity of T it su¢ ces to prove that

T (wp)! T (w) in Vn.

Let up be the solution to (4.5) associated to wp. From (4.7) we have

up �
kfkH�1

m
; 8p 2 N;

then, the sequence fupg is bounded in Vn which is of �nite dimension. Thus, we can extract a

convergent subsequence fupkg. That is,

upk ! u; in Vn,

see [22].

Let fwpkg be the subsequence extracted from fwpg, it is a convergent sequence to w in

H1
0 (
), consequently in L

2 (
),

wpk ! w in L2(
):

Therefore, from fwpkg, we can again extract a subsequence, which we still denoted fwpkg, such

that

wpk ! w almost everywhere in 
,

57



see [5]. Thus, there exists 
0 � 
 such that

wpk (x)! w (x) ; 8x 2 
0

where

meas
�

=
0

�
= 0:

Recall that for almost everywhere x 2 
0, a (x; :) is continuous, then, there exists 
00 � 
0 such

that

meas
�

0=
00

�
= 0

and

a (x; :) : t! a (x; t) is continuous 8x 2 
00:

Thus,

a (x;wpk (x))! a (x;w (x)) ; 8x 2 
00;

also, since

meas
�

=
00

�
� meas

�

=
0

�
+meas

�

0=
00

�
then, meas (
=
00) = 0 and

a (x;wpk (x))! a (x;w (x)) almost everywhere in 
. (4.8)

For any v 2 Vn, multiply both sides of (4.8) by @v(x)
@xi

to get

a (x;wpk (x))
@v (x)

@xi
! a (x;w (x))

@v (x)

@xi
a.e. in 
, (4.9)

furthermore, ����a (x;wpk (x)) @v (x)@xi

���� �M

����@v (x)@xi

���� a.e. in 
.
In the other hand, v 2 H1

0 (
) ; gives,

M

����@v (x)@xi

���� 2 L2(
):
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Then, the sequence
n
a (x;wnk)

@v
@xi

o
, a (x;w) @v@xi and M

��� @v@xi ��� satisfy the hypotheses of the
dominated convergence theorem.

Thus,

a (x;wpk)
@v

@xi
; a (x;w)

@v

@xi
2 L2 (
)

and

a (x;wpk)
@v

@xi
�! a (x;w)

@v

@xi
in L2 (
) . (4.10)

In the other hand we have

upk �! u in Vn;

which implies that
@upk
@xi

�! @u

@xi
in L2 (
) .

Set fpk = a (x;wpk)
@v
@xi
; f = a (x;w) @v@xi ; gpk =

@upk
@xi

and g = @u
@xi
, by using the fact that if

fpk ! f in L2 (
)

and

gpk ! g in L2 (
)

then

fpkgpk ! fg in L1(
);

we arrive at

a (x;wpk)
@upk
@xi

@v

@xi
�! a (x;w)

@u

@xi

@v

@xi
in L1(
);

after a summation over i, we get

NX
i=1

Z


a (x;wpk)

@upk
@xi

@v

@xi
!

NX
i=1

Z


a (x;w)

@u

@xi

@v

@xi
; 8v 2 Vn: (4.11)

Recall that upk is the solution to (4.5) associated to wpk , so, for the left hand-side we have

NX
i=1

Z


a (x;wpk)

@upk
@xi

@v

@xi
=

Z


fv; 8v 2 Vn:
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Passing to the limit in the last equality and using (4.11) we arrive at

NX
i=1

Z


a (x;w)

@u

@xi

@v

@xi
=

Z


fv; 8v 2 Vn; (4.12)

which implies that u is the solution to (4.5) corresponding to w, hence,

u = T (w);

which proves that T is continuous. Then, by using the Brouwer �xed point theorem, we conclude

that there exists un 2 B
�
0;
kfkH�1
m0

�
� Vn such that

un = T (un):

Thus, the corresponding problem (4.12) to w = un, has un as a solution in Vn, this fact can be

written by
NX
i=1

Z


a (x; un)

@un
@xi

@v

@xi
=

Z


fv; 8v 2 Vn: (4.13)

Therefore, un is a solution to (4.4) in Vn.

4.2 The nonlinear problem in H1
0 (
)

Now one would like to show that at the limit un will provide us with a solution to the given

problem (4.3).

Let fung be the sequence in H1
0 (
) constructed by choosing in each Vn the solution to the

nonlinear problem (4.13), then, fung is bounded in H1
0 (
),

kunkH1
0
� kfkH�1

m
:

By using the compact embedding of H1
0 (
) in L

2 (
) we can extract a subsequence of fung,
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which we still denote fung, such that there exists u 2 H1
0 (
) and

un * u in H1
0 (
); (4.14)

un ! u in L2 (
)

and

un ! u a.e. in 
;

see [3], [20] and [5] respectively.

Thus, by using (4.8) we have

a (x; un (x))! a (x; u (x)) a.e. x 2 
.

In the other hand, let v be in H1
0 (
) and fvng � H1

0 (
) be a convergent sequence to v in

H1
0 (
), then,

@vn
@xi

! @v

@xi
in L2(
): (4.15)

We want to show that

a (x; un (x))
@vn
@xi

! a (x; u (x))
@v

@xi
in L2(
);

To do this, we use Minkowski�s inequality to get

 Z



����a (x; un) @vn@xi
� a (x; u) @v

@xi

����2
! 1

2

�

 Z



����a (x; un) @vn@xi
� a (x; un)

@v

@xi

����2
! 1

2

+

 Z



����a (x; un) @v@xi � a (x; u) @v@xi
����2
! 1

2

: (4.16)

Note that

 Z



����a (x; un) @vn@xi
� a (x; un)

@v

@xi

����2
! 1

2

�M

 Z



����@vn@xi
� @v

@xi

����2
! 1

2

:
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So, by (4.15) we conclude that

 Z



����a (x; un) @vn@xi
� a (x; un)

@v

@xi

����2
! 1

2

�! 0:

The convergence of the second term in the right hand-side of (4.16) to zero, is a consequence

of (4.10). Therefore,

lim
n!+1

 Z



����a (x; un) @v@xi � a (x; u) @v@xi
����2
! 1

2

= 0

and this completes the proof of

a (x; un)
@vn
@xi

! a (x; u)
@v

@xi
in L2(
): (4.17)

Weak-strong convergence:

Note that from (4.14) we easily get

@un
@xi

*
@u

@xi
in L2(
): (4.18)

From (4.17) and (4.18) we have

�
@un
@xi

; a (x; un)
@vn
@xi

�
!
�
@u

@xi
; a (x; u)

@v

@xi

�
: (4.19)

Indeed, it is easy to see that

�����@un@xi
; a (x; un)

@vn
@xi

�
�
�
@u

@xi
; a (x; u)

@v

@xi

����� �
�����@un@xi

; a (x; un)
@vn
@xi

� a (x; u) @v
@xi

�����+ �����@un@xi
� @u

@xi
; a (x; u)

@v

@xi

����� ; (4.20)

then, it su¢ ces to show that every term in the right-hand side converges to zero.

For the �st term we have

�����@un@xi
; a (x; un)

@vn
@xi

� a (x; u) @v
@xi

����� � 



@un@xi






L2





a (x; un) @vn@xi
� a (x; u) @v

@xi






L2
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and the convergence to zero is established by the fact that @un
@xi

is bounded in L2 (
) and

a (x; un)
@vn
@xi

strongly converges to a (x; u) @v@xi in L
2 (
).

For the second term recall that the weak convergence of @un@xi
to @u

@xi
in L2 (
), means that

lim
n!1

Z



�
@un
@xi

� @u

@xi

�
g = 0; 8g 2 L2(
):

Then, by replacing g by a (x; u) @v@xi , which is in L
2 (
), we establish the convergence of the

second term in (4.20) to zero.

By summation over i, (4.19) takes the form

NX
i=1

Z


a (x; un)

@un
@xi

@vn
@xi

�!
NX
i=1

Z


a (x; u)

@u

@xi

@v

@xi
: (4.21)

From (4.13) we have
NX
i=1

Z


a (x; un)

@un
@xi

@vn
@xi

=

Z


fvn; (4.22)

then, passing to the limit in (4.22), using the continuity of the linear form ' in H1
0 (
) and

(4.21), we arrive at
NX
i=1

Z


a (x; u)

@u

@xi

@v

@xi
=

Z


fv; 8v 2 H1

0 (
):

Therefore, u is a solution to (4.2).

4.3 Second problem

In this section we will generalize the result obtained for problem (4.1) to:

8><>:
�

NP
i;j=1

@
@xi
(aij (x; u)

@u
@xj
) = f in 


u = 0 in @


(4.23)

Let 
 be a bounded domain of IRN with a boundary @
 and let f 2 H�1 (
) be given.

Theorem 3 : Suppose that aij(:; :) are such that

aij(x; u) 2 L1(
� IR); 1 � i; j � N
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and satisfy the following properties:

1) aij(:; :) is Charathéodory, for 1 � i; j � N

2) there exists a positive constant � such that

NX
i;j=1

aij (x; u) �i:�j � � j�j2 ; 8� 2 IRN for a.e. x 2 
; 8u 2 IR:

Then, problem (4.23) has a weak solution u 2 H1
0 (
) :

Weak formulation :

To obtain the weak formulation of problem (4.23), we assume that u 2 C2 (
) \ C
�


�

is a strong solution to (4.23). By multiplying both sides of the above equation by a function

v 2 C10 (
) and integrating over 
, we get

NX
i;j=1

Z


aij (x; u)

@u

@xj

@v

@xi
=

Z


fv; 8v 2 C10 (
);

by using the density of C10 (
) in H
1
0 (
) we arrive at

NX
i;j=1

Z


aij (x; u)

@u

@xj

@v

@xi
=

Z


fv; 8v 2 H1

0 (
); (4.24)

which is the weak formulation of problem (4.23).

Thus, we a priori estimate that the solution of problem (4.24), if it exists, belongs to H1
0 (
) :

Proof of theorem 3:

As in the �rst problem, we construct a family fVng of �nite-dimensional subspaces ofH1
0 (
),

change the given problem to a linear one, prove that this linear problem has a weak solution in

each subspace Vn, then, pass to the limit using a result of the compact embedding theorem of

Sobolev.

Since H1
0 (
) is a separable Hilbert space, so, it has an in�nite Helbertian basis femg. Let

Vn be the �nite-dimensional subspace of H1
0 (
) generated by fe1; e2; :::; eng.
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Let w 2 Vn be �xed and de�ne an approximate problem to (4.24) by

NX
i;j=1

Z


aij (x;w)

@u

@xj

@v

@xi
=

Z


fv: (4.25)

It�s a linear problem for which we prove the existence of a unique solution u 2 Vn.

Let a (:; :) be a bilinear form de�ned on Vn by

a (u; v) =
NX

i;j=1

Z


aij (x;w)

@u

@xj

@v

@xi

and let ' be a linear form de�ned in Vn by

' (v) =

Z


fv:

To prove that problem (4.25) has a solution in Vn, it su¢ ces to prove that a (:; :) and ' ful�ll

the hypotheses of the Lax-Milgram lemma.

It�s easy to show that a (:; :) is bilinear. We just need to check the continuity and the

coercivity of a (:; :).

All the norms in Vn are equivalent, so, we equip Vn by the norm induced by H1
0 (
) norm

kukVn =
X

1�i�N





 @u@xi





L2
: (4.26)

1) Continuity of a (:; :):

ja (u; v)j �
NX

i;j=1

Z


jaij (x;w)j

���� @u@xj
���� ���� @v@xi

���� ; 8u; v 2 Vn;

� M

NX
i;j=1

Z



���� @u@xj
���� ���� @v@xi

���� ; 8u; v 2 Vn;

where M = max
1�i;j�N

kaij (:; w)kL1(
) :
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By using Cauchy Schwarz inequality we get

ja (u; v)j � M
NX

i;j=1

 Z



���� @u@xj
����2
! 1

2
 Z




���� @v@xi
����2
! 1

2

; 8u; v 2 Vn;

� M
NX

i;j=1

�Z


jruj2

� 1
2
�Z



jrvj2

� 1
2

; 8u; v 2 Vn:

Since 
 is bounded
�R

 jruj

2
� 1
2
de�nes an equivalent norm to (4.26) and

ja (u; v)j �MN2 kukH1
0
kvkH1

0
; 8u; v 2 Vn;

then, there exists a positive constant C =MN2 such that

ja (u; v)j � C kukVn kvkVn ; 8u; v 2 Vn:

Thus, a (:; :) is continuous.

2) Coercivity:

a (u; u) =
NX

i;j=1

Z


jaij (x;w)j

���� @u@xj
���� ���� @u@xi

����
� �

Z


jruj2 ; 8u 2 Vn: (4.27)

R

 jruj

2 de�nes an equivalent norm in H1
0 (
), consequently in Vn, so, (4.27) takes the form

a (u; u) � � kuk2Vn ; 8u 2 Vn: (4.28)

Thus, a (:; :) is coercive.

3) Continuity of ' :

j' (v)j � kfkH�1 kvkVn ; 8v 2 Vn; (4.29)
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then, by setting C 0 = kfkH�1 ; we get

j' (v)j � C 0 kvkVn ; 8v 2 Vn:

Thus, ' is continuous.

By using the Lax-Milgram lemma, problem (4.25) has a unique solution uw 2 Vn:

Furthermore, from (4.28) we have

� kuwk2Vn � a (uw; uw)

and from (4.29) we have

a (uw; uw) = ' (uw)

� kfkH�1 kuwkVn :

Thus, for the solution uw; we have the estimate

kuwkVn �
kfkH�1

�
: (4.30)

Let T be the map de�ned on Vn by

T : w �! uw;

then, provided we choose w such that

kwkVn �
kfkH�1

�
;

uw = T (w) will be in the ball B
�
0;
kfkH�1

�

�
and we can apply Brouwer �xed point theorem,

provided we can prove that T is continuous.

Let fwpg be a convergent sequence to w in Vn and let up be the solution of (4.25) associated

to wp
NX

i;j=1

Z


aij (x;wp)

@up
@xj

@v

@xi
=

Z


fv; 8v 2 Vn: (4.31)
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From (4.30) the sequence fupg is bounded in Vn which is a �nite-dimensional space. Then,

we can extract from fupg a convergent subsequence fupkg, where we denote its limit by u 2 Vn,

lim
k!1

upk = u in Vn: (4.32)

The subsequence fwpkg converges to w in Vn � H1
0 (
), consequently in L

2 (
), then, we

can extract again a subsequence, still denoted fwpkg, such that

wpk ! w; a.e. in 
:

Therefore, there exists 
0 � 
 such that

meas
�

=
0

�
= 0

and

wpk (x)! w (x) ; 8x 2 
0: (4.33)

In the other hand, since aij (x; :) is continuous for a.e. x in 
, there exists 
00 � 
0 such that

aij (x;wpk (x))! aij (x;w (x)) ; 8x 2 
00; (4.34)

where meas (
0=
00) = 0:

Thus, from (4.33) and (4.34), we can easily show that

aij (x;wpk (x))! aij (x;w (x)) a.e. in 
, (4.35)

consequently, for every v 2 Vn and 1 � i � N , we get

aij (x;wpk (x))
@v

@xi
! aij (x;w (x))

@v

@xi
a.e. in 
.

Furthermore, ����aij (x;wpk (x)) @v@xi
���� �M

���� @v@xi
����
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and

M

���� @v@xi
���� 2 L2(
):

Thus, by dominated convergence theorem apply to
n
aij (:; wpk)

@v
@xi

o
, aij (:; w) @v@xi andM

��� @v@xi ���,
we have

aij (:; wpk)
@v

@xi
! aij (:; w)

@v

@xi
in L2(
); 1 � i; j � N: (4.36)

By summation over i we get

NX
i=1

aij (:; wpk)
@v

@xi
!

NX
i=1

aij (:; w)
@v

@xi
in L2(
); 1 � j � N: (4.37)

Also, from (4.32) we have

@upk
@xj

! @u

@xj
in L2 (
) ; 1 � j � N: (4.38)

Thus, from (4.37) and (4.38) we get

@upk
@xj

NX
i=1

aij (:; wpk)
@v

@xi
! @u

@xj

NX
i=1

aij (:; w)
@v

@xi
in L1(
); 1 � j � N;

by summation over j we arrive at

X
1�i;j�N

aij (x;wpk)
@upk
@xj

@v

@xi
!

X
1�i;j�N

aij (x;w)
@u

@xj

@v

@xi
in L1(
);8v 2 Vn: (4.39)

Therefore, passing to the limit in (4.39), using the fact that upk is the solution of (4.31) corre-

sponding to wpk , we get

X
1�i;j�N

Z


aij (x;w)

@u

@xj

@v

@xi
=

Z


fv; 8v 2 Vn;

then, u is the solution of (4.25) associated to w

u = T (w):
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Thus, T is continuous.

Now, we are able to use the Brouwer �xed point theorem and guarantees that T has a �xed

point

un 2 B
�
0;
kfkH�1

�

�
� Vn:

Thus, un is the solution of problem (4.25) corresponding to w = un. This fact can be written

by X
1�i;j�N

Z


aij (x; un)

@un
@xj

@v

@xi
=

Z


fv; 8v 2 Vn:

Therefore, un is a solution to the nonlinear problem (4.24) in Vn:

4.4 Nonlinear problem in H1
0(
)

Now, after we solve problem (4.24) in Vn, one would like to show that, at the limit, the solution

un provide us with a solution to problem (4.23). For that let v 2 H1
0 (
) and let fvng be a

convergent sequence to v in H1
0 (
), then

@vn
@xi

�! @v

@xi
in L2(
): (4.40)

In the other hand, for any n 2 N�, let un be a solution to (4.24) in Vn, then, from (4.30)

the sequence fung is bounded in H1
0 (
).

Thus, by using the compact embedding of H1
0 (
) in L

2 (
), we can extract from fung a

subsequence funkg such that

unk * u in H1
0 (
);

unk �! u in L2 (
)

and

unk �! u a.e. in 
,

where u is an element of H1
0 (
), see [3], [20] and [5].
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As we did in (4.35) we can show that

aij (x; unk)! aij (x; u) a.e. in 
. (4.41)

Moreover, from (4.40) and (4.41) we get

aij (x; unk)
@vnk
@xi

�! aij (x; u)
@v

@xi
in L2(
):

Indeed, by using Minkowski�s inequality we can show that

 Z



����aij (x; unk) @vnk@xi
� aij (x; u)

@v

@xi

����2
! 1

2

�
 Z




����aij (x; unk) @vnk@xi
� aij (x; unk)

@v

@xi

����2
! 1

2

+

 Z



����aij (x; unk) @v@xi � aij (x; u) @v@xi
����2
! 1

2

;

the �rst term in the right-hand side converges to zero because

Z



����aij (x; unk) @vnk@xi
� aij (x; unk)

@v

@xi

����2 �M

Z



����@vnk@xi
� @v

@xi

����2

and
@vnk
@xi

�! @v

@xi
in L2 (
).

For the convergence of the second term it su¢ ces to replace wpk by unk in (4.36) and taking

into account the density of C10 (
) in H
1
0 (
).

Weak-strong convergence :

From the weak convergence of unk to u in H
1
0 (
) we get

@unk
@xj

*
@u

@xj
; 1 � j � N:

Also, we have

aij (x; unk)
@vnk
@xi

�! aij (x; u)
@v

@xi
in L2 (
) , 1 � i � N; (4.42)

then, �
@unk
@xj

; aij (x; unk)
@vnk
@xi

�
�!

�
@u

@xj
; aij (x; u)

@v

@xi

�
; 1 � i; j � N: (4.43)
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Indeed, �����@unk@xj
; aij (x; unk)

@vnk
@xi

�
�
�
@u

@xj
; aij (x; u)

@v

@xi

����� ������@unk@xj
; aij (x; unk)

@vnk
@xi

� aij (x; u)
@v

@xi

�����+ �����@unk@xj
� @u

@xj
; aij (x; u)

@v

@xi

����� ;
we just need to check that each term in the right-hand side converges to zero.

For the �rst term we use the fact that funkg is bounded in H1
0 (
) to get



@unk@xj






L2
� kfkH�1

�
;

also, we have

�����@unk@xj
; aij (x; unk)

@vnk
@xi

� aij (x; u)
@v

@xi

����� �




@unk@xj






L2





aij (x; unk) @vnk@xi
� aij (x; u)

@v

@xi






L2
;

� kfkH�1

�





aij (x; unk) @vnk@xi
� aij (x; u)

@v

@xi






L2
;

so, by (4.42) we conclude that

�����@unk@xj
; aij (x; unk)

@vnk
@xi

� aij (x; u)
@v

@xi

����� �! 0; 1 � i; j � N:

The convergence of �����@unk@xj
� @u

@xj
; aij (x; u)

@v

@xi

�����
to zero results from the weak convergence of

@unk
@xj

to @u
@xj
, which completes the proof of (4.43).

By summation over i and j; (4.43) takes the form

X
1�i;j�N

Z


aij (x; unk)

@unk
@xj

@vnk
@xi

�!
X

1�i;j�N

Z


aij (x; u)

@u

@xj

@v

@xi
: (4.44)

Furthermore, since unk is a solution to problem (4.24) in Vn we have

X
1�i;j�N

Z


aij (x; unk)

@unk
@xj

@vnk
@xi

=

Z


fvnk ;

passing to the limit in the last equality, using (4.44) and the continuity of the linear form ' in
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H1
0 (
), we arrive at

X
1�i;j�N

Z


aij (x; u)

@u

@xj

@v

@xi
=

Z


fv; 8v 2 H1

0 (
):

This completes the proof that u is a solution to problem (4.24) in H1
0 (
), consequently u is a

weak solution to the given problem (4.23).
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Chapter 5

Nonlinear problem involving

p-Laplacian operator

5.1 Introduction

In this chapter, we study a problem involving the p-Laplacian operator of the form:

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
= f in 


u = 0 in @

(5.1)

where 
 is a domain in IRN , N � 2, with a smooth boundary and 1 < p <1:

In [17], Lions studied a similar problem; namely,

�
NX
i=1

@

@xi

 ���� @u@xi
����p�2 @u@xi

!
= f in 
: (5.2)

By using the monotonicity method, he was proved that for every f 2 W�1;p0 (
) and for the

boundary condition u = 0, problem (5.2) has a unique solution u 2W 1;p
0 (
). For the boundary

condition u = gj@
, where g 2 Lp (@
), the solution of problem (5.2) belongs to W 1;p(
).
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P-Laplacian operator:

For u 2W 1;p(
), the gradient ru, is de�ned by

ru =
�
@u

@x1
;
@u

@x2
; :::;

@u

@xN

�

and the Euclidian norm of ru is

jruj =
 

NX
i=1

���� @u@xi
����2
! 1

2

:

In IRN , all the norms are equivalent, thus there exists a constant C > 0 such that jrujp �

C jruj, where

jrujp =
 

NX
i=1

���� @u@xi
����p
! 1

p

:

For jruj we have

Z


jrujp � C

Z


jrujpp

� C

 
NX
i=1

Z



���� @u@xi
����p
!
<1:

Thus,

jruj 2 Lp(
):

Furthermore, we have

Z



����jrujp�2 @u@xi
����p0 �

Z



�
jrujp�2 jruj

�p0
�

Z


jruj(p�1)p

0

�
Z


jrujp <1:

Consequently,

jrujp�2 @u
@xi

2 Lp0(
); 1 � i � N:
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The p-Laplatian is the operator denoted by �p and de�ned by

�pu = div
�
jrujp�2ru

�
=

X
1�i�N

@

@xi

�
jrujp�2 @u

@xi

�
;

this operator acts from W 1;p
0 (
) into W�1;p0 (
) via

h�pu; vi =
Z


jrujp�2ru:rv; 8u; v 2W 1;p

0 (
):

For more properties of the p-Laplacian see [11] and [12].

Description of the operator de�ning the main problem:

Let u 2W 1;p (
) and de�ne a vector Z by

Z =

 ���� @u@x1
����p�2 @u@x1 ;

���� @u@x2
����p�2 @u@x2 ; :::;

���� @u@xN
����p�2 @u

@xN

!
;

then,

Z 2 (Lp0 (
))N :

Indeed,

Z



 ���� @u@xi
����p�2 ���� @u@xi

����
!p0

=

Z



���� @u@xi
����(p�1)p0 ; 1 � i � N

=

Z



���� @u@xi
����p <1; 1 � i � N:

Problem (5.1) takes the form

8<: �div (a (x; u)Z) = f in 


u = 0 in @

:

Let V be a real Banach space of �nite-dimensional with basis fe1; e2; :::; emg and let (:; :) be
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the bilinear form de�ned on V by

(�; �) =

mX
i=1

�i�i; 8�; � 2 V;

where � =
mP
i=1
�iei and � =

mP
i=1
�iei, clearly,

(�; �) =

mX
i=1

�2i = j�j
2 :

Lemma 1:

Let P : V ! V be a continuous mapping and suppose that there exists a constant � > 0

such that

(P (�) ; �) � 0; 8� 2 V; j�j = �: (5.3)

Then, there exists � 2 V; j�j � � such that

P (�) = 0:

Proof :

Let K = f�; j�j � �g � V and suppose that

P (�) 6= 0; 8� 2 K;

then, the function de�ned from K into itself by

� ! �P (�) �jP (�)j ;

is continuous.

By using Brouwer �xed point theorem, there exists � 2 K such that

�P (�) �jP (�)j = �:
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Therefore, j�j = � and

(P (�) ; �) = �� jP (�)j < 0;

which is a contradiction with (5.3). See also [17].

De�nitions :

Let V be a Banach space and let A : V ! V 0 be an operator.

We say that

1) A is monotone if and only if

hA (u)�A (v) ; u� vi � 0; 8u; v 2 V:

2) A is hemicontinuous if, for all u; v; w in V; the real-valued function de�ned on IR by

�! hA (u+ �v) ; wi ;

is continuous.

Note that h:; :i is the duality pairing.

Theorem 1 :

Let V be a �nite-dimensional Banach space and let A : V ! V 0 be an operator satisfying

the following proprieties

A is hemicontinuous and

hA (u) ; ui
kukV

!1 as kukV !1:

Then,

8f 2 V 0;9u 2 V such that A(u) = f:

u is a weak solution.

Proof :

Let P be the mapping in V de�ned by

P (u) =

mX
i=1

hA (u)� f; eii ei;
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where fe1; e2; :::; emg is a basis for V . For u =
mP
i=1
�iei 2 V; we have

(�1; �2; :::; �m) �! (hA (u)� f; e1i ; hA (u)� f; e2i ; :::; hA (u)� f; emi) :

We will show that P satis�es the property of Lemma 1. Thanks to the hemicontinuity of A,

all the functions

�i ! hA (�iei + vi) ; eji � hf; eji ; 1 � i; j � m

are continuous, where

vi =

mX
k=1;k 6=i

�kek:

Thus, P is continuous.

Furthermore,

(P (u) ; u) =
mX
i=1

hA (u) ; eii �i �
mX
i=1

hf; eii �i

= hA (u) ; ui � hf; ui :

Since hA(u);ui
kukV

!1; as kukV !1; then, 8� > 0 there exists � > 0 such that

hA (u) ; ui
kukV

� �; 8u 2 V; kukV � �;

hence,

hA (u) ; ui � � kukV ; 8u 2 V; kukV � �:

Let � be chosen such that � � kfkV 0 ; then, there exists � > 0, such that

hA (u) ; ui � � kukV � 0; 8u 2 V; kukV � �;

which implies that

hA (u) ; ui � kfkV 0 kukV � 0; for kukV � �:
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By virtue of the inequality hf; ui � kfkV 0 kukV , we establish that

hA (u) ; ui � hf; ui � hA (u) ; ui � kfkV 0 kukV � 0; for all u 2 V; kukV � �:

So, by using Lemma 1, there exists u 2 V solution to the problem

A (u) = f:

5.2 The main Problem

Consider the problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
= f in 


u = 0 in @

; (5.4)

where a (:; :) is a function satisfying the following properties

1) a (:; :) is Carathéodory.

2) There exists two constants � and M such that

0 < � � a (x; u) �M; for a.e. x 2 
; 8u 2 IR:

Let w 2 W 1;p
0 (
) be �xed and change problem (5.1) to

8><>: �
NP
i=1

@
@xi

�
a (x;w)

��� @u@xi ���p�2 @u
@xi

�
= f in 


u = 0 in @

: (5.5)

It is a linearization to problem (5.4).

De�ne an operator A1 from W 1;p
0 (
) into W�1;p0 (
) by

A1 (u) = �
NX
i=1

@

@xi

 
a (x;w)

���� @u@xi
����p�2 @u@xi

!
:

Theorem 2 : The operator A1 is
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1) bounded and hemicontinuous.

2) monotone.

3) coercive, i.e.
hA1 (u) ; ui
kukV

!1; as kukV !1:

Moreover, for each f 2W�1;p0 (
) ; 9u 2W 1;p
0 (
) such that

A1(u) = f:

Also, if

hA1(u)�A1(v); u� vi > 0; 8u; v 2W 1;p
0 (
); u 6= v

then, u is unique.

Proof :

Let V = W 1;p
0 (
), with a dual V 0 = W�1;p0 (
). V and V 0 are re�exive and separable

Banach spaces. W 1;p
0 (
) has a basis fe1; e2; :::; em; :::g.

Let Vm be the �nite-dimensional subspace of V generated by fe1; e2; :::; emg; that is,

Vm = span [e1; e2; :::; em] ;

then, for um 2 Vm, we have

um =

mX
i=1

�iei:

1) Boundedness :

Let S =
n
u 2W 1;p

0 (
) ; kuk � C
o
. To prove that A1 is bounded, it su¢ ces to prove that

fA1 (u) ; u 2 Sg is bounded in W�1;p0 (
).

Indeed,

kA1 (u)kV 0 = sup
v2V;kvk=1

jhA1 (u) ; vij ;
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for the right-hand side, we have

jhA1 (u) ; vij =

������
NX
i=1

Z



@

@xi

 
a (x;w)

���� @u@xi
����p�2 @u@xi

!
vdx

������
=

������
NX
i=1

Z



a (x;w)

���� @u@xi
����p�2 @u@xi @v@xidx

������
� M

NX
i=1

Z



���� @u@xi
����p�1 ���� @v@xi

���� dx;
By Hölder�s inequality, we get

jhA1 (u) ; vij � M

NX
i=1

0@Z



���� @u@xi
����(p�1)p0

1A 1
p0
0@Z



���� @v@xi
����p
1A 1

p

� M
NX
i=1

0@Z



���� @u@xi
����p
1A 1

p0
0@Z



���� @v@xi
����p dx

1A 1
p

� MN kruk
p
p0
Lp krvkLp : (5.6)

Since 
 is bounded
R

 jruj

p de�nes an equivalent norm in W 1;p
0 (
); then, (5.6) becomes

jhA1 (u) ; vij �MN kuk
p
p0
V kvkV :

Also, for u 2 S, we have

jhA1 (u) ; vij � NMC
p
p0 kvkV :

Then,

sup
v2Vm;kvkV =1

jhA1 (u) ; vij � NMC
p
p0 = C 0:

Thus, A1 is bounded.

2) Hemicontinuity :

Set g (t) = hA1 (u+ tv1) ; v2i, then,

g (t) =

Z


a (x;w)

���� @u@xi + t@v1@xi

����p�2� @u@xi + t@v1@xi

�
@v2
@xi

:
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To prove that A1 is hemicontinuous, we suppose that ftng is a convergent sequence to t0
in IR and show that

g (tn)! g(t0):

For this, let hn and h0 be de�ned by

hn (x) = a (x;w)

���� @u@xi + tn@v1@xi

����p�2� @u@xi + tn@v1@xi

�
@v2
@xi

; n 2 N�;

h0 (x) = a (x;w)

���� @u@xi + t0@v1@xi

����p�2� @u@xi + t0@v1@xi

�
@v2
@xi

and prove that hn converges to h0 in L1 (
).

Recall that the convergence of the sequence ftng, implies that there exists a positive constant

B such that

jtnj � B; 8n 2 N�:

Using this fact and that a (x;w) is bounded by M , we get

jhn (x)j �M

�������� @u@xi
����+B ����@v1@xi

��������p�1 ����@v2@xi

���� ; (5.7)

since
��� @u@xi ��� and ���@v1@xi

��� are in Lp (
), then,
���� @u@xi

����+B ����@v1@xi

���� 2 Lp(
);
consequently, �������� @u@xi

����+B ����@v1@xi

��������p�1 2 Lp0(
);
also,

���@v2@xi

��� 2 Lp (
), therefore,
�������� @u@xi

����+B ����@v1@xi

��������p�1 ����@v2@xi

���� 2 L1(
): (5.8)

In the other hand, let ' be de�ned by

' (t) = j� (x) + t� (x)jp�2 (� (x) + t� (x));
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where � = @u
@xi

and � = @v1
@xi
.

Thanks to the continuity of ', for p > 1, we get, for �xed x in 
,

' (tn) �! '(t0);

then, for every x 2 
, we have

hn (x)! h0(x): (5.9)

From (5.7), (5.8) and (5.9) we assert that fhng, h0 and M
������ @u@xi ���+B ���@v1@xi

������p�1 ���@v2@xi

��� ful�l the
hypotheses of the dominated convergence theorem in L1 (
).

Thus, hn; h0 2 L1 (
) and

hn ! h0 in L1(
);

consequently,

g (tn) �! g(t0):

Therefore, A1 is hemicontinuous.

3) Monotonicity :

Let�s �rst prove a lemma, which we need later.

Lemma 2 : Let a; b be two real numbers and let q > �1, then

(jajq a� jbjq b) (a� b) � 0; 8a; b 2 IR:

Moreover,

(jajq a� jbjq b) (a� b) = 0 if and only if a = b:

Proof :

1) Suppose that b 6= 0 and jaj > jbj. Divide (jajq a� jbjq b) (a� b) by jbjq b2 and set x = a
b ;

we get

(jajq a� jbjq b) (a� b) = (jxjq x� 1) (x� 1);

where jxj > 1.
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If x > 1, then, since q + 1 > 0,

jxjq x = xq+1 > 1

and we easily get the result.

If x < �1, then

jxjq x < 0;

so

(jxjq x� 1) < 0 and (x� 1) < 0;

hence,

(jxjq x� 1) (x� 1) > 0:

If jbj > jaj ; we take x = b
a and repeat the same proof.

2) Suppose that

(jxjq x� 1) (x� 1) = 0;

then,

jxjq x� 1 = 0 or x� 1 = 0:

If x > 0; then jxjq x� 1 = 0 implies that

xq+1 = 1:

If x < 0; then jxjq x < 0 and

jxjq x� 1 < �1:

Therefore,

x = 1:

Monotonicity:

To prove that

hA1 (u)�A1 (v) ; u� vi =
NX
i=1

Z



a (x;w)

 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
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is nonnegative, it su¢ ces to use the above lemma with q = p � 2; a = @u
@xi

and b = @v
@xi

to get

that  ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
� 0;

then, using the fact that a (x;w) � �; we arrive at

hA1 (u)�A1 (v) ; u� vi � �
NX
i=1

Z



 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
� 0:

This completes the proof of the monotonicity of A1.

4) Coercivity :

hA1 (u) ; ui = �
NX
i=1

Z



@

@xi

 
a (x;w)

���� @u@xi
����p�2 @u@xi

!
udx

=

NX
i=1

Z



a (x;w)

���� @u@xi
����p�2 @u@xi @u@xidx

=

NX
i=1

Z



a (x;w)

���� @u@xi
����p dx

� �

0@ NX
i=1

Z



���� @u@xi
����p dx

1A = � kukpV ; (5.10)

which gives
hA1 (u) ; ui
kukVm

� � kukp�1V :

Therefore
hA1 (u) ; ui
kukV

!1 as kukVm !1; if p > 1:

5.3 The approximate problem in W 1;p
0 (
)

Let fe1; e2; :::; em; :::g be a basis for W 1;p
0 (
), and let Vm = span [e1; e2; :::; em], equipped with

the norm induced by the W 1;p
0 (
) norm.

In Vm, which is of �nite-dimension, the hemicontinuity and the coercivity properties are
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enough to assert the existence of a weak solution um to the problem

A1 (u) = f:

Notice that for this solution we have

hA1 (um) ; eji = hf; eji for all j; 1 � j � m;

furthermore, from (5.10) we have

hA1 (um) ; umi � � kumkpV :

On the other hand,

hA1 (um) ; umi = hf; umi

� kfkV 0 kumkV

then,

� kumkpV � kfkV = kumkV ;

hence

kumkV �
 
kfk

V
=
m

�

! 1
p�1

:

Thus, the sequence fumg is bounded in V , consequently, by using the boundedness of A1, the

sequence fA1 (um)g is bounded in V 0.

Since V and V 0 are re�exive spaces, we can extract a subsequence fumk
g such that

umk
* u in V and A1 (umk

)* l in V 0: (5.11)

Passing to the limit in the equality

hA1 (umk
) ; eji = hf; eji
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we get

hl; eji = hf; eji 8j � 1;

hence,

l = f:

On the other hand, we are not able to pass to the limit in the left-hand side of the equality

hA1 (umk
) ; umk

i = hf; umk
i ;

however, using the weak convergence of fumk
g, we can pass to the limit in the right-hand side,

hence

hA1 (umk
) ; umk

i = hf; umk
i ! hf; ui : (5.12)

Now, using the monotonicity, we have

lim
k!1

fhA1 (umk
) ; umk

i � hA1 (umk
) ; vi � hA1 (v) ; umk

i+ hA1 (v) ; vig � 0

and using (5.11) and (5.12) we obtain

hf �A1 (v) ; u� vi � 0 for all v 2 V:

Let v = u + �z; where � > 0 and z 2 V . Using the hemicontinuity of A1 and passing to the

limit �! 0; in the inequality

hf; u� vi � hA1 (v) ; u� vi

we get

hf; zi � hA1 (u) ; zi : (5.13)

Changing z by �z in the last inequality, we obtain

hA1 (u) ; zi � hf; zi : (5.14)
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From (5.13) and (5.14) we get

hA1 (u) ; zi = hf; zi :

Thus, u is a solution to problem (5.5).

5) Uniqueness :

For u; v 2 V we have seen that

hA1 (u)�A1 (v) ; u� vi

=

NX
i=1

Z


a (x;w)

 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�

� �

NX
i=1

Z



 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
� 0: (5.15)

Suppose that u and v are two solution to problem (5.5), then

hA1 (u) ; zi = hf; zi = hA1 (v) ; zi ; 8z 2 V;

consequently,

hA1 (u)�A1 (v) ; u� vi = 0: (5.16)

By using (5.15) and (5.16), we arrive at

 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
= 0; 1 � i � N;

then, by lemma 2, we have
@u

@xi
=

@v

@xi
; 1 � i � N;

hence,

u� v = c 2W 1;p
0 (
);

which implies that

u = v in Lp(
):
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Therefore,

u = v a.e. in 
:

5.4 The main problem in W 1;p
0 (
)

Note that the solution u to problem (5.5) is bounded

kukV �
�
kfkV =
�

� 1
p�1

= C1

Let T be the function de�ned on V by

T (w) = u;

where, u is the solution to problem (5.5) corresponding to w.

Let w be chosen such that

kwkV � C1;

then, by vertue of Brouwer �xed point theorem, the mapping

T : B (0; C1)! B (0; C1)

has a �xed point, provided we can show its continuity.

Let fwkg be a convergent sequence to w in V and let fukg be the sequence of solutions

associated to fwkg; i.e.

uk = T (wk);

fukg is bounded in V , which is re�exive space , then we can extract a subsequence still

denoted fukg and there exists u 2 V such that

uk * u in V:
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The subsequence fwkg converges strongly to w in W 1;p
0 (
), hence wk ! w in Lp(
), so we can

extract again a subsequence fwklg such that, wkl (x)! w (x) almost everywhere in 
.

Using the proprieties of a (:; :) we can prove; as we showed in problem 1; that

a (x;wkl)! a (x;w) a.e. in 


then, for v1 2W 1;p
0 (
), we get

a (x;wkl)

����@v1@xi

����p�2 @v1@xi
! a (x;w)

����@v1@xi

����p�2 @v1@xi
a.e .in 
:

Furthermore, �����a (x;wkl)
����@v1@xi

����p�2 @v1@xi

����� �M

����@v1@xi

����p�1 and ����@v1@xi

����p�1 2 Lp0(
):
Thus, the sequence

�
a (x;wkl)

���@v1@xi

���p�2 @v1@xi

�
; a (x;w)

���@v1@xi

���p�2 @v1@xi
and M

���@v1@xi

���p�1 ful�l the
hypotheses of the dominated convergence theorem, consequently,

a (x;wkl)

����@v1@xi

����p�2 @v1@xi
! a (x;w)

����@v1@xi

����p�2 @v1@xi
in Lp

0
(
):

Therefore, for v 2W 1;p
0 (
), we get

a (x;wkl)

����@v1@xi

����p�2 @v1@xi

@v

@xi
! a (x;w)

����@v1@xi

����p�2 @v1@xi

@v

@xi
in L1(
);

which we can write as

NX
i=1

Z



a (x;wkl)

����@v1@xi

����p�2 @v1@xi

@v

@xi
dx!

NX
i=1

Z



a (x;w)

����@v1@xi

����p�2 @v1@xi

@v

@xi
dx: (5.17)

If we de�ne an operator Ak by

Ak (v1) = �
NX
i=1

@

@xi

 
a (x;wkl)

����@v1@xi

����p�2 @v1@xi

!
;
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(5.17) shows that

hAk (v1) ; vi ! hA1 (v1) ; vi : 8v 2W 1;p
0 (
): (5.18)

Also, because ukl is a solution to

Ak (u) = f;

we have

hAk (ukl) ; vi = hf; vi ; 8v 2W
1;p
0 (
): (5.19)

Moreover, using the weak convergence of fuklg to u; we obtain

hAk (ukl) ; ukli = hf; ukli ! hf; ui : (5.20)

Recall that

a (x;wkl)

���� @v@xi
����p�2 @v@xi ! a (x;w)

���� @v@xi
����p�2 @v@xi strongly in Lp0 (
)

and
@ukl
@xi

*
@u

@xi
weakly in Lp(
);

then, using the weak-strong convergence as we did in problem 1, we get

hAk (v) ; ukli =
NX
i=1

Z



a (x;wkl)

���� @v@xi
����p�2 @v@xi @ukl@xi

dx! hA1 (v) ; ui : (5.21)

By using (5.18)-(5.21) and

hAk (ukl)�Ak (v) ; ukl � vi = hAk (ukl) ; ukli � hAk (ukl) ; vi � hAk (v) ; ukli+ hAk (v) ; vi � 0

and passing to the limit we get

hf; ui � hf; vi � hA1 (v) ; ui+ hA1 (v) ; vi � 0;

therefore,

hA1 (v) ; v � ui � hf; v � ui :
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Replacing v in the last inequality by u+ �z, for z 2 W 1;p
0 (
), � > 0 and repeating the same

steps as in (5.13), (5.14), we obtain

hA1 (u) ; vi = hf; vi ; 8v 2W 1;p
0 (
):

Thus, u is the weak solution to (5.5) associated to w

u = T (w);

which shows that T is continuous.

Finally, by using the Brouwer �xed point theorem for T , there exists u 2 B (0; C1) such that

u = T (u):

That is
NX
i=1

Z


a (x; u)

���� @u@xi
����p�2 @u@xi @v@xidx =

Z


fv; 8v 2W 1;p

0 (
):

Therefore, u is a weak solution to problem (5.4).
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Chapter 6

Second problem involving

p-Laplacian operator

6.1 Introduction

In this chapter, we consider the problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
+ b (x)u = f in 


u = 0 in @

(6.1)

where 
 is a domain in IRN with a smooth boundary.

Let A be the operator de�ned from W 1;p
0 (
) into W�1;p0 (
) by

A (u) = �
NX
i=1

@

@xi

 
a (x; u)

���� @u@xi
����p�2 @u@xi

!
+ b (x)u.

Remark : Recall that a function u 2W 1;p
0 (
) satisfying, for a given f 2W�1;p0 (
),

hA(u); vi = hf; vi ; 8v 2W 1;p
0 (
);

is called a weak solution to problem (6.1).

We state some theorems which serve us later.
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Theorem 1: (Existence)

Let V be a �nite-dimensional Banach space and let A : V ! V 0 be an operator satisfying

the following proprieties

1) A is hemicontinuous.

2) hA(u);uikukV
!1 as kukV !1.

Then

8f 2 V 0; 9u 2 V such that A(u) = f .

Theorem 2:(Rillich Kondrachov)

Let 
 be an open bounded subset of IRN with a C1 boundary. Suppose that 1 � p < N

and let p� = Np
N�p . Then, for each 1 � q < p� the embedding

W 1;p (
) � Lq (
)

is compact. Moreover we have the estimate

kukLq(
) � � kukW 1;p(
) : (6.2)

for some � depending only on p and N:

Also, by using (6.2) and the equivalence between the norms kuk
W 1;p
0 (
)

= krukLp(
) and

kukW 1;p(
) in W
1;p
0 (
) we get, for u 2W 1;p

0 (
),

kukLq(
) � �0 krukLp(
) , (6.3)

where �0 is a positive constant depending only on p, N and 
.

6.2 An approximate problem

For a �xed w 2W 1;p
0 (
), let A1 be the operator de�ned by

A1 (u) = �
NX
i=1

@

@xi

 
a (x;w)

���� @u@xi
����p�2 @u@xi

!
+ b (x)u (6.4)
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Properties of A1 in W 1;p
0 (
):

Suppose that a (:; :) 2 L1 (
� IR) and b 2 L1 (
).

Furthermore, suppose that a is Charathéodory and there exist two constants � and M such

that

0 < � � a (x; u) �M , for almost every x 2 
, 8u 2 IR

and

0 < � � b (x) �M , for almost every x 2 
.

Proposition 3:

Let V =W 1;p
0 (
) and A1 : V ! V 0 be the operator de�ned by (6.4), then for p satisfying

2N

2 +N
� p < N; N � 3

a) The operator A1 is

1) bounded and hemicontinuous.

2) monotone.

3) coercive; i.e.
hA1 (u) ; ui
kukV

!1, as kukV !1.

b) for each f 2W�1;p0(
), 9u 2W 1;p
0 (
) such that

A1(u) = f . (6.5)

Proof : 1) Boundedness :

Set S =
n
u 2W 1;p

0 (
), kuk
W 1;p
0
� C

o
, thenA (S) = fA1(u), u 2 Sg is bounded inW�1:p0 (
).

Indeed,
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for every v in W 1;p
0 (
), we have

j(A1 (u) ; v)j =

�������
NX
i=1

Z



@

@xi

 
a (x;w)

���� @u@xi
����p�2 @u@xi

!
vdx+

Z


b (x)uvdx

������
�

������
NX
i=1

Z



a (x;w)

���� @u@xi
����p�2 @u@xi @v@xidx

������+
����Z


b (x)uvdx

����
� M

NX
i=1

Z



���� @u@xi
����p�1 ���� @v@xi

���� dx+M Z


juvj dx: (6.6)

In order to be able to use Hölder�s inequality in each integral in the last inequality, we need to

choose u and v in W 1;p
0 (
) \ L2 (
). So it su¢ ces to choose p such that

W 1;p
0 (
) ,! L2 (
) .

From Theorem 2, p must satis�es the inequalities

1 � p < N ,

p� =
Np

N � p � 2,

therefore,
1

p
� 1

N
� 1

2
;

then,
2N

2 +N
� p < N:

Now, we are able to use Hölder�s inequality for (6.6) to get

j(A1 (u) ; v)j � M

NX
i=1

0@Z



���� @u@xi
����(p�1)p0

1A 1
p0
0@Z



���� @v@xi
����p
1A 1

p

+M kukL2(
) kvkL2(
)

� MN

�Z


jrujp

� 1
p0

0@Z



jrvjp
1A 1

p

+M kukL2(
) kvkL2(
)
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which we can also write

j(A1 (u) ; v)j �MN kruk
p
p0

Lp(
) krvkLp(
) +M kukL2(
) kvkL2(
) : (6.7)

Since u 2 S then krukLp(
) � C, consequently, we get from (6.3) and (6.7)

j(A1 (u) ; v)j � MNC
p
p0 krvkLp(
) +M

�
�0
�2
C krvkLp(
)

j(A1 (u) ; v)j � � kvk
W 1;p
0 (
)

;

where � =M max
n
NC

p
p0 ,
�
�0
�2
C
o
, so,

kA1 (u)kV 0 = sup
v2V;kvk=1

jhA1 (u) ; vij � �:

Therefore, A1 is bounded.

2) Hemicontinuity:

Set g (t) = hA1 (u+ tv1) ; v2i; that is

g (t) =

NX
i=1

Z


a (x;w)

���� @u@xi + t@v1@xi

����p�2� @u@xi + t@v1@xi

�
@v2
@xi

+

Z


b (x) (u+ tv1) v2:

Suppose that ftng is a convergent sequence to t0 in IR. We will show that

g (tn)! g (t0) :

Let (hn), (kn), h0 and k0 be de�ned by

hn (x) = a (x;w)

����@u (x)@xi
+ tn

@v1 (x)

@xi

����p�2�@u (x)@xi
+ tn

@v1 (x)

@xi

�
@v2 (x)

@xi
, for n 2 N�

h0 (x) = a (x;w)

����@u (x)@xi
+ t0

@v1 (x)

@xi

����p�2�@u (x)@xi
+ t0

@v1 (x)

@xi

�
@v2 (x)

@xi
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and

kn (x) = b (x) (u (x) + tnv1 (x)) v2 (x) ; for n 2 N�

k0 (x) = b (x) (u (x) + t0v1 (x)) v2 (x) :

We have already proved in Theorem 2 of the previous chapter, that

hn ! h0 in L1(
): (6.8)

Let us prove that

kn ! k0 in L1(
):

Set  (t) = b (x) (u (x) + tnv1 (x)) v2 (x) for �xed x in 
, clearly  is continuous, consequently,

kn (x)! k0 (x) every where in 
.

Also, since ftng is a convergent sequence, there exists a constant B > 0 such that

jtnj � B; 8n 2 N�;

then, by using the boundedness of b and tn, we getZ


jkn (x)j dx � M

Z


(juj+B jv1j) jv2j dx

� M kjuj+B jv1jkL2(
) kv2kL2(
) � 1;

therefore,

kn 2 L1 (
) ; 8n 2 N�

and there exists a function

k =M (juj+B jv1j) jv2j 2 L1 (
)
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such that

jkn (x)j � k (x) a.e. in 
.

Thus, the sequence fkn (x)g, k0 (x) and k (x) satisfy the hypotheses of the dominated conver-

gence theorem, hence

k0 2 L1 (
) and kn ! k0 in L1(
): (6.9)

From (6.8) and (6.9) we conclude that

hn + kn ! h0 + k0 in L1 (
)

which means that

g (tn)! g(t0);

therefore, A1 is hemicontinuous.

3) Monotonicity :

We have

hA1 (u)�A1 (v) ; u� vi =
NX
i=1

Z



a (x;w)

 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
dx

+

Z



b (x) (u� v)2

�
NX
i=1

�

Z



 ���� @u@xi
����p�2 @u@xi �

���� @v@xi
����p�2 @v@xi

!�
@u

@xi
� @v

@xi

�
dx

+�

Z



ju� vj2 dx;

since
���� @u@xi ���p�2 @u

@xi
�
��� @v@xi ���p�2 @v

@xi

��
@u
@xi

� @v
@xi

�
� 0, as we have proved in Lemma 1 of the

previous chapter, � > 0 and ku� vk2L2(
) � 0; then

hA1 (u)�A1 (v) ; u� vi � 0:

Therefore, A1 is monotone.
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4) Coercivity :

By using the properties of a (:; :) and b, we easily show that

hA1 (u) ; ui =
NX
i=1

Z



a (x;w)

���� @u@xi
����p dx+ Z




b (x)u2 (x) dx

� �

0@ NX
i=1

Z



���� @u@xi
����p dx+ Z




u2 (x) dx

1A
� �

�
kukp

W 1;p
0

+ kuk2L2(
)
�

� � kukp
W 1;p
0

; (6.10)

which gives
hA1 (u) ; ui
kuk

W 1;p
0

!1 as kuk
W 1;p
0
! +1; if p > 1:

Therefore, A1 is coercive.

6.3 The approximate problem in �nite-dimensional space

Let fe1; e2; :::; em; :::g be a basis for W 1;p
0 (
) and let Vm = span [e1; e2; :::; em], so,

um =

mX
i=1

�iei; 8um 2 Vm:

We equip Vm with the norm induced by W 1;p
0 (
) norm.

By using Theorem 1 for Vm, which is of �nite-dimension, the problem A1 (u) = f has a

weak solution um.

This solution satis�es

hA1 (um) ; eji = hf; eji for all j; 1 � j � m:

Also, from (6.10) we have

hA1 (um) ; umi � � kumkp
W 1;p
0

:
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On the other hand, we have

hA1 (um) ; umi = hf; umi ;

consequently,

� kumkp
W 1;p
0

� hf; umi

� kfkW�1;p0 kumkW 1;p
0
:

Thus,

kumkW 1;p
0
�
�kfkW�1;p0

�

� 1
p�1

, (6.11)

therefore, the sequence fumg is bounded in W 1;p
0 (
). As a consequence of the boundedness

property of A1, fA1 (um)g is bounded in W�1;p0(
).

Because W 1;p
0 and W�1;p0 are re�exive spaces, we can extract a subsequence fumk

g from

fumg, such that

umk
* u in W 1;p

0 (
) and A1 (umk
)* l in W�1;p0(
), (6.12)

thus, using the weak convergence of fumk
g and fA1 (umk

)g, we arrive at

hA1 (v) ; umk
i ! hA1 (v) ; ui ; 8v 2W 1;p

0 (
)

and

hA1 (umk
) ; vi ! hl; vi ; 8v 2W 1;p

0 (
): (6.13)

Recall that umk
is a weak solution to problem (6.5), then

hA1 (umk
) ; eji = hf; eji :

Replacing v by ej in (6.13) and passing to the limit in the last equality, we arrive at

hl; eji = hf; eji ; 8j � 1;
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which implies that

f = l. (6.14)

Also, using the weak convergence of fumk
g, the right-hand side in the equality

hA1 (umk
) ; umk

i = hf; umk
i

converges to hf; ui, so

hA1 (umk
) ; umk

i = hf; umk
i ! hf; ui : (6.15)

Thus, we are able to pass to the limit in each term in the inequality

hA1 (umk
) ; umk

i � hA1 (umk
) ; vi � hA1 (v) ; umk

i+ hA1 (v) ; vi � 0;

which; by using (6.12), (6.14) and (6.15); gives

hf; ui � hf; vi � hA1 (v) ; ui+ hA1 (v) ; vi � 0:

Thus,

hf �A1 (v) ; u� vi � 0; 8v 2W 1;p
0 (
);

therefore,

hf; u� vi � hA1 (v) ; u� vi ; 8v 2W 1;p
0 (
): (6.16)

Let � > 0 and take v = u+ �z in (6.16) we get

hf; zi � hA1 (u+ �z) ; zi ; 8z 2W 1;p
0 (
):

Passing to the limit for � ! 0 in the last inequality and using the hemicontinuity of A1, we

arrive at

hf; zi � hA1 (u) ; zi ; 8z 2W 1;p
0 (
); (6.17)
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changing z by �z in (6.17) we obtain

hf; zi � hA1 (u) ; zi ; 8z 2W 1;p
0 (
): (6.18)

From (6.17) and (6.18) we get

hf; zi = hA1 (u) ; zi ; 8z 2W 1;p
0 (
);

which means that

A1 (u) = f:

6.4 The problem in W 1;p
0 (
)

Let T be the function T : w ! u, where u is the weak solution of problem (6.5) associated to

w.

From (6.11) we can assert that the solution u is bounded,

kuk
W 1;p
0
�
�
kfkW�1;p

�

� 1
p�1

= C1:

If we choose w such that kwk
W 1;p
0
� C1, then the mapping

T : B (0; C1)! B (0; C1)

is continuous.

To prove the continuity of T , we consider a convergent sequence fwkg to w in W 1;p
0 (
) and

prove that

T (wk)! T (w):

For that let fukg be the sequence of weak solutions to (6.5) associated to fwkg, i.e.

NX
i=1

Z



a (x;wk)

����@uk@xi

����p�2 @uk@xi

@v

@xi
+

Z



b (x)ukv =

Z



fv; 8v 2W 1;p
0 (
) (6.19)
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and de�ne an operator Ak by

Ak (u) = �
NX
i=1

@

@xi

 
a (x;wk)

���� @u@xi
����p�2 @u@xi

!
+ b (x)u (x) ;

then, (6.19) takes the form

hAk (uk) ; vi = hf; vi ; 8v 2W 1;p
0 (
): (6.20)

Recall that fukg is bounded in W 1;p
0 (
), which is a re�exive space, then we can extract a

subsequence still denoted fukg and there exists u 2W 1;p
0 (
) such that

uk * u in W 1;p
0 (
):

By using the compact embedding of W 1;p
0 (
) in L2 (
), we get

uk ! u in L2(
):

In the previous chapter we showed that for every v; v1 2W 1;p
0 (
) we have

NX
i=1

Z



a (x;wk)

���� @v@xi
����p�2 @v@xi @v1@xi

dx!
NX
i=1

Z



a (x;w)

���� @v@xi
����p�2 @v@xi @v1@xi

dx:

Therefore, since v; v1 2W 1;p
0 (
)� L2 (
) and jbvv1j �M jvv1j, the integral

Z


b (x) v (x) v1 (x) dx

makes sense and

NX
i=1

Z



a (x;wk)

���� @v@xi
����p�2 @v@xi @v1@xi

dx+

Z



b (x) v (x) v1 (x) dx

converges to
NX
i=1

Z



a (x;w)

���� @v@xi
����p�2 @v@xi @v1@xi

dx+

Z



b (x) v (x) v1 (x) dx

which means that

hAk (v) ; v1i ! hA1 (v) ; v1i ; 8v; v1 2W 1;p
0 (
);
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in particular, for v1 = v we have

hAk (v) ; vi ! hA1 (v) ; vi ; 8v 2W 1;p
0 (
): (6.21)

Moreover, using (6.20) and the weak convergence of fukg to u in W 1;p
0 (
) we obtain

hAk (uk) ; uki = hf; uki ! hf; ui : (6.22)

We have already seen that

a (x;wk)

���� @v@xi
����p�2 @v@xi ! a (x;w)

���� @v@xi
����p�2 @v@xi strongly in Lp0 (
)

and
@uk
@xi

*
@u

@xi
weakly in Lp(
);

then, using the weak-strong convergence as we have used in problem 1, we get

NX
i=1

Z



a (x;wk)

���� @v@xi
����p�2 @v@xi @uk@xi

dx!
NX
i=1

Z



a (x;w)

���� @v@xi
����p�2 @v@xi @u@xidx (6.23)

Moreover, for v 2 L2 (
), we have jbvj �M jvj, then

bv 2 L2(
);

since uk ! u in L2 (
), then

ukbv ! ubv in L1(
);

which yields Z



b (x)uk (x) v (x) dx!
Z



b (x)u (x) v (x) dx: (6.24)

From (6.23) and (6.24) we get

hAk (v) ; uki ! hA1 (v) ; ui : (6.25)
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By using (6.22), (6.20), (6.25) and (6.21), we are able to pass to the limit in each term in the

inequality

hAk (uk)�Ak (v) ; uk � vi = hAk (uk) ; uki � hAk (uk) ; vi � hAk (v) ; uki+ hAk (v) ; vi � 0;

to get

hf; ui � hf; vi � hA1 (v) ; ui+ hA1 (v) ; vi � 0:

Therefore,

hA1 (v) ; v � ui � hf; v � ui :

Replacing v by u+�z for � > 0 and repeating the same work as in (6.17) and (6.18), we obtain

hA1 (u) ; zi = hf; zi ; 8z 2W 1;p
0 (
):

Thus, u is the weak solution to the problem

A1 (u) = f;

therefore,

u = T (w)

which completes the proof that T is continuous.

Since T is continuous from B (0; C1) into itself, the Brouwer �xed point theorem guarantees

the existence of u 2 B (0; C1) such that

u = T (u):

Thus, problem (6.5) corresponding to w = u, takes the form

NX
i=1

Z


a (x; u)

���� @u@xi
����p�2 @u@xi @v@xi +

Z


b (x)uv =

Z


fv; 8v 2W 1;p

0 (
);
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which implies that

A (u) = f:

Therefore, problem (6.1) has u as a weak solution.
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Chapter 7

Maximum principle

7.1 Introduction

The maximum principle asserts that solutions of certain elliptic equations of second order cannot

have a maximum or a minimum in the interior of the domain of de�nition [19]. The basic idea

is quite simple, if a solution u, to an elliptic equation, has a maximum at a point x and the

second derivatives of u do not all vanish at x, then the matrix
�

@2u
@xi@xj

�
must be negative

de�nite at x, in contradiction to the equation.

However, maximum principle can be used to show that solution to certain equations must

be nonnegative. This is important for quantities which have physical interpretation as densities

and concentrations [21].

The aim of this chapter is to formulate a maximum principle for solutions of nonlinear

elliptic equations of the form

�
NX
i=1

@

@xi

 
a (x; u)

���� @u@xi
����p�2 @u@xi

!
= f in 
 (7.1)

and

�
NX
i=1

@

@xi

 
a (x; u)

���� @u@xi
����p�2 @u@xi

!
+ b (x)u = f in 
:

We start with a proposition which serves us later.
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Proposition 1: Let 
 be an open set of IRN and 1 � p < 1: Suppose that h 2 W 1;p
0 (
)

and rh = 0 in 
, then

h = 0 in 
.

Proof :

We extend h to IRN by
s
h (x) =

�
h (x) in 

0 in IRN=


then,
s
h 2W 1;p

�
IRN

�
and r

s
h = frh;

see [5].

Under the assumption made on rh, we have frh = 0, consequently sh is constant in IRN [5],
since

s
h 2 Lp(IRN ), then

s
h = 0:

7.2 Maximum principle for solutions to p-Laplacian problem

Now, we derive a maximum principle for the problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
= f in 


uj@
 = g

(7.2)

where a (:; :) is in L1 (
� IR) and satis�es the property

9� > 0 and � > 0; such that � < a (x; u) < � for a.e. x 2 
, and u 2 IR;

the weak form of (7.2) is

NX
i=1

Z


a (x;u)

���� @u@xi
����p�2 @u@xi @v@xidx =

Z


fvdx; 8v 2W 1;p

0 (
): (7.3)
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Theorem 2: Assume that u 2W 1;p (
) \ C
�


�
is a solution to (7.2) and f; g are such that

f � 0 a.e. in 
,

u = g � 0 a.e. in @
,

then,

u � 0 in 
.

Proof :

Let G be a C1 (IR) function satisfying the following properties

1) G is strictly increasing in (0;+1);

2) G (s) = 0 for s � 0,

3) there exists M > 0, such that jG0 (s)j �M; 8s 2 (0;+1):

Under the assumptions made in G, we have

G (u) 2W 1;p
0 (
):

Indeed,

jG (u)j = jG (u)�G (0)j

�
��G0 (�)u��

� M juj ;

then, we get

G (u) 2 Lp(
):

Also,
@G (u)

@xi
= G0 (u)

@u

@xi
;

by using the third property of G; we have

����@G (u)@xi

���� �M

���� @u@xi
���� :
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Since @u
@xi

2 Lp (
) ; we conclude that

rG 2 (Lp (
))N :

By using the fact that u 2 C
�


�
and G 2 C1 (IR) we get

G (u) 2W 1;p (
) \ C(
):

Furthermore, since g � 0; we have u (x) � 0 for x 2 @
; then

G (u (x)) = 0; 8x 2 @
;

since 
 is bounded, we have

G (u) 2W 1;p
0 (
):

By choosing v = G (u) in (7.3), we arrive at

NX
i=1

Z


a (x;u)

���� @u@xi
����pG0 (u) dx = Z



fG (u) dx;

using the property of a (:; :) and the signs of
��� @u@xi ���p and G0 (u) we get

NX
i=1

Z


�

���� @u@xi
����pG0 (u) dx � Z



fG (u) dx;

therefore, since f � 0, � and G are positives, we conclude that

Z


jrujppG

0 (u) dx � 0; (7.4)

where j:jp is the p-Euclidian norm in IRN de�ned by jxjpp =
NP
i=1
jxijp :

De�ne H by

H (s) =

Z s

0

�
G0 (t)

� 1
p dt;
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then

H 2 C1 (IR) :

By using the fact that H 0 (s) = (G0 (s))
1
p , we easily get

H (s) = 0; 8s � 0;

and

H (s) > 0; 8s > 0: (7.5)

On the other hand, we have

jH (u)j �M
1
p juj (7.6)

and
@H (u)

@xi
=

@

@u

�Z u

0

�
G0 (t)

� 1
p dt

�
@u

@xi
=
�
G0 (u)

� 1
p
@u

@xi
; (7.7)

consequently, ����@H (u)@xi

���� �M
1
p

���� @u@xi
���� : (7.8)

From (7.6) and (7.8) we conclude that

H (u) 2W 1;p(
) \ C
�


�
:

Furthermore, u (x) � 0 in @
, which implies that

H (u) = 0; 8x 2 @
:

Thus,

H (u) 2W 1;p
0 (
):

Moreover, from (7.7) we have

rH (u) =
�
G0 (u)

� 1
p ru;

hence, using the fact that G0 (u) � 0; we get
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jrH (u)jpp = G0 (u) jrujpp ;

then (7.4) becomes Z


jrH (u)jpp dx � 0:

Since jrH (u)jpp is nonnegative the last inequality isn�t true unless that jrH (u)j
p
p = 0:

By using the result of Proposition 1 for H we get

H (u) = 0; 8x 2 
;

then, using (7.5) the last equality implies that

u (x) � 0 in 
.

Corollary 3: Suppose that 
 is bounded, and the solution u to problem (7.2) is such that

u 2W 1;p (
) \ C(
):

If

f � 0 a.e. in 
,

then

u (x) � sup
x2@


g(x):

Proof : Let K = sup
x2@


g (x), then w = u�K 2W 1;p (
) (because 
 is bounded) and @w
@xi

= @u
@xi
;

which implies that w satis�es the equation

NX
i=1

Z


a (x;w +K)

���� @w@xi
����p�2 @w@xi @v@xidx =

Z


fvdx; 8v 2W 1;p

0 (
): (7.9)

If we set b (x;w) = a (x;w +K), then

b (x;w) > �; for a.e. x 2 
, and w 2 IR;
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consequently the equation (7.9) becomes

NX
i=1

Z


b (x;w)

���� @w@xi
����p�2 @w@xi @v@xidx =

Z


fvdx 8v 2W 1;p

0 (
):

The last equation has the same form and the same assumptions as (7.3), therefore, by using

the result of Theorem 2 we conclude that the solution w veri�es

w � 0 in 


which means that

u � K in 
:

Remarks :

1- Notice that if 
 is of C1-boundary, or u 2 W 1;p
0 (
), then it is not necessary to suppose

that u 2 C(
), because there is a possibility to assigning a boundary values along @
 to a

function u 2W 1;p(
).

2- If we change the assumptions made on the signs of f and g by

f � 0 in 
 and g � 0 on @
,

then we get

u � 0 in 
.

7.3 A maximum principle for second p-Laplacian problem

In this section we derive a maximum principle for the following problem

8><>: �
NP
i=1

@
@xi

�
a (x; u)

��� @u@xi ���p�2 @u
@xi

�
+ b (x)u = f in 


uj@
 = g

(7.10)

where 
 is bounded domain of IRN , a (:; :) is Charathéodory and there exist two constant �

and � such that
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0 < � � a (x; u) ; b (x) � �, for almost every x 2 
, 8u 2 IR:

The weak form of problem (7.10) is

NX
i=1

Z


a (x; u)

���� @u@xi
����p�2 @u@xi @v@xi +

Z


b (x)uv =

Z


fv; 8v 2W 1;p

0 (
): (7.11)

Theorem 4 : Suppose that u 2W 1;p (
) \ C
�


�
is a weak solution to (7.10), then

u � max
�
sup


(f=b) ; sup

@

g

�
:

Proof : We use the truncation method of Stampacchia.

Let G be the function de�ned in the proof of Theorem 1 and let

K = max

�
sup


(f=b) ; sup

@

g

�
;

then

G (u�K) 2W 1;p
0 (
):

Replace v by G (u�K) in (7.11) and subtracting
R

 b (x)KG (u�K) we get

NX
i=1

Z


a (x; u)

���� @u@xi
����pG0 (u�K) + Z



b (x) (u�K)G (u�K) =

Z


(f � b (x)K)G(u�K):

By using the fact that 0 < � � a (x; u), taking into account that jrujpG0 (u�K) � 0 and that

b (x) 6= 0 the last equality becomes

�

Z


jrujpG0 (u�K) +

Z


b (x) (u�K)G (u�K) �

Z


b (x)

�
f (x)

b (x)
�K

�
G(u�K);

then,

Z


b (x) (u�K)G (u�K) �

Z


b (x)

�
f (x)

b (x)
�K

�
G(u�K)

��
Z


jrujpG0(u�K): (7.12)
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The last integral in right-hand side of (7.12) is nonnegative

�

Z


jrujpG0 (u�K) � 0;

for the �rst integral in the right-hand side we notice that b (x) > 0, G(u � K) � 0 and
f(x)
b(x) �K � 0 for every x 2 
, then

Z


b (x)

�
f (x)

b (x)
�K

�
G(u�K) � 0:

Thus, Z


b (x) (u�K)G (u�K) � 0; (7.13)

but G (u�K) = 0 if u�K � 0, then

Z


b (x) (u�K)G (u�K) =

Z

+

b (x) (u�K)G (u�K) ; (7.14)

where 
+ = fx 2 
;u�K > 0g.

By using the fact that b (x) (u�K)G (u�K) � 0 in 
+ we haveZ

+

b (x) (u�K)G (u�K) � 0: (7.15)

From (7.13), (7.14) and (7.15) we get

Z

+

b (x) (u�K)G (u�K) = 0;

which implies that

u�K = 0;

or

b (x)G (u�K) = 0:

Since b (x) > 0, the last equality implies that

G (u�K) = 0;
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so, u � K, or

meas (
+) = 0;

which means that u � K a.e. in 
, hence everywhere in 
, because u 2 C(
). Therefore,

u � max
�
sup


(f=b) ; sup

@

g

�
; 8x 2 
. (7.16)

Corolary: In addition to the assumptions of Theorem 4, suppose that u veri�es

a (x;�u) = a (x; u) ; for a.e. x 2 
;

then

min

�
inf


(f=b) ; inf

@

g

�
� u � max

�
sup


(f=b) ; sup

@

g

�
; 8x 2 
. (7.17)

Proof: By using the assumption made in a, (7.11) can be written

�
NX
i=1

Z


a (x;�u)

���� @u@xi
����p�2 @ (�u)@xi

@v

@xi
�
Z


b (x) (�u) v =

Z


fv; 8v 2W 1;p

0 (
);

consequently,

NX
i=1

Z


a (x;�u)

����@ (�u)@xi

����p�2 @ (�u)@xi

@v

@xi
+

Z


b (x) (�u) v =

Z


�fv; 8v 2W 1;p

0 (
);

which has the same form as (7.11) with �u and �f in place of u and f respectively.

Therefore, (7.16) gives

�u � max
�
sup


(�f=b) ; sup

@

(�g)

�
; 8x 2 
:

Thus, by using the fact that

sup


(�f=b) = �inf



(f=b) ;

sup
@

(�g) = �inf

@

g

and
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max f��;��g = �min f�; �g

we get easily (7.17).

Corollary 5: If f � � � 0 a.e. in 
 and g � 
 a.e. in @
 then

u (x) � min f�=�; 
g :

In particular, if

f � 0 a.e. in 
 and g � 0 a.e. in @
;

then,

u (x) � 0 in 
:

Proof : It su¢ ces to show that

inf


(f=b) � �=� and inf

@

g � 
;

then, from (7.17) we get

u (x) � min f�=�; 
g :
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