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Preliminaries and Notations

φi = φ(ti)

u = (ui) vector with compost i
n unit outer normal .
un = u.n

∂nu = ∇u.n = N.n+ T

N = ∂nu.n

T = ∂n.u−N.n tangent
u̇ =

∂u

∂t

ü =
∂2u

∂t2
H ′ dual of H
H1(Ω) = (H1(Ω))

3

L1(Ω) = (L1(Ω))
3

→ strong convergence.
⇀ Weak convergence .
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Introduction

The problem of dynamic unilateral contact with friction has been examined in may fields,
as well as in many aspects of every day life. For this reason, in recent years they have been
widely studied considering various constitutive laws and boundary conditions. Only some
examples are the work of Kikuchi and Oden [1] as well as Chau and al.[2] Laursan and
Chawla [3], Bencache and al.[4] or Khenous and al.[5]. J.Kim [6] shows existence of weak
solutions of the obstacle problem for a wave equation. In [7], M.Cocou use regularization
of contact stress and constant friction coeffition to show existence of weak solution to the
dynamic signorini problem with constant coefficient of friction.
In this memoir we will study the dynamic problem two cases Static case and dynamic case.
We begin our work by a chapter presenting mathematical preliminaries witch will be used in
the next charters. In the second chapter we study the static case of the simplified signorini
problem for proved view existence and uniqueness of solution. In the next chapter we study
the dynamic case of signorini problem with theorem existence. Finally we conclude our
work with a conclusion involving the main results and respective.
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Chapter 1

Notations and mathematical
preliminaries

1.1 Reminders on functional spaces

All results in this section are in [8]. We recall below some definitions and theorems of
classical functional analysis that will be used in subsequent chapters. Here all functions
considered are real-value. Let x ∈ Rn, Ω open subset of Rn, K ⊂ Ω, n positive integer, α
is a multi-integer, |α| =

∑n
i=1 αi then we define the differential operator Dα by

Dα = Dα1
1 ....Dαn

n =
∂|α|

∂xα1
1 ...x

αn
n

we denote by C(Ω) The space of continuous real functions in Ω. We say that K is relatively
compact in Ω, if the adhesion of K (i.e K̄) is a compact (i.e Closed and bounded) included
in Ω noted by K ⊂⊂ Ω. Also it notes

Cm(Ω) = {v ∈ C(Ω)Dαv ∈ C(Ω) for |α| ≤ m} .

We call the support of the function v define in closed set Ω

suppv = {x ∈ Ω; v(x) 6= 0}.

We said that the function v has compact support in Ω. We denote by

Cm
0 (Ω) = {v ∈ C(Ω), v a compact support in Ω}

2



Let
C∞ = ∩∞m=0C

m(Ω).

We denote byD(Ω) Called the space of test functions, the space C∞0 (Ω). Functions infinitely
differentiable with compact support in Ω with the topology boundary inductive as in the
theory of distributions of L. Schwartz. We note by D′(Ω) the dual space of D(Ω) So
the space of continuous linear forms on D(Ω), called D′(Ω) The space of distributions( or
generalized functions) on Ω and we equip the strong dual topology( i.e fi −→ f in D′(Ω)

if 〈fi, ϕ〉 −→ 〈f, ϕ〉 ∀ϕ ∈ D(Ω)) where 〈., .〉 is the product of duality between D(Ω) and
D′(Ω). For p given by 1 ≤ p ≤ ∞ designates by

Lp(Ω) =

{
v measurable on Ω; such that ‖v‖p =

(∫
Ω

|v|p
)1/p

<∞

}

we recall that
(
Lp(Ω), ‖.‖p

)
is a Banach space, and separable, for 1 < p ≤ ∞ is reflexive.

For p = 2, the space L2(Ω) is a Hilbert space equipped with the scalar product

〈u, v〉 =

∫
Ω

u(x)v(x)dx.

We will identify the space L2(Ω) to its dual. For p =∞ is denoted by

L∞ = {v measurable on Ω; such that |v|∞ <∞} ,

where |v|∞ = {supessx∈Ω |v(x)| = inf {C; |v(x)| c.p.d x ∈ Ω}} we recall that (L∞, ‖‖∞) is
a Banach space. For all 1 < p < ∞ is the Hölder inequality if u ∈ Lp(Ω) and v ∈ Lp′(Ω)

such that
1

p
+

1

p′
= 1 ∫

Ω

u(x)v(x)dx ≤ ‖u‖p ‖v‖p′

Theorem 1 The space C∞0 (Ω) is dense in Lp(Ω) ∀1 < p < ∞. we said that X ↪→ Y , for
(X, ‖.‖X) and (Y, ‖.‖Y ) norms space, means X ⊂ Y with continuous injection, that is to
say there exists a constant C such that

‖u‖Y ≤ ‖u‖X ∀u ∈ X.
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1 ≤ p ≤ ∞ we have D(Ω) ↪→ Lp(Ω) ↪→ D′(Ω) We will define the Sobolev space

Wm,p(Ω) = {v,Dαv ∈ Lp(Ω), for |α| ≤ m} ,

with the norm

‖v‖Wm,p =

∑
|α|≤m

‖Dαv‖pp

1\p

if p ∈ [1,∞)

‖u‖Wm,p = max
|α|≤m

‖Dαv‖∞ ,

is a Banach space. We denote by Wm,p
0 (Ω) adherence of C∞0 in the space Wm,p(Ω); For all

p ∈ [1,∞) we have
Wm,p

0 (Ω) ↪→ Wm,p(Ω) ↪→ Lp(Ω).

In the case p = 2 we use the notation

Hm(Ω) = Wm,p(Ω).

equipped with the scalar product

〈u, v〉2,m =
∑
|α|≤m

〈Dαu,Dαv〉 .

The space Hm(Ω) Is a Hilbert space. We also posed Hm
0 (Ω) = Wm,p

0 (Ω) the negative Sobolev
spaces are dual spaces of space Wm,p

0 (Ω)

W−m,p′
0 (Ω) = (Wm,p

0 (Ω))′ ,

with the norm
‖u‖

W−m,p
′

0 (Ω)
= sup

u∈Wm,p
0 (Ω)

〈u, v〉
‖u‖Wm,p

0 (Ω)

The space W−m,p′
0 (Ω) is Banach( separable and reflexive), if 1 < p <∞). Since D(Ω) dense

in H1
0 (Ω), then we have H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Theorem 2 Suppose that Ω satisfies the property of the cone and ≤ p <∞. Then

1. C(Ω̄) ↪→ Wm,p
0 (Ω) With the dense injection.

2. ifmp ≥ n thenWm,p
0 (Ω) ↪→ Ck(Ω̄) whatever integer k with

mp− n
p
−1 ≤ k ≤ mp− n

p
.
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Now the space vector valued functions, a Banach space is considered X the norm ‖.‖X and
an open interval I ⊂ R. We note by

Ck(I;X) = {v : I −→ X;Dαv ∈ C(I;X) for |α| < k}

Ck(Ī;X) is a Banach space for the norm

|v|Ck(Ī;X) =
∑
|α|≤k

sup
x∈Ī
‖Dαv(x)‖X

C∞(I;X) of the space infinitely differentiable functions in v I values in X and with by
D(I;X) the space C∞0 (I;X), i.e the space functions of C∞(I;X) with compact support in
I provided by the inductive limit topology. Designates by D′(I;X) the space of distributions
on I with values in X defined by

D′(I;X) = L(D(I;X);X)

where L(U, V ) denotes the space of linear and continuous functions from U to V . Let
p ∈ [1,∞] we denoted by Lp(I;X) the space of( class) functions f : I −→ X measurable
such that t −→ ‖f(t)‖X either Lp(I) is a Banach space for the norm

‖f‖Lp(I;X) =

(∫
X

|f |pX dµ
)1/p

<∞ p 6=∞,

‖f‖∞ = supess ‖f‖X

It can be proved the following properties

1. D(I;X) ⊂ Lp(I;X) ⊂ D′(I;X).

2. If p <∞ then D(I;X) is dense in Lp(I;X).

We denote by W 1,p(I;X) the space of( class) functions f ∈ Lp(I;X) such that ḟ ∈ Lp(I;X)

where ḟ is the weak derivative of f . Provided by the norm

‖f‖W 1,p(I;X) = ‖f‖Lp(I;X) +
∥∥∥ḟ∥∥∥

Lp(I;X)
.

W 1,p(I;X) is a Banach space.
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Proposition 3 For all p ≥ 1 we have

1. W 1,p(I;X) ⊂ L∞(I;X) ∩ C(Ī , X).

2. If is bounded, then C∞(Ī , X) is dance in W 1,p(I;X)

Definition 4 If X and Y are Banach spaces, X ⊂ Y with embedding continuous space,
Cs([0, T ], X) is defined as the space of the functions v : [0, T ] −→ X such that the real
function of a real variable

t −→ 〈h, v(t)〉X′,X

is continuous over [0, T ] for all h ∈ X ′.

Lemma 1 Let X and Y under the conditions of the last definition

i) If, in addition, X is a reflexive Banach space, then

L∞(0, T ;X) ∩ C([0, T ];Y ) ⊂ Cs([0, T ];X).

ii) Let U another Banach space such that X ⊂ U ⊂ Y is the embedding and X ⊂ Y

is compact. If F is bounded in L∞(0, T ;X) and
∂F
∂t

=
{
ḟ ; f ∈ F

}
is bounded in

Lr(0, T ;Y ), with r > 1, then relatively compact F in C([0, T ];U).

Proof.

i) We find the result in [9] lemma 8.1 page 297

ii) We can find the result in [10]

1.2 Trace theorem and generalized Green formula

Theorem 5 Let Ω is open class C1. Then we can uniquely define the trace γv of H1(Ω)

in H1/2(Γ) such that
γ(v) = v|Γ, if v ∈ [C∞(Ω̄)]n.
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It is well known that if the domain Ω ∈ C1,1 there exist only linear applications determined
γn of H1(Ω) in H1/2(Γ) and γT of H1(Ω) in H1/2

T (Γ) such that

γ(v) = γn(v)n+ γT (v) ∀v ∈ H1(Ω),

where H
1/2
T (Γ) =

{
φ ∈ H1/2(Γ); γn(φ) = 0

}
. And if v ∈

[
C∞(Ω̄)

]
, γn(v) = v|Γ.n and

γT (v) = v|Γ − γn(v)n. The applications γn(v) and γT (v) are surjective. Hereinafter for
simplify the writing, vn and vT denote normal traces of v, γn(v) and γT (v) respectively.
Now we pose Γ = Γ̄0 ∩ Σ̄

Let V be the space defined by

V =
{
v ∈ H1(Ω); γ(v) = 0 in Γ0

}
.

It note γ0
Σ : V −→ H1/2(Σ) Operator of trace relative v ∈ V with the restriction of γ(v) in

Σ. This operator, resulting in V in H1/2
00 (Σ) is linear, continuous and surjective for borders

∂Σ which is C∞, such that

H
1/2
00 (Σ) =

{
v ∈ H1/2(Σ)|ρ−1/2v ∈ L2(Ω)

}
,

such that ρ a particular function.

Lemma 2 If the domain is C1,1 there exist linear applications, continuous and surjective

γ0
Σn : V −→ H

1/2
00 (Σ), γ0

ΣT
−→ H

1/2
T00(Σ).

with H1/2
T00(Σ) =

{
φ ∈ H1/2

00 (Σ);φn = 0
}

and such that

γ0
Σ(v) = γ0

Σn(v)n+ γ0
ΣT

(v) v ∈ V.

Consider the space constraints of the fields

X =
{
τ = (ταβ) ∈

[
L2(Ω)

]n×n
; ταβ = τβα

}
. (1.1)

The condition that the norm

‖τ‖X =

(∫
Ω

τ : τdx

)1/2

, (1.2)

7



is a Hilbert space. Let E be the subspace of X defined by

E =
{
τ ∈ X; div(τ) ∈ L2(Ω)

}
, (1.3)

which is also a Hilbert space with the norm

‖τ‖E = ‖τ‖X + ‖div(τ)‖L2(Ω) . (1.4)

Lemma 3 Let Ω ∈ C1,1. Then there are applications uniquely determined πn of E in
H
−1/2
T (Γ) such that

〈π(τ), γ(v)〉Γ = 〈πn(τ), vn〉n,Γ + 〈πT (τ), vT 〉T,Γ ,

For all τ ∈ E and v ∈ H1(Ω), and

πn(τ) = τn.n and πT (τ) = τn− τnn,

for all τ ∈ C1(Ω̄) where τn ≡ πn(τ), τT ≡ πT (τ)

Lemma 4 Let Ω ∈ C0,1. Then there exists a unique application, π linear and continuous
of E and for v ∈ H−1/2(Γ) such that

π(τ) = τΓn, if τ ∈
[
C1(Ω̄)

]n2

. (1.5)

Another, the following generalized verified Green formula for all τ ∈ E and for v ∈ H1(Ω)∫
Ω

τ : ε(v)dx+

∫
Ω

div(τ).vdx = 〈π(τ), γ(v)〉Γ , (1.6)

where 〈., .〉Γ is the product of duality in H−1/2(Γ)×H1/2(Γ).

Theorem 6 Let Ω ∈ C0,1. Then there exists a uniquely application linear determined π0
Σ

in
(
H

1/2
00 (Σ)

)′
such that

π0
Σ(τ) = τ |Σn if τ ∈ C1(Ω̄),

and general Green formula is valid for each τ ∈ E and for all v ∈ V∫
Ω

τ : ε(v)dx+

∫
Ω

div(τ).vdx =00

〈
π0

Σ(τ), γ0
Σ(v)

〉
Σ
, (1.7)

8



where 00 〈., .〉Σ is the product of duality
(
H

1/2
00 (Σ)

)′
×H

1/2
00 (Σ).

Also, if Ω ∈ C1,1, π0
Σ operators can be decomposed into π0

Σn, π0
ΣT such that

00

〈
π0

Σ(τ), γ0
Σ(v)

〉
Σ

=00

〈
π0

Σn(τ), γ0
Σn(v)

〉
n;Σ

+00

〈
π0

ΣT (τ), γ0
ΣT (v)

〉
T ;Σ

for all τ ∈ E and v ∈ V , and

π0
Σn(τ) = τ |Σn.n and π0

ΣT (τ) = τ |Σn− τn,Σn,

for τ ∈ C(Ω̄), where τn,Σ = π0
n,Σ(τ).

Proof. For more details, see [11] and [8]

1.3 The Poincare inequality

Let Ω open and bounded domain from Rn, Γ0 a part from ∂Ω and mes(Γ0) > 0, then there
exist a constant C > 0 such that for all u ∈ H1(Ω) and u = 0 on Γ0, we have∫

Ω

|u(x)|2 ≤ C

∫
Ω

|∇u(x)|2

then
‖u‖0,Ω ≤ C ‖∇u‖0,Ω

1.4 Discrete Grönwall inequality

Let y and g two positive integrable function and C ≥ 0, if

y(t) ≤ C +

∫ t

0

g(s)y(s)ds for t ≥ 0 (1.8)

then
y(t) ≤ C exp

(∫ t

0

g(s)ds

)
for t ≥ 0 (1.9)

Proof. see [12]

9



1.5 Stampacchia Theorem

Definition 7 Let H be a Hilbert space.
We say that a bilinear form a(u, v) : H ×H −→ R is

- Continuity if there exists a constant C > 0 such that

|a(u, v)| ≤ C ‖u‖H ‖v‖H ∀u, v ∈ H.

- Coercively If there is a constant α > 0 such that

a(u, v) ≥ α ‖v‖2 ∀v ∈ H.

Theorem 8 (Stampacchia) Let a(., .) a continuous and coercive bilinear form. Let K be a
convex closed and non-empty. Given ϕ ∈ H ′ there exist a unique u ∈ K such that

a(u, v − u) ≥ (ϕ, v − u) ∀v ∈ K

Proof. See [13].

1.6 The weak, weak∗ convergence

Proposition 9 Let E be a Banach space, (xn) a sequence from E, and (fn) a sequence
from E ′ then

− [xn ⇀ x for σ(E,E ′)]⇔ [〈f, xn〉 −→ 〈f, x〉 ∀f ∈ E ′] .

−
[
fn

∗
⇀ f for σ(E ′, E)

]
⇔ [〈fn, x〉 −→ 〈f, x〉 ∀f ∈ E] .

Proof. See [13].

10



1.7 Newmark’s method

Although the method is discussed in many textbooks in structural dynamics (see, for in-
stance, Chopra, 1995), a brief description of this method specialized for the non-linear force
deformation model is provided here

un+1 = un+1 + ∆tu̇n +
∆t2

2
(1− 2β)ün + 2βün+1

u̇n+1 = u̇n + ∆t[(1− γ)ün + γün+1]

Proof. For more details see[14]

11



Chapter 2

The problem of Signorini : static case

Let Ω is a bounded open set of R3 initially occupying the bounded domain of class C1,1.
Boundary ∂Ω is partitioned into three disjoint open subsets Γ0, Γg and ΓC Dirichlet and
Neumann conditions are prescribed on Γ0 and Γg.

2.1 Problem classic(P1)

We define the problem (P1)

Find u such that

−∆u = f in Ω (2.1)

u = 0 on Γ0 (2.2)

∂nu = g on Γg (2.3)

un ≤ 0, N ≤ 0, unN = 0 on ΓC (2.4)

such that

un = u.n, ∂nu = ∇u.n = N.n+ T, N = ∂nu.n, T = ∂nu−N.n

the conditions un ≤ 0, N ≤ 0, unN = 0 on ΓC are called signorini conditions T = 0 means
no friction on ΓC .

12



2.2 Variational problem (P2)

Let
V =

{
v ∈

(
H1 (Ω)

)3
, v = 0 on Γ0

}
K = {v ∈ V ; un ≤ 0 on ΓC}

no empty, convex and closed.

a(u, v) =

∫
Ω

∇u∇vdx ∀u, v ∈ K (2.5)

(F, v) = (f, v) +

∫
Γg

gvdΓ ∀v ∈ V (2.6)

the variational inequality of (P1) , is the following

(P2)

{
Find u ∈ K such that

a(u, v) ≥ (F, v) ∀v ∈ K

Theorem 10 If u is a smooth function which satisfies (P1) then u is a solution of the
variational inequality (P2).

Proof. Multiplying equation (2.1) by (v − u)

−∆u (v − u) = f (v − u)∫
Ω

−∆u (v − u) dx =

∫
Ω

f (v − u) dx

using Green′s formula∫
Ω

∇u ∇(v − u) dx−
∫

Γ

∂nu n (v − u) dΓ =

∫
Ω

f (v − u) dx

was∫
Γ

∂nu n (v − u) dΓ =

∫
Γ0

∂nu (v − u) dΓ +

∫
ΓC

∂nu (v − u) dΓ +

∫
Γg

∂nu (v − u) dΓ

=

∫
Γg

g(v − u) dΓ +

∫
ΓC

∂nu n (v − u) dΓ

13



then ∫
Γ

∂nu n (v − u) dΓ ≥
∫

Γg

g(v − u) dΓ

a(u, v − u)− (f, v − u)−
∫

Γ

∂nu n (v − u) dΓ = 0

a(u, v − u)− (f, v − u)−
∫

Γg

g(v − u) dΓ ≥ 0

a(u, v − u)− (F, v − u) ≥ 0

a(u, v − u) ≥ (F, v − u).

Theorem 11 If u is a solution of the variational inequality (P2) then u satisfies (P1) in
a generalized sense.

Proof. If u is the solution of the variational inequality (P2) then one takes v = u±ϕ and
ϕ ∈ (D (Ω))3 we obtained

a(u, ϕ) ≥ (F, ϕ)

a(u,−ϕ) ≥ (F,−ϕ)

therefore
a(u, ϕ) = (F, ϕ)

a(u, ϕ) = (f, ϕ) +

∫
Γg

g ϕ dx∫
Ω

∇u ∇ϕ dx =

∫
Ω

fϕ dx

a(u, ϕ) = (f, ϕ)

using Green’s formula ∫
Ω

∇u∇ϕdx−
∫

Γ

∂nuϕ dx =

∫
Ω

f.ϕ dx

∫
Ω

−∆uϕ dx =

∫
Ω

fϕ dx

14



thus ∫
Ω

(−∆u− f)ϕ dx = 0⇒ −∆u− f = 0⇒ −∆u = f

multiplying (P1) by (v − u)∫
Ω

−∆u(v − u) dx =

∫
Ω

f(v − u) dx

using Green’s formula we obtain

a(u, v − u)− (f, v − u) =

∫
Γ

∂nu(v − u) dΓ

through the variational inequality (P2)∫
Γ

∂nu(v − u) dΓ−
∫

Γg

g(v − u) dΓ

takes v = u± ϕ with ϕ ∈ (D (Γ))3 and is deducted

−
∫

Γg

gϕ gΓ +

∫
Γ

∂nuϕ dΓ = 0

then ∫
Γg

(∂nu− g)ϕ dΓ = 0

∂nu = g on Γg

where (2.3).
For Signorini conditions (2.4) was

−
∫

Γg

g(v − u) dΓ +

∫
Γ

∂nu(v − u) dΓ ≥ 0

−
∫

Γg

∂nu(v − u) dΓ +

∫
Γ

∂nu(v − u) dΓ ≥ 0

taking v = u+ ϕ where ϕ ∈ (D(Ω))3 with suppϕ ∈ Γ2 and ϕn ≤ 0 on ΓC we obtain∫
ΓC

unϕndΓ ≥ 0

which gives un ≤ 0 on ΓC we have u ∈ K then un ≤ 0

now choosing vn = 0 then vn = 2un is obtained

unN = 0.

15



2.3 Existence and uniqueness of solution

Theorem 12 If f ∈ (L2(Ω))
3, g ∈ (L2(Γg))

3 then the problem (P2) has a solution unique
in K.

Proof.

i) a(u, v) is a continuous bilinear form coercive .

a(u, v) is a bilinear form ( obviously ) .
We have

|a(u, v)| =
∣∣∣∣∫

Ω

∇u∇v dx
∣∣∣∣

≤ c

∫
Ω

|∇u∇vdx|

≤ c

(∫
Ω

(∇u)2 dx

) 1
2
(∫

Ω

(∇v )2 dx

) 1
2

≤ ‖∇u‖(L2(Ω))3 ‖∇v‖(L2(Ω))3

≤
(
‖∇u‖(L2(Ω))3 + ‖u‖(L2(Ω))3

)(
‖∇v‖(L2(Ω))3 + ‖v‖(L2(Ω))3

)
.

On the other hand we have

‖v‖(H1(Ω))3 =
(
‖v‖2

(L2(Ω))3 + ‖∇v‖2
(L2(Ω))3

) 1
2

therefore
|a(u, v)| ≤M ‖u‖(H1(Ω))3 |v‖(H1(Ω))3

where the continuity of a(u, v).
We have

|a(v, v)| =
∣∣∣∣∫

Ω

∇v∇vdx
∣∣∣∣ =

∣∣∣∣∫
Ω

(∇v)2 dx

∣∣∣∣
≥ C

(
|v|2L2(Ω) + |∇v|2L2(Ω)

)
= C‖v‖2

H1(Ω)which completes the coercivety.

ii) (f, v) continuous linear form V Indeed, we have
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∣∣∣∣∫
Ω

fvdx

∣∣∣∣ ≤ (∫
Ω

|f |2 dx
) 1

2
(∫

ΓC

|v|2 dΓ

) 1
2

≤ c ‖v‖L2(Ω)

and ∣∣∣∣∣
∫

Γg

gvdΓ

∣∣∣∣∣ ≤ ‖g‖L2(Γg) ‖v‖L2(Γg)

Using the continuous injection of the application trace H1(Ω) on L2(Γg) and the injection
continues to H1(Ω) on L2(Ω) are

|(F, v)| ≤ c
(
‖v‖L2(Ω) + ‖v‖L2(Γg)

)
≤ c′ ‖v‖H1(Ω)

(i) and (ii) by means of the theorem of Stampacchia the variational inequality has a unique
solution.
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Chapter 3

The Signorini problem Dynamic case

3.1 Problem (P.C)

Let Ω is a bounded open set of R3 initially occupying the bounded domain of class C1,1.
Boundary ∂Ω is partitioned into three disjoint open subsets Γ0, Γg and ΓC Dirichlet and
Neumann conditions are prescribed on Γ0 and Γg.
The study of the Signorini problem in the static case , in this chapter can presented study
the same problem in the dynamic case.

Classic problem (P.C)

Let us consider the problem (P.C)

Find u verifying

ü−∆u = f in Ω× (0, T ) (3.1)

∂n u = g on Γg × (0, T ) (3.2)

u = 0 on Γ0 × (0, T ) (3.3)

un ≤ 0, N ≤ 0, unN = 0, T = 0 on ΓC × (0, T ) (3.4)

u(x, 0) = p0, u̇(x, 0) = p1 in Ω (3.5)

18



with un = u.n, ∂nu = ∇u.n = N.n+ T , N = ∂n.u.n, T = ∂nu−N.n
where n denote the outward unit normal to Ω on ΓC .
signorini conditions is imposed u ≤ 0, N ≤ 0, unN = 0, T = 0 on ΓC × (0, T )

at the initial time, u(x, 0) = p0, u̇1 = p1 in Ω

Where g ∈ W 2,∞
(

0, T ; (L2(Γg))
3 ∩
(
H−

1
2 (Γ)

)3
)
, f ∈ W 2,∞

(
0, T, (L2 (Ω))

3
)

The initial conditions p0, p1 are assumed to belong to (H1(Ω))
3 such that ∆p0 ∈ L2(Ω).

3.1.1 Problem variation (P.V)

We put H1(Ω) = (H1(Ω))
3, L2(Ω) = (L2(Ω))

3.
Let V the space defined by

V = {v ∈ H1(Ω)/ v = 0 on Γ0}

and
K = {v ∈ V/ vn ≤ 0 on ΓC}

closed convex subspace from V .

Remark 13 We can write the problem (P.V ) as

(P.V )


find u ∈ K such that∫

Ω

üv dx+ a(u, v) = L(v) ∀v ∈ V

〈N, vn − un〉 ≥ 0, ∀v ∈ K

with
u0 = p0, u̇0 = p1.

Theorem 14 If u solution of (P.C) then u satisfies the (P.V ) problem

Find u ∈ K such that{
〈ü, v − u〉+ a(u, v − u) ≥ L(v − u) ∀v ∈ K (3.6)

u(x, 0) = p0, u̇(x, 0) = p1,

〈N, vn − un〉 ≥ 0 (3.7)

where
a(u, v) =

∫
Ω

∇u∇v dx
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L(v) =

∫
Ω

fv dx+

∫
Γg

gv dΓ

Proof.

Weak formulation of (3.1).
Let (v − u) ∈ K a test function, (3.1) give∫

Ω

ü(v − u) dx+

∫
Ω

−∆u(v − u) dx =

∫
Ω

f(v − u) dx

we have ∫
Ω

∆u.(v − u).dx =

∫
Γ

∇u.n.(v − u)dΓ−
∫

Ω

∇u.∇(v − u)dx

we have ∫
Γ

∇u.n.(v − u)dΓ =

∫
Γ0

∇u.n.(v − u)dΓ +

∫
ΓC

∇u.n.(v − u)dΓ +

∫
Γg

∇u.n.(v − u) dΓ =

∫
ΓC

∇u.n.v dΓ +

∫
Γg

∇u.n.(v − u) dΓ

then ∫
Γg

∇u.n.(v − u) dΓ =

∫
Γg

g(v − u) dΓ

∫
Γg

∂u

∂n
(v − u) dΓ ≥ 0

therefore

〈ü, v − u〉+ a(u, v − u) ≥ L(v − u) ∀v ∈ K

u(x, 0) = p0, u̇(x, 0) = p1, ∀v ∈ K
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Remark 15 We can write (P.V ) as

find u ∈ K such that∫
Ω

üv dx+ a(u, v) = L(v) + 〈N, vn〉 , ∀v ∈ V

〈N, vn − un〉 ≥ 0 ∀v ∈ K

u(x, 0) = p0, u̇(x, 0) = p1

Theorem 16 Assume that the solution u is regular enough, then u is solution of (P.C) if
and only if u solution of (P.V ).

Proof. Taking in (3.6) v = ϕ for all ϕ ∈ (D(Ω))3( since v remains in V ). It is found that

〈ü, ϕ〉+ a(u, ϕ) = L(ϕ), ∀ϕ ∈ (D(Ω))3 (3.8)

hence, using the generalized Green formula in (3.8), are∫
Ω

(ü−∆u− f)ϕ dx = 0. (3.9)

therefore

ü−∆u− f = 0 a.e in Ω (3.10)

Hence (3.1).
For (3.2), we take v = ϕ for all ϕ ∈ (D(Ω ∪ Γg))

3 in (3.6), and taking included (3.9), we
find ∫

Γg

(∇u n− g)ϕ dΓ = 0

where (3.2).
Taking v = ϕ in (3.6) for all ϕ ∈ (D(Ω ∪ Γ0))3 .
with (3.8) we find 〈T, ϕT 〉 = 0 ∀T where T = 0 on ΓC a.e. After that we take v = u + ϕ

in (3.7)with ϕ ∈ (D(Ω ∪ Γ0))3 and ϕn ≤ 0 on Γ0 we find 〈N,ϕn〉 ≥ 0 with give N ≤ 0 on
Γ0. We find vn = 0 and vn = 2un on (3.7), we obtain 〈N, un〉 = 0 and N(un) ≥ 0 then
N(un) = 0 on Γ0, where (3.4).
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3.1.2 Variational inequality of (P.V)

Find u such that∫
Ω

ü(v − u)dx+

∫
Ω

∇u∇(v − u)dx ≥ L(v − u) ∀v ∈ K

u(x, 0) = p0, u̇(x, 0) = p1

With
L(v) =

∫
Ω

fvdx+

∫
Γg

gvdΓ

3.2 Existence of a solution

Theorem 17 Under the following conditions
f ∈ W 2,∞ (0, T ; L2(Ω)), g ∈ W 2,∞ (0, T ; L2(Γg)) and p0, p1 ∈ H1(Ω) with ∆p0 ∈ L2(Ω).

Then there exist a solution (u,∇u) of problem (P.C) verifying

(i) u ∈ L∞(0, T ;K), u̇ ∈ L∞(0, T ; L2(Ω)), and ü ∈ D′(0, T ; L2(Ω))

(ii) ∇u ∈ D′(0, T ;Ea(g)) ∩ L∞
(

0, T ; (L2(Ω))
3×3
)

such that

Ea(g) = {τ ∈ E/T = 0 and N ≤ 0 on ΓC , ∂nu = g on Γg}

and
E =

{
τ ∈ X, divτ ∈ L2(Ω)

}
with

X =
{
τ ∈ (L2(Ω))3×3/τi,j = τj,i

}
Proof. The demonstration of this theorem is based on five basic steps.

Step 1: time discretization

Let us consider a regular partition of the time interval [0, T ] into I subintervals. Inspired
on Newmark’s method we propose the following approximation of Problem (P.C) at time
t = ti.
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Problem (PiV )

Find ui ∈ K , u̇i ∈ H1(Ω) and üi ∈ L2(Ω) verifying the inequality∫
Ω

(
üi + üi−1

2

)
(v − ui)dx+ a

(
ui + ui−1

2
, v − ui

)
≥ Li(v − ui) ∀v ∈ K (3.11)

Li(v) =

∫
Ω

f iv dx+

∫
g

givdx

f i := f(x, ti), g
i := g(x, ti)

Newmark’s method with parameters
β =

1

4
, γ =

1

2
as follows

ui = ui−1 −∆tu̇i−1 +
∆t2

2

üi + üi−1

2
(3.12)

u̇i = u̇i−1 + ∆t
üi + üi−1

2
(3.13)

calculi of ui, u̇i, üi

ui = ui−1 + ∆tu̇i−1 +
∆t2

2

üi + üi−1

2

u̇i = u̇i−1 + ∆t
üi + üi−1

2
then ∫

Ω

üi + üi−1

2

(
v − ui

)
dx+ a

(
ui + ui−1

2
, v − ui

)
≥ Li(v − ui)

we have
üi + üi

2
=

2

∆t2
(
ui − ui−1 −∆tu̇i−1

)
then

2

∆t2

∫
Ω

ui
(
v − ui

)
dx+

1

2
a
(
ui, v − ui

)
≥

2

∆t2

∫
Ω

(
ui + ∆tu̇i−1

) ((
v − ui

)
dx− a

(
ui−1, v − ui

)
+ Li

(
v − ui

)
, ∀v ∈ K

α

∫
Ω

ui(v − ui) + βa(ui, v − ui) ≥ L̃(v − ui), ∀v ∈ K.

For the existence and uniqueness utilise Stampacchia theorem

ã(ui, v − ui) ≥ L̃(v − ui) ∀v ∈ K.

Find the weak solution.
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Algorithm

1. At the initial time , u0=u(0)=p0, ul=u̇=p1, ü0 = ∆p0 + f 0, f 0 = f(0)

2. For each step ti, given ui−1, u̇i−1, üi−1 we obtain ui as the solution of the variational
problem ∫

Ω

ui(v − ui) dx+
∆t2

4
a(ui, v − ui) ≥ L̃(v − ui), ∀v ∈ K

witch have unique solution

3. Final, we obtain u̇i, üi with Newmark’s method.

Step 2: Approximated solution of problem (P.C)

First approximation

In this step, several sequences are constructed from the solution of the approximated problem
(P iV ), 1 ≤ i ≤ I, when I →∞. To do that, let us take the following functions

hI(t) = ui−1 + u̇i−1(t− ti−1) +

(
üi−1 + üi

4

)
(t− ti−1)2 ∀t ∈ [ti−1, ti); (3.14)

hI(T ) = uI , ḣI(T ) = u̇I

hI(ti−1) = ui−1, hI(ti) = ui it can be seen that hI(t) ∈ C1(0, T ;H1(Ω)) and hI is C2 at each
subinterval (ti−1, ti).

ḣI(t) = u̇i−1 +
üi + üi−1

2
(t− ti−1), t ∈ [ti−1, ti) (3.15)

for each i = 0, ..., 2I , ḣI(ti) = ui

ḧI(ti) ∈ L∞(0, T ;H1(Ω)), such that

ḧI =
üi + üi−1

2
, t ∈ [ti−1, ti).

A assistant ti we obtain for i = 1, ..., 2I

lim
t−→ti

hI(t) = ui−1 + u̇i∆t+
üi + üi−1

2
∆t2 = ui = hI(ti) (3.16)
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lim
t−→ti

ḣI(t) = u̇i−1 +
üi + üi−1

2
∆t = u̇i = ḣI(ti) (3.17)

then hI(t) ∈ C(0, T ;H1(Ω)).

Remark 18 Note that hI(tk) ∈ K, there is no guarantee that hI ∈ K for all t ∈ [0, T ].

Another approximation

Now choose another four approaches to a solution of the problem (P.C) which are also
convergent when I −→∞. We define

lI(t) = ui−1 +
ui + ui−1

∆t
(t− ti−1), ∀t ∈ [ti−1, ti) (3.18)

hI?(t) = hi =
ui + ui−1

2
, ∀t ∈ [ti−1, ti) (3.19)

h](t) = u̇i, ∀t ∈ [ti−1, ti) (3.20)

uI?(t) = ui, ∀t ∈ [ti−1, ti) (3.21)

Remark 19 Note that in this case lI(t), hI?(t), uI?(t) in K for all t ∈ [0, T ].

Step 3: A priori estimates

To obtain a priori estimates the following lemma.

Lemma 5 Let ui, u̇i and üi be the solution of problem (P iV ) ,1 ≤ i ≤ 2i and hI define by
(3.14)for each subinterval (ti−1, ti) of (0, T ) verifying∫ ti

ti−1

1

2

d

dt

∥∥∥ḣI(t)∥∥∥2

L2(Ω)
dt+

∫ ti

ti−1

1

2

d

dt
a(hI(t), hI(t))dt ≤ Li(ui − ui−1) (3.22)

with

a(u, v) =

∫
Ω

∇u∇vdx
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Proof. Taking v = ui−1 in (3.11)to obtain∫
Ω

(
üi + üi−1

)
.
ui − ui−1

2
dx+ a

(
ui + ui−1,

ui − ui−1

2

)
≤ Li(ui − ui−1). (3.23)

First, we rewrite the first member of equation(3.23) in term of hI(t). Utilise (3.12), we can
prove

ui − ui−1

2
=

∆t

2
u̇i−1 +

∆t2

4

üi + üi−1

2
(3.24)

ui + ui−1 = 2ui−1 + ∆tu̇i−1 +
∆t2

2

üi + üi−1

2
(3.25)

∆t

2

∫
Ω

(
üi + üi−1

)
.u̇i−1dx

+
∆t2

4

∫
Ω

(
üi + üi−1

)
.

(
üi + üi−1

2

)
dx+

∆t2

2
a

(
ui−1,

∆t2

4

(
üi + üi−1

2

))
+

∆t3

4
a

(
u̇i,

üi + üi−1

2

)
+

∆t4

4
a

(
üi + üi−1

4
,
üi + üi−1

2

)
+∆ta

(
ui−1, u̇i−1

)
+

∆t2

2
a
(
u̇i−1, u̇i−1

)
∆t3

4
a

(
üi + üi−1

2
, u̇i
)
≤ Li(ui, ui−1). (3.26)

Now the first member of this expression corresponds to(3.23) we obtain∫ ti

ti−1

1

2

d

dt

∥∥∥ḣI(t)∥∥∥2

L2(Ω)
dt+

∫ ti

ti−1

1

2

d

dt
a
(
hI(t), hI(t)

)
dt

hI(t), t ∈ [ti−1, ti)∥∥∥ḣI(t)∥∥∥2

L2(Ω)
=

∫
Ω

(
u̇i−1 +

üi + üi−1

2
(t− ti−1)

)
.

(
u̇i−1 +

üi + üi−1

2
(t− ti−1)

)
dx

and
1

2

d

dt

∥∥∥ḣI(t)∥∥∥2

L2(Ω)
=

∫
Ω

üi + üi−1

2
.

(
u̇i−1 +

üi + üi−1

2
(t− ti−1)

)
dx∫

Ω

1

2

d

dt

∥∥∥ḣI(t)∥∥∥2

L2(Ω)
dt = ∆t

∫
Ω

u̇i−1.
üi + üi−1

2
dx+

∆t2

2

∫
Ω

(
üi + üi−1

2

)2

dx (3.27)
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and, on [ti−1, ti)
1

2

d

dt
a
(
hI(t), hI(t)

)
=

∫
Ω

∇ḣI(t).∇ḣI(t)dx

=

∫
Ω

∇
(
u̇i−1 +

üi + üi−1

2
(t− ti−1)

)
:

∇
(
ui−1 + u̇i(t− ti−1) +

üi + üi−1

4
(t− ti−1)2

)
dx

=

∫
Ω

∇u̇i−1 : ∇ui−1dx+

∫
Ω

∇u̇i−1 : ∇u̇i−1(t− ti−1)dx

+

∫
Ω

∇u̇i−1∇
(
üi + üi−1

4

)
(t− ti−1)2dx

+

∫
Ω

∇
(
üi + üi−1

2

)
: ∇ui−1(t− ti−1)dx

+

∫
Ω

∇
(
üi + üi−1

2

)
: ∇u̇i−1(t− ti−1)2dx

+

∫
Ω

∇
(
üi + üi−1

2

)
: ∇
(
üi + üi−1

4

)
(t− ti−1)3dx.

then ∫ ti

ti−1

1

2

d

dt
a
(
hI(t), hI(t)

)
dt = ∆t

∫
Ω

∇u̇i−1 : ∇ui−1dx

∆t2

2

∫
Ω

∇u̇i−1 : ∇ui−1dx+
∆t3

3

∫
Ω

∇u̇i−1∇
(
üi + üi−1

4

)
dx

+
∆t2

2

∫
Ω

∇
(
üi + üi−1

2

)
: ∇ui−1dx

+
∆t3

3

∫
Ω

∇
(
üi + üi−1

2

)
: ∇u̇i−1dx

+
∆t4

4

∫
Ω

∇
(
üi + üi−1

2

)
: ∇
(
üi + üi−1

4

)
dx. (3.28)

From (3.23)-(3.28), we find the result.

Proposition 20 Let hI define with (3.14), then

• ‖h(tk)‖H1(Ω) is bounded by constant independent of I and k, 1 ≤ k ≤ 2I
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• hI and ḣI are bounded in C(0, T ;L2(Ω)) by constant independent of I.

Proof. For all k such that 1 ≤ k ≤ 2I

k∑
i=1

∫ ti

ti−1

1

2

d

dt

∥∥∥ḣI(t)∥∥∥2

L2(Ω)
dt =

1

2

(∥∥∥ḣI(tk)∥∥∥2

L2(Ω)
−
∥∥∥ḣI(0)

∥∥∥2

L2(Ω)

)
.

∫ ti

ti−1

1

2

d

dt
a
(
hI(t), hI(t)

)
dt =

1

2

(
a
(
hI(tk), h

I(tk)
)
− a

(
hI(0), hI(0)

))
Then by lemma5, and for 1 ≤ k ≤ 2I

1

2

(∥∥∥ḣI(tk)∥∥∥2

L2(Ω)
+ a

(
hI(tk), h

I(tk)
))
≤ 1

2

(∥∥∥ḣI(0)
∥∥∥2

L2(Ω)
+ a

(
hI(0), hI(0)

))
+

k∑
i=1

Li(ui−ui−1).

(3.29)
Now, we obtain superior borne for the second term cote adroit of (3.29); it give that

ui + ui−1 = hI(ti)− hI(ti−1) (3.30)

then
k∑
i=1

Li(ui − ui−1) =
k∑
i=1

Li(hI(ti), h
I(ti−1))

=

(
k∑
i=1

(
Li − Li+1

)
(hI(ti))

)
+ Lk(hI(tk)) + L1(hI(0)). (3.31)

Therefore

∣∣Li(h(tk))
∣∣ ≤ ∣∣∣∣∫

Ω

f ih(tk)

∣∣∣∣+

∣∣∣∣∣
∫

Γg

gih(tk)

∣∣∣∣∣ (3.32)

≤
∥∥f i∥∥

2
‖h(tk)‖2 +

∥∥gi∥∥
2,Γg
‖h(tk)‖H 1

2

≤
(
‖f‖L∞(0,T ;L2(Ω)) ‖g‖L∞(0,T ;L2(Γg)

)
‖h(tk)‖H1(Ω) (3.33)

≤ C1 ‖h(tk)‖H1(Ω)

and ∣∣Li(h(tk))− Li+1(h(tk))
∣∣ ≤ ∥∥f i − f i+1

∥∥
2
‖h(tk)‖2 +

∥∥gi − gi+1
∥∥

2
‖h(tk)‖H1(Ω) (3.34)

≤
(∥∥∥ḟ∥∥∥

L∞(0,T ;L2(Ω))
+ c ‖ġ‖L∞(0,T ;L2(Ω))

)
‖h(tk)‖H1(Ω) (3.35)

≤ C2 ‖h(tk)‖H1(Ω) . (3.36)
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We reprehend the value absolu of (3.31), utilise (3.32) and (3.34) applying Hölder inequality∣∣∣∣∣
k∑
i=1

Li(ui − ui−1)

∣∣∣∣∣ ≤ C1∆t
k∑
i=1

∥∥hI(ti)∥∥H1(Ω)
+ C2

(∥∥hI(tk)∥∥H1(Ω)
+
∥∥hI(0)

∥∥
H1(Ω)

)
.

where C1, C2 are positive constants. Thus, from (3.29) it follows that(∥∥∥ḣI(tk)∥∥∥2

L2(Ω)
+ a

(
hI(tk), h

I(tk)
))
≤
(∥∥∥ḣI(0)

∥∥∥2

L2(Ω)
+ a

(
hI(0), hI(0)

))

+ 2

(
C2∆t

k−1∑
i=0

‖h(ti)‖H1(Ω) + C1

(∥∥hI(tk)∥∥H1(Ω)
+
∥∥hI(0)

∥∥
H1(Ω)

))
. (3.37)

Now, since the bilinear form a(., .) is coercive there exist constants positives C1, C2 and C3

independent of I and k such that

∥∥hI(tk)∥∥2

H1(Ω)
≤ C1 + C2

∥∥hI(tk)∥∥H1(Ω)
+ C3∆t

k−1∑
i=0

∥∥hI(ti)∥∥H1(Ω)
, (3.38)

for all 1 ≤ k ≤ 2I .
Suppose that C1 > 1 the precedent inequality means

∥∥hI(tk)∥∥H1(Ω)
≤ C1 + C2 + C3∆t

k−1∑
i=0

∥∥hI(ti)∥∥H1(Ω)
, (3.39)

applying discrete Grönwall inequality ( see Lions [12] ), we obtain∥∥hI(tk)∥∥H1(Ω)
≤ CeT , C ∈ R+. (3.40)

Then hI(tk) borne in H1(Ω) by constant independent of I and k.
From (3.37) we obtain that ḣI bounded in L2(Ω) by constant independent of I and k. By
consequence, ḣI linear by piece∥∥∥ḣI(t)∥∥∥2

L2(Ω)
≤ max

{∥∥∥∥ḣ(ti−1)

∥∥∥∥2
L2(Ω),

∥∥∥ḣ(ti)
∥∥∥2

L2(Ω)

}
∀t ∈ [ti−1, ti]

then hI(t) borne in L2(Ω), borne in C(0, T ;L2(Ω)), then

hI(t) = hI(0) +

∫ t

0

ḣI(s)ds.

Then it is not easy to prove hI(t) borne in C(0, T ;L2(Ω)) by constant independent of I for
all t ∈ (0, T ).
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Corollary 21 Let hI define by (3.14) there exist subsequence we note with I, when I −→∞
we obtain

hI ⇀ h weak ∗ in L∞(0, T ;L2(Ω)) (3.41)

ḣI ⇀ ḣ weak ∗ in L∞(0, T ;L2(Ω)) (3.42)

Proof. When L∞(0, T ;L2(Ω)) = [L1(0, T ;L2(Ω))]
′ and L1(0, T ;L2(Ω)) a Banach separa-

ble, the result is direct see (Brézis [13]), note that the limit of ḣI and ḣ,then uniqueness the
limit in D′(0, T ; [L2(Ω)]weak)(see [15] Lions).

Another priori estimates

Proposition 22 Let lI(t), hI?(t), hI] (t) and uI?(t) define by (3.18)-(3.21) then

∗
∥∥hI?(t)∥∥H1(Ω)

and
∥∥uI?(t)∥∥H1(Ω)

are bounded by constant independent of I for all t ∈
[0, T ].

∗
∥∥lI(t)∥∥

H1(Ω)
,
∥∥∥l̇I(t)∥∥∥

L2(Ω)
and

∥∥hI] (t)∥∥L2(Ω)
are bounded by constant independent of I

for all t ∈ [0, T ].

∗ ḧI is bounded in L∞(0, T ;H−1(Ω)).

Proof. From definition of hI we have ui = hI(ti) for all 0 ≤ i ≤ 2I ,

hI?(t) =
hI(ti) + hI(ti−1)

2
, ∀t ∈ [ti−1, ti) (3.43)

and
uI?(t) = u̇I(ti) ∀t ∈ [ti−1, ti) (3.44)

and hI? ∈ L∞(0, T ;H1(Ω)) and ui ∈ H1(Ω) for all i, and

∥∥hI?∥∥H1(Ω)
=

∥∥∥∥hI(ti) + hI(ti−1)

2

∥∥∥∥
H1(Ω)

≤ 1

2

(∥∥hI(ti)∥∥H1(Ω)
+
∥∥hI(ti−1)

∥∥
H1(Ω)

)
, ∀t ∈ [ti−1, ti) (3.45)
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then the result by proposition20 hI?(t) borne in L∞(0, T ;H1(Ω)) by constant independent of
I. The same, uI?(t) borne in L∞(0, T ;H1(Ω)) by constant independent of I. Now, lI linear
by piece ∥∥lI(t)∥∥

H1(Ω)
≤ max

{∥∥lI(ti−1)
∥∥
H1(Ω)

,
∥∥lI(ti)∥∥H1(Ω)

}
∀t ∈ [ti−1, ti],

and lI(tk) = hI(tk) and
∥∥hI(tk)∥∥H1(Ω)

borne by constant independent of I and k,
∥∥lI(t)∥∥

H1(Ω)

borne by constant independent of I. For prove that l̇I borne

l̇I(t) =
ui + ui−1

∆t
,

with, by (3.24) and (3.15) can be rewritten as

l̇I(t) = u̇i−1 =
∆t

2

üi + üi−1

2
=
ḣI(ti−1) + ḣI(ti)

2
, ∀t ∈ [ti−1, ti).

Then ∥∥∥ḣI(t)∥∥∥
L2(Ω)

=

∥∥∥∥∥ ḣI(ti−1) + ḣI(ti)

2

∥∥∥∥∥
L2(Ω)

. (3.46)

Thus, again by proposition 20,
∥∥∥ḣI(t)∥∥∥

L2(Ω)
is bounded by a constant independent of I for

all t ∈ (0, T ). Even so ∥∥hI]∥∥L2(Ω)
=
∥∥∥ḣI(ti)∥∥∥

L2(Ω)
, ∀t ∈ [ti−1, ti).

Finally , of the boundedness ḧI in L∞(0, T ;H−1(Ω)) is obtained as a result direct from the
previous boundedness and equation can be written in terms of ḧI and hI? as

ḧI −∆(hI?) = f I0 in Ω (3.47)

such that f I0 (t) = f i0 for all t ∈ [ti−1, ti).

Step 4: Convergence of approximate solutions

Corollary 23 Let lI(t), hI?(t), hI] (t) and uI?(t) defined by (3.18)-(3.21) respectively . Then
there are equal subsequence depend with the index I as I −→∞ then there exist subsequence
we obtain the following convergences

lI ⇀ l weak ∗ in L∞(0, T ;H1(Ω)) (3.48)
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l̇I ⇀ l̇ weak ∗ in L∞(0, T ;L2(Ω)) (3.49)

hI? ⇀ h? weak ∗ in L∞(0, T ;H1(Ω)) (3.50)

uI? ⇀ u? weak ∗ in L∞(0, T ;H1(Ω)) (3.51)

hI] ⇀ h] weak ∗ in L∞(0, T ;L2(Ω)) (3.52)

ḧI ⇀ ḧ weak ∗ in L∞(0, T ;H1(Ω)) (3.53)

Proof. The proof is similar to that of corollary 21.

Corollary 24 Let ḣI and lI defined by (3.15) and (3.18) respectively. Then there exists
sub -suites, equal denoted with the index I, such that I −→ +∞

lI −→ l in C([0, T ]; Hβ(Ω)) ∩ Cs([0, T ],H1(Ω)), 0 ≤ β ≤ 1, (3.54)

ḣI −→ ḣ in C([0, T ]; Hα(Ω)) ∩ Cs([0, T ],L2(Ω)), −1 ≤ α ≤ 0, (3.55)

optionally after a change on a set of measure zero.

Proof. The proof of this result is a consequence of the boundedness of ḣI , ḧI , l and l̇ and
the lemma1

Uniqueness of the limit

In this section, we will show that all the terms in (3.41), (3.50), (3.53) and (3.54) are equal
h = l = h? = u? Then, from (3.19) and using the formula Barrow C1 functions [ti−1, ti],
we have ∥∥hI(t)− hI?(t)∥∥L2(Ω)

=

∥∥∥∥hI(t)2
+
hI(t)

2
− hI(ti−1)

2
− hI(ti)

2

∥∥∥∥
L2(Ω)

=

∥∥∥∥1

2

∫ t

ti−1

ḣI(s)ds−
∫ ti

t

ḣI(s)ds

∥∥∥∥
L2(Ω)

≤
∥∥∥∥1

2

∫ t

ti−1

ḣI(s)ds

∥∥∥∥
L2(Ω)

+

∥∥∥∥1

2

∫ t

ti−1

ḣI(s)ds

∥∥∥∥
L2(Ω)

≤ ∆t
∥∥∥ḣI(s)∥∥∥

L∞(0,T ;L2(Ω))
−→ 0 (3.56)
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when I −→ ∞. For all h and h? are equal to L∞(0, T ;L2(Ω)) and then that h? ∈
L∞(0, T ;H1(Ω)) as ḣ ∈ L∞(0, T ;H1(Ω)). Similarly, it is shown that h and u? are equal in
H1(Ω). In addition, and then l̇ is bounded in L∞(0, T ;L2(Ω)),∥∥lI(t)− uI?(t)∥∥L2(Ω)

=
∥∥lI(t)− lI(ti)∥∥L2(Ω)

=

∥∥∥∥∫ ti

t

l̇I(s)ds

∥∥∥∥
L2(Ω)

≤ ∆t
∥∥∥l̇I(s)∥∥∥

L∞(0,T ;L2(Ω))
−→ 0 (3.57)

when I −→ ∞. Similarly, it is shown that ḣ and h] coincide with L2(Ω). Then, l = u? =

h? = h. Hence forth, we denote this limit by u. In summary, we have shown the following
convergences.

Theorem 25 Let hI , lI , hI?, hI] and uI? are given by (3.14), (3.18) (3.19), (3.20)and (3.21)
respectively. Then there exist u such that

lI ⇀ u weak ∗ in L∞(0, T ;L2(Ω)) (3.58)

l̇I ⇀ u̇ weak ∗ in L∞(0, T ;L2(Ω)) (3.59)

l̇I? ⇀ u weak ∗ in L∞(0, T ;H1(Ω)) (3.60)

lI? ⇀ u weak ∗ in L∞(0, T ;H1(Ω)) (3.61)

uI? ⇀ u weak ∗ in L∞(0, T ;H1(Ω)) (3.62)

hI] ⇀ u̇ weak ∗ in L∞(0, T ;L2(Ω)) (3.63)

∇(hI?) ⇀ ∇(u) weak ∗ in L∞(0, T ;L2(Ω)) (3.64)

another, we have the limit
lim

I−→+∞
(hI − hI?) = 0 (3.65)

lim
I−→+∞

(hI − uI?) = 0 (3.66)

lim
I−→+∞

(lI − lI?) = 0 (3.67)

strong in L∞(0, T ;L2(Ω)).

33



Corollary 26 Let hI and lI are given by (3.14), (3.18). Then there exist u such that

ḣI −→ u̇ in C([0, T ]; Hα(Ω)) ∩ Cs([0, T ],L2(Ω)), −1 ≤ α ≤ 0, (3.68)

lI −→ u in C([0, T ]; Hβ(Ω)) ∩ Cs([0, T ],H1(Ω)), 0 ≤ β ≤ 1, (3.69)

Proof. From Corollary 24 and the uniqueness of the weak limit.

Theorem 27 Let hI? and uI? are given by (3.19) and (3.21) respectively .Then

hI? − uI? −→ 0 in D′(0, T ;H1(Ω)), (3.70)

lI − uI? −→ 0 in L∞(0, T ;Hr(Ω)), 0 ≤ r ≤ 1, (3.71)

when I −→∞.

Proof. Let ϕ ∈ D(0, T ). Let I ≥ I0, where I0 is such that support of ϕ is continue in
[δ0, T − δ0] with δ0 = T/2I0, so that supp(ϕ) ⊂ [δ, T − δ], be δ = T/2I . Then∫ T

0

(hI? − uI?)ϕdt =
2I−1∑
i=0

∫ ti+1

ti

(hI?(t)− uI?(t))ϕ(t)dt

=
2I−1∑
i=0

∫ ti+1

ti

(ui−1 − ui)θI(t)ϕ(t)dt

=
2I−1∑
i=0

∫ ti+1

ti

ui(ϕδ − ϕ)(t)dt,

be ϕδ = ϕ(t+ δ) and for all, |ϕ− ϕδ| ≤ cδ, be c = max

∣∣∣∣dϕdt
∣∣∣∣. Consequently,

∥∥∥∥∫ T

0

(hI? − uI?)ϕdt
∥∥∥∥
H1(Ω)

≤ cδ2

2I−1∑
i=1

∥∥uI∥∥
H1(Ω)

≤ cδ2

(2I − 1)
2I−1∑
i=1

∥∥uI∥∥2

H1(Ω)

 1
2

≤ cδ2
(
(2I − 1)2C

) 1
2
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≤ ĉδ222

= ĉδ2T/δ = ĉδT −→ 0 if δ −→ 0.

Where c, C and ĉ are positive constants. To prove (3.71) by using the convergences, fol-
lowing

lI ⇀ l weak ∗ in L∞(0, T ;H1(Ω))

l̇I ⇀ l̇ weak ∗ in L∞(0, T ;L2(Ω)).

Let 0 < r = θα + (1 − θ)β < 1, and for r 6= 1/2. There exist a set A ⊂ [0, T ] such that
mes(A) = 0 and for all t1, t2 ∈ [0, T ]\A, with t1 ≤ t2∥∥lI(t2)− lI(t1)

∥∥
H1(Ω)

≤Mθ

∥∥lI(t2)− lI(t1)
∥∥θ
L2(Ω)

∥∥lI(t2)− lI(t1)
∥∥1−θ
H1(Ω)

≤Mθ

(∫ t2

t1

∥∥∥l̇I(t)∥∥∥
L2(Ω)

dt

)θ
≤Mθ(t1 − t2)1�2. (3.72)

In particular, for all t ∈ [ti−1, ti]\A, then∥∥uI? − lI∥∥Hr(Ω)
=
∥∥lI(ti)− lI(t)∥∥Hr(Ω)

≤Mθ(ti − t)
θ
2 −→ 0,

when I −→∞.

Theorem 28 Let u be the limit presented in theorem 25, then

u ∈ L∞(0, T ;K) (3.73)

u̇ ∈ L∞(0, T ;L2(Ω)) (3.74)

ü ∈ D′(0, T ;L2(Ω)) (3.75)

∇u ∈ D′(0, T ;H(div)) ∩ L∞(0, T ;L2(Ω)) (3.76)

Proof. According to the relation (3.11) we have∫
Ω

ḧIvdx+ a(hI?, v) ≥ Li(v) ∀v ∈ K
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this inequality is true for v(t) ∈ L2(0, T ;V ); v(t) ∈ K a.e and∫ T

0

∫
Ω

ḧIv(t)dxdt+

∫ T

0

a(hI?, v(t))dt ≥
∫ T

0

L?(v(t))dt, ∀v ∈ L2(0, T ;K)

v(t) = ϕ(t)ω(t) such that ϕ(t) ∈ D(0, T ); ω(t) ∈ D(Ω) we have integration by parts we find
the first term

−
∫ T

0

∫
Ω

ḣv(t)dxdt+

∫ T

0

a(hI?, v(t))dt ≥
∫ T

0

∫
Ω

f?(v(t))dt,

for v(t) = −ϕ(t)ω(t), found∫ T

0

∫
Ω

ḧv(t)dxdt+

∫ T

0

a(hI?, v(t))dt =

∫ T

0

f?(v(t))dt, (3.77)

we can also prove that∫ T

0

a(hI?, v(t))dt −→
∫ T

0

a(hI?, v(t))dt, if I −→∞ (3.78)

and that ∫ T

0

∫
Ω

f?(v(t))dxdt −→
∫ T

0

∫
Ω

f(v(t))dxdt. (3.79)

Therefore∫ T

0

∫
Ω

u̇v̇(t)dxdt+

∫ T

0

a(u, v(t))dt =

∫ T

0

∫
Ω

fv(t)dxdt for ∀v ∈ (D(0, T )× Ω).

To prove, (3.73) it suffices to see that uI? = u ∈ K and since uI?
∗
⇀u in L∞(0, T ;H1(Ω)) then

uI?
∗
⇀u in L∞(0, T ;K) where (3.73). We have (3.74) directly by ḣI ∗⇀ ḣI in L∞(0, T ;L2(Ω))

with a test function v(t) ∈ D(0, T ;K) found∫ T

0

∫
Ω

üv(t)dxdt−
∫ T

0

∆(u)v(t)dt =

∫ T

0

∫
Ω

fv(t)dxdt for ∀v ∈ (D(0, T )× Ω)

ü−∆u− f = 0 a.e in Q = (0, T )× Ω. (3.80)

As u̇ ∈ L∞(0, T ;L2(Ω)), then ü ∈ D′(0, T ;L2(Ω))

ü = (∆u+ f) ∈ L∞(0, T ;H−1(Ω))

ü ∈ D′(0, T ;L2(Ω)) ∩ L∞(0, T ;H−1(Ω)) where (3.75).

Such that ∇(hI?) −→ ∇(u) in L∞(0, T ;L2(Ω)) and ∇u ∈ H(div) =⇒ ∇u ∈ D′(0, T ;H(div))

where ∇u ∈ L∞(0, T ;L2(Ω)) ∩D′(0, T ;H(div)) where(3.76).
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Theorem 29 Let u the precedent limit by theorem 25 then u verifying the condition (3.5).

Proof. From corollary 26
lI −→ u in C([0, T ];L2(Ω)).

Then, as lI(0) = p0 for all I, we can pass to the limit and obtain that u(0) = p0.
Another

ḣI −→ u̇ in Cs([0, T ];L2(Ω)),

then ∫
Ω

ḣI(0)vdx −→
∫

Ω

u̇(0).vdx, ∀v ∈ L2(Ω)

witch give ḣI(0) = p1 for all I then∫
Ω

u̇(0)vdx =

∫
Ω

p1vdx, ∀ ∈ L2(Ω).

Step 5: The limit u is solution of problem (P.C)

In this step, we will show that the weak limit u is a weak solution of problem (P.C). For
this it suffices to show that u is a solution of the problem

(P.V )


〈ü, v〉+ a(u, v) = L(v) + 〈∂nu.n, vn〉 ∀v ∈ V

〈∂nu.n, vn − un〉 ≥ 0 ∀v ∈ K

u(x, 0) = p0, u̇(x, 0) = p1.

Let consider the following problem{
〈ḧI , v〉+ a(hi, v) = Li(v) + 〈∂nhi.n, vn〉 ∀v ∈ V

〈∂nhi.n, vn − uin〉 ≥ 0 ∀v ∈ K

which comes from the properties of solutions of the problem (P iV ). With the aid of functions
hI? and uI?. Defined in the previous problem on the interval [0, T ] following suite
∫ T

0

〈
ḧI , v(t)

〉
dt+

∫ T

0

a(hI?, v(t))dt =

∫ T

0

LI?(v(t))dt+

∫ T

0

〈
∂n(hI?).n, vn(t)

〉
dt ∀v ∈ L1(0, T ;V )∫ T

0

〈
∂n(hI?), vn(t)− uI?n

〉
dt ≥ 0, ∀v ∈ L1(0, T ;K)
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such that

LI?(v) =

∫
Ω

f I? vdx+

∫
Γg

gI?(v)dΓ where f I? (t) = f i, gI? = gi in ]ti−1, ti].

For v(t) ∈ D(0, T ;V ) we have〈
ḧI , v(t)

〉
= −

〈
ḣI , v̇(t)

〉
in sens of D′(0, T ).

And
ḣI ⇀ u̇ in L∞(0, T ;L2(Ω))

i.e

∫ T

0

〈
ḣI , g(t)

〉
dt −→

∫ T

0

〈u̇, g(t)〉 dt ∀g ∈ L1(0, T ;L2(Ω))

and the fact that v(t) ∈ L1(0, T ;L2(Ω)), then we can pass to the limit on I, we obtain∫ T

0

∫
Ω

ḣI v̇(t)dxdt −→
∫ T

0

∫
Ω

u̇v̇(t)dxdt.

∫ T

0

a(hI?, v(t))dt −→
∫ T

0

a(u, v(t))dt,∫ T

0

∫
Ω

LI?(v(t))dt −→
∫ T

0

∫
Ω

L(v(t))dxdt.

Therefore, we have∫ T

0

〈ü, v(t)〉 dt+

∫ T

0

a(u, v(t))dt =

∫ T

0

L(v(t))dt+ lim
I−→∞

∫ T

0

〈
∂n(hI?).n, vn(t)

〉
dt (3.81)

the form

λn : vn(t) −→
∫ T

0

〈ü, v(t)〉 dt+

∫ T

0

a(u, v(t))dt−
∫ T

0

L(v(t))dt

defines a continuous linear form on D(0, T ;H
1
2 (Γ0)). Then∫ T

0

〈ü, v(t)〉 dt+

∫ T

0

a(u, v(t))dt =

∫ T

0

L(v(t))dt+

∫ T

0

〈λn, vn(t)〉 dt ∀v ∈ D(0, T ;V )

another ∫ T

0

〈
∂n(hI?).n, vn(t)− un?(t)

〉
dt ≥ 0 ∀v ∈ L1(0, T ;K)

then ∫ T

0

〈
∂n(hI?).n, vn(t)

〉
dt ≥

∫ T

0

〈
∂n(hI?).n, un?(t)

〉
dt ∀v ∈ L1(0, T ;K).
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Hence , we have from for v = uI? in D′(0, T ;H−
1
2 (Γ0)), that∫ T

0

〈λn, vn(t)〉 dt ≥ lim
I−→∞

∫ T

0

〈
∂n(hI?).n, u

I
?n(t)

〉
dt

≥ lim
I−→∞

(∫ T

0

〈
ḧI , vI?(t)

〉
dt−

∫ T

0

a(hI?, u
I
?)dt+

∫ T

0

LI?(u
I
?)dt

)
another, we have 〈

ḧI , uI?(t)
〉
−→ 〈ü, u〉

and ∫ T

0

a(hI?, u
I
?)dt =

∫ T

0

a(hI? − uI?, uI?)dt+

∫ T

0

a(uI?, u
I
?)dt.

According to (3.70)
a(hI? − uI?, uI?) −→ 0 in sens of D′(0, T )

and according the semi continuity of norm define with a(., .), we have

lim
I−→∞

∫ T

0

a(uI?, u
I
?)dt ≥

∫ T

0

a(u, u)dt

and ∫ T

0

LI?(u
I
?)dt −→

∫ T

0

L(u)dt.

By consequence∫ T

0

〈λn, vn(t)〉 dt ≥
∫ T

0

〈ü, u〉 dt+

∫ T

0

a(u, u)dt−
∫ T

0

L(u)dt =

∫ T

0

〈λn, un(t)〉 dt

where
〈λn, vn(t)− un(t)〉 ≥ 0 in D′(0, T ;K).

Finally, we obtain
∫ T

0

〈ü, v(t)〉 dt+

∫ T

0

a(u, v(t))dt =

∫ T

0

L(v(t))dt+

∫ T

0

〈λn, vn〉 dt ∀v ∈ D(0, T ;V )∫ T

0

〈λn, vn(t)− un(t)〉 ≥ 0 ∀v ∈ (0, T ;K)

Remark 30 Conditions of regularity, we can see λn = ∂nu.n.

39



Conclusion

We discussed in this memoir, we presented an existence result of the dynamic Signorini
problem. Among the issues encountered are those related to regularity of the solution and
the uniqueness of the solution. Was another issue related to extensions of the problem and
study the same problem but this time with friction.
Then we have as prospective

• Study uniqueness of the solution.

• Regularity of the weak solution.

• Friction dynamic signorini problem.
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