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Abstract: The knowledge of the distribution function permits us to determine a number of important parameters, such
as, electron mobility, conductivity, etc. The purpose of this work is the development of methods for calculating the
energy distribution of electrons EEDF in a gas of low ion density under the influence of uniform electric and magnetic

fields using the classical Two-term expansion where f is expand in terms of Legendre polynomials (spherical

harmonics expansion). In this approximation, the Boltzmann equation takes the form of a convection diffusion
continuity equation. The special configurations of the magnetic field parallel and perpendicular to the electric field are
discussed in detail.
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1. Introduction
Fluid models of gas discharges describe the transport of electrons, ions and possibly other reactive
particle species by the first few moments of the Boltzmann equation (BE). Transport coefficients
may be rather specific for the discharge conditions. In particular, coefficients concerning electrons
depend on the electron energy distribution function (EEDF), which in general is not Maxwellian but
varies considerably depending on the conditions. .

The electron distribution f depends on five coordinates: r, ¢, V, 8 and ¢. We simplify the 6
and ¢ dependence by classical two-term approximation (section 2). To simplify the time

dependence, is assumed loss due to ionization and attachment. We then describe the collision term
put all pieces together into one equation for EEDF.

2. Two-term approximation

The Boltzmann equation for an ensemble of electrons in an ionized gas is:
oOf u u Uouwouw,u

=4V V"f——(E+V><B) v f=C[f] (1)

ot m
Where f is the electron distribution in six-dimensional phase space V are the velocity coordinates,

e is the elementary charge, m is the electron mass E and B uniform electric and magnetic
flelds,Vv is the velocity-gradient operator and C represent the rate of change in f due to
collisions.

A common approach to solve equation (1) is to expand f in terms of Legendre polynomials

(spherical harmonics expansion) and then construct from equation (1) a set of equations for the

expansion coefficients. Using the two-term approximation we expand f as:
f=1£Y. . =l + i, cos @+ £, sin @ cosp + £, sin @ sin ¢ (2)

With: Yy, =1, Y,y = cos 8 ,Y,,, = sin € cos@, Y,;; = sin @ sing
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where the f

Ims

terms are function of time, position, and velocity-magnitude only. Noting that the

three spherical harmonics of order 1 are the direction cosines of unit vector in the direction of
velocity suggests the form:

woy
f=1 +f - -— 3
u ' 1 1 V 1 1 ( )
fi= fyy i+ fyy j + fyy Kk (4)
The average velocity can be obtained bl}/ averaging: ) )
V:V(Yuo i+ Yy, J + Yy k) (5)

u
where f; is the isotropic part of f and f,is an anisotropic perturbation, it is negative. Also note
that f is normalized as:

n=4z [ £V*dV ©6)
0

where n is the electron number density. The DC drift velocity (mean velocity) Vs and the current
j density vectors are given by:

u =
V= Az J.f1V3dV (7)
3n ;
1j:ne%l = ne[u%—e%'} (nD)zO'%—e%i(nD) (8)

where 4 is the mobility and o is the conductivity and D is diffusion coefficient.

Equations for fjand ?1 are found from equation (1) by substituting equation (3), multiplying by the
respective Legendre polynomials (1 and Y, i+ Yo lj +Y, }() and integrating over solid angle
(sin@ dfdg) , we obtain:

T oo U u
ai+zgl/zvr,- fl—Zg‘l/Zi(gE- fl)zCo 9
. Jot 3 3 e
Jdf, y 1/2lI 1/zlrafo uu 1/2lr
—L 4+ Le®V, f — E—L-L _Bxf =-No f 10

where ¥ =(2¢/ m)l/2 is a constant and £ = (V /%)’ is the electron energy in electronvolts. The

right-hand side of equation (10) contains the total momentum transfer cross-section

o,= z x,0, consisting of contributions from possible collision processes with gas particles with
k

x, the mole fraction of the target species of collision process, and o, effective momentum transfer

cross-section. The right-hand side of equation (9) represents the change in £, due to collision.

3. Exponential spatial growth without time dependence
In general f cannot be constant in both time and space because some collision processes
(ionization, attachment) do not conserve the total number of electrons. There is a simple technique
to approximately describe the effects of net electron production; we separate the energy dependence
of f from its dependence on time and space:

fo(irr t,g) =ﬁFD (8)17(; t) (11)
1, (rt.e) == Fi (&) n(r.1) (12)

2my’

Where the energy distribution Fyand Fiis constant in time and space and normalized by
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_[gl/ *Fde =1
0
The time or space dependence of the electron density nis now related to the net electron production
rate. For this, we consider the case corresponds to Steady State Townsend experiments, the
on
exponential spatial growth without time dependence: > =0.
t

4. Special configurations of the fields
4.1 Magnetic field parallel to electric field

For Eand B along the Z axis, the equation (10) becomes:

Lok
., ) 0 nox N
Ell =7 1 2 @, 0, 0 lﬁﬁ (13)
a o’ +0. ) ) ndy N
100 0 0 2%\ 13,F EOE
9 N nazN Noe

Where o, = %8*1/ 2 % . And equation (09) can again be written in form:

2
_r9 (EJ & 9 —Co+R (14)
3de\\N) o, de

5__ 7.1 0n i(zgaﬁ_ﬂﬂjgpi )| relg (a_j on)
3nNdz|o,\ Nde¢ ndzN) N odelo, 3nNn N|\ox dy
And Eo = C02ﬂ73

n
withe neutral gas particles and from electron-electron collisions:

Eo = zao,k +60,e (15)
k

£"%is the collision terms contribution from all different collision processes k

Where,

= 2 k,T OF;
CO,k:e]asU’c = 7Xk ﬁm%[gzo'k (Fé + l; a_;]:|
k

Coinetastic = —VX, [gak (e)F(e)-(e+u,)o, (e+u ) F(e+u, )]
Co seionization =~V X, [£0, () Fy(€)-2(2e+u, )0, (26 +u, ) Fy (26 +u,) ]
EO,k:attachment =—YX.E0, (8) F(; (8)

where M, is the mass of target particles and 7 is their temperature, u, is threshold energy of the
collision.

CO,e =da

n 9
N o¢

{341:0 +2(4, +g3/2A3)aai;}
Where
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A :].ul/zFo(u)du
A = }US/ZE) (u)du
A =°}E}(u)du

. 127 (,k,T. )"
a= e}’zlr{ 7[(80 ) ]’ kBngeAz(oo)

247, e'n’?

4.2 Equation for EEDF
When combining the previous equation, we fine an equation for F, that looks like a convection-

diffusion continuity equation in energy space:

J WE, - poh 3 (16)
88 o€
where
1 on ¢ E
W=—rlo —3a" Z___(z_j
o Say Aty N e PN

2
- ye(E kT n 32
D=Lf—| = | +y—=—¢°0. +2a— + Ae
(Nj v e ¢ aIN(I42 )

k=elastic k

2
= = E
S(E)=Y Coi+ ylonelonh Epofe) yel (a”J L[ 9n
ket clastic 3nNdz| o, noz N N °oe 3nNn N|\ox dy
The equation (16) is no ordinary differential equation and solving it requires some special care.
The numerical solution of this equation is not finish again.

4.3 Coefficients of transport for fluid equations
When a constant magnetic field is included the conductivity and diffusion coefficients must be

represented by matrices. By equation (7), substitution of equation (14) for uFl into (8) for } yields
the conductivity and diffusion matrix:

. o, —O. 0 OF
NO'=nNe,u=MJ. 28 -l 0. o, 0 |=tde
3 Jw +o0, , ., | 9
0 o %t
O-III
o O-m _a)(,’ 0
_7 €
ND_S-[a)f+ 2 o o, 0 Fode
0 o “to
o
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Y. Magnetic field perpendicular to electric field
For B along the y axis, the equation (10) becomes:

1nF
E On 0 @, nox N
110 2 2
Fylemgiey| 0 &3% o LG 13
P w +o, o, nady N
o, 0 o)1k _FiE
ndz N N de

And equation (10) can again be written in form:
2
_r9 ( j €0, 95 | G +F (14)
3 de o+t e
TQZ_ZL@ —Zgo-m . 2( jai_ﬁl@ “‘EFoi Zgo-m a
3nNdz| o +o0, de Nndz) N " dela +o0,
y 1 dn| €, (Flon) E _. 0 EQ, y e 1 anzﬁ]
t T T2 oo T e 2T s oo v
3nNox| @ +o,\ Nndx) N " de\aw +o0, 3o0,nN\dy) N

5.1 Equation for EEDF
In this case, we fine an equation for F:

a(WF DaFj S (15)

o€ o€

— 1 dn é&o E
W =-seo, ~3am A+ S0 ( o 2]
e A A N o+l N
2
e 7/8 E kBT 2 n 3/2
D — | +y—¢€0,+2a—( A + Ae
(5] +rleio vaat (g + Act)

2m
O, = Z M X O
k=elastic k

S(E)= S Cous? Ll 0n Flon Fpof o,
K elastic 3nNdz| @' +0> Nndz N "del & +7

y 1 dn| €, (FKlon) E _ d( eo. y € an) F
Tt T 2 v oo T e T 2 +___ Y
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6. Conclusion
The Solutions the Boltzmann equation uniform electric and magnetic fields, using the classical two-
term expansion, and is able to account for exponential spatial growth model, electron-neutral and
electron-electron collisions. We show that for approximations we use, the Boltzmann equation takes
the form of a convection-diffusion continuity equation. To solve this equation we can use
exponential scheme commonly used for convection-diffusion problems.
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