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Abstract: 

The knowledge of the electric microfield distribution in multicomponent cold plasma is a necessary condition 

to solve several problems. In particular, the calculation of the spectral line shapes for an ion, taken as radiator in plasma 

consisting of neutrals and ions point is one of these problems requiring such distribution. In this work, we are interested 

in the electric microfield distribution in two-component cold plasma. To reach this goal, we used a useful method based 

on ”cluster expansion”, widely known in statistical mechanics, in the independent particle approximation. Here we only 

use the first term of the Baranger-Mozer formalism. The main interactions used are ion-ion and ion-neutral interactions. 
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1. Introduction 
The knowledge of the probability distribution function for electric field in a multicomponent 

ionized plasmas is a prerequisite to the solution of a number of problems, in particular that of the 
calculation of the broadening of spectral lines in plasmas [1-7]. In relation to this problem, various 

theories of the electric microfield distributions have been formulated. The primary aim of these 
efforts has been to include ion-ion correlations with various orders and thus to improve the original 

work done by Holtsmark [5]. 

Since then, several efforts have been made to improve the statistical description of 

microfield distribution. The first theory which goes beyond the Holsmark limit and which is based 

on a cluster expansion similar to that used by Mayer [8] was developed by Baranger and Mozer. In 

this approach the microfield distribution is represented as an expansion in terms of correction 

functions which has been truncated on the level of the pair correlation. The latter is treated in the 

Debye-Huckel form which corresponds to the first order of the expansion in the coupling parameter. 

The theory of Baranger and Mozer was improved by Hooper [9, 10] and later by Tighe and Hooper 

[11, 12] based on Broyles' collective-coordinate technique [13]. They reformulated the expansion of 

the microfiled distribution in terms of other functions by introducing a free parameter which was 

adjusted in such a way to arrive at a level where the resulting microfiled distribution did not depend 

on the free parameter anymore. A further improvement of this model was made in Ref [14-16] 

considering a Debye-chain cluster expansion. Afterwards the Baranger-Mozer second order theory 
was extended by including higher order corrections, like triple correlation contribution [17]. 

One distinguishes two parts in the electric field, which are the high-frequency and the low-
frequency components. The high-frequency component is that part of the electric field whose time 

variation is governed by the motion of the electrons. While the time variation of the low-frequency 
component is governed by the motion of the ions. The problem of low-frequency component of cold 

plasmas is the subject of this paper. Here the plasma is represented as collection of N particles (ions 
+neutrals) shielded, which interact with each other through an effective potential. The effective 

potential includes the effect of ion-electron interactions. 

The paper is organized as follows. In Sec 2, we define the system and parameters of interest 

as well as the theoretical model to calculate the microfield distribution in (TCICP). The theory of 

Baranger-Mozer for the computation of low-frequency thermal electric microfield distribution is 
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extended here to the cold binary mixture plasma (neutrals + ions). The system we deal with consists 

of ions and neutrals immersed in a uniform neutralizing background. The total system is assumed to 
be in thermal equilibrium and neutral at all. The numerical results are given in final section. 

 

2.  Formalism 

We consider the electric microfield distribution ( )W E
��

 [1], defined as the probability 

density of finding a field E
��

 equal to � at the charge 
1Z e , located at 

1r , in two-component ionic cold 

plasma (TCICP) where ions of species ,a bσ =  carry a charge Z eσ  and neutrals of species 

,c dσ = . Here, e is the magnitude of the elementary charge and all the Zσ 's are positive. As usual, 

we assume that the electron screening is described by Debye-Hückel formula. This can be justified 

only for plasma in which the electron-electron and electron-ion couplings are both weak and the 

plasma may be described by classical mechanics. The system, which also includes a uniform 

neutralizing background, is assumed to be described by classical equilibrium statistical mechanics 

with temperature T  and number densities nσ , 

 /n Nσ σ= Ω    and  a b c dN N N N N Nσ
σ

= = + + +�            (1) 

e a a b bn Z n Z n= +                                                                                              (2) 

We introduce the composition parameter, 

,b

a b

N
p

N N
=

+
       ' bN

p
N

=                                                                            (3) 

Where Nσ  is the number of particles of species , , ,a b c dσ =  and  � is the total volume 

The potential energy V  is given by, 

1 1

i n

pV V V V= + +                                                                                                  (4) 

The quantity ( )1 1

i nV V describes the interaction between the ionic mixture ,a b  (the neutral 

mixture ,c d ), and the charged particle at 1r , 

2 1
1

1

, 2 1

exp
N i

i

a b i i D

r rZ Z e
V

r r

σ

σ

σ λ= =

� �−
� �= −
� �−
� �

� �

� �

� �                                                        (5) 

2 2 1 1
1

1

, 2 1

2
1 exp

N j j
n

c d j j D D

r r r rZ e
V

r r

σ

σ

σ

α

λ λ= =

� 	 � �− −
� �
 �= + −
� �
 �−

� 
 � �
� �

� � � �

� �                               (6)  

  

Where σα polarizability coefficient of the neutral particle of species � is ( 3 ,R Rα = is the rayon of 

the neutral). 

The electric field at charged point (ion) 
i

E
��

, and the electric field at neutral point (neutral) 
n

E
��

 are given by, 

                                    ( ) ( ) 1
11 1

, 2 11

1 N
i ia b

i

a b i i

r r
E V V Z e f r r

Z e r r

σ

σ
σ = =

−
= − ∇ + = − −

−
� �

� �

�� �� � �

� �
                     (7) 

                                  ( ) ( ) 1
11 1 1

, 2 11

1 N
n ic d

i

a b i i

r r
E V V Z e h r r

Z e r r

σ

σ
σ

α
= =

−
= − ∇ + = − −

−
� �

� �

�� �� � �

� �
               (8) 

where 

                                     
2

1
( ) 1̈ exp

D D

r r
f r

r λ λ

� 	 � �
= + −� �
 �

� 
 � �
                                                          (9) 
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And 

                                  

2

2

1 2
( ) 1̈ 1 exp

D D D

r r r
h r

r λ λ λ

� 	� � � �

 �= + + + −� � � �

 �� � � �� 


                                        (10) 

and 
pV is the remaining part of the interactions (ion-ion, ion-neutral, neutral-neutral) in the mixture. 

The quantity 
D

λ  is the electron Debye screening length [2], 

2

24

B
D

e

k T

n e
λ

π
=                                                                                                (11) 

We introduce the plasma Debye screening length 
2

2

2

D
Dp

R

λ
λ =                                                                                             (12) 

and 

         2 2

,

1
a b e

n
R Z

n

σ
σ

σ =

= + �                                                                               (13) 

The dimensionless classical plasma parameter thus reads 

       
2

e

B Dp

e
R

k Tλ
Λ = = Λ                                                                                (14) 

with 

   
2

30.334e

B D

e
v

k Tλ
Λ = =                                                                            (15) 

and 

( )
( )

1 6 3

0

1 2
0.0898

e

D

n cmr
v

T Kλ

−

= =                                                                     (16) 

Pertaining only the electron component with 0r  so that ( )( )
3/2 3

04 15 2 1en rπ = . The Holtsmark unit 

of field strength thus becomes 

                               ( ) ( )10 2 3 3

0 2

0

/ 3.75 10 e

e
E KV cm n cm

r

− −= = ×                                         (17) 

with the reduced unit 
0

E Eβ = . 

We have then, in the limit of a macroscopic system, 

         ( ) ( )
( ) ( )

{ }( )
1

2

exp
...

, ,

N

j

j

V E
W E E d r d r

Q N Tσ

β δ ε
δ ε

=

− −
= − =

Ω
∏� �

� ��

�� � �� � �

                    (18)  

Where { }( ), ,Q N Tσ Ω is the configurationally partition function, jr
�

is the position of the jth 

particles, and ( )
1

B
K Tβ

−
=  with 

B
K the constant of Boltzmann. It is convenient to introduce the 

Fourier transform of the distribution ( )W E
��

. In the thermodynamic limit the system is isotropic, so 

that after setting E E=
��

 

                                2

0

2
( ) 4 ( ) sin( ) ( )

E
P E E W E dkk kE T kπ

π

∞

= = �                                           (19) 

Where 

                                        ( ) exp( .T k ik E=
� ��

                                                                               (20) 
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The microfield distribution will be discussed under the usual isotropic form (
0

u kE= ) 

                              ( ) 0

0

2
( ) ( )sin( )H E P E uF u u du

β
β β

π

∞

= = �                                                 (21) 

 

The mathematical quantity of interest is obviously ( )F u . It is the Fourier transform of the 

probability ( )W E
��

 for finding an electric field 

                            
1 1 1 1

a b c dN N N N
i n a b c d

i j k l

i j k l

E E E E E E E
= = = =

= + = + + +� � � �
�� �� �� �� �� �� ��

                                             (22) 

 

at the origin (emitter) produced by i

a bN N N= +  pointlike ions with number densities 
an  and 

bn , 

and by n

c dN N N= +  pointlike neutrals with number densities 
cn  and 

dn . One then gets 

                          ( ) exp( . ) ( )F k ik E W E d E= �
� � �� �� ��

 

                                   1 2 1exp( . ) ( , ,..., ) ...N Nik E P r r r dr dr= �
� �� � � � � �

                                                 (23) 

where 1 2( , ,..., )NP r r r
� � �

is the joint probability for finding i nN N N= +  particles located 

at 1 2, ,..., Nr r r
� � �

 . 

Upon introducing the auxiliary quantitiesϕ , through 
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c
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d

l l l
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ϕ
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� 	= + − = +
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� �� � ��

� �� � ��

� �� � ��
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                                                  (24) 

and making use of Eq.(<ref>t1</ref>) in Eq. (<ref>k1</ref>), ( )F k
�

becomes 
' ''

1 1 1

'''
' ''1 2

' ''
' ' ' '' '2 2

'''
' '

( ) 1 ( ) ( ) ( )

( ) ( , )

( , ) ( , )
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ϕ ϕ
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+ +
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+

� � �� � �
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� � � � � � �

� � � � � �

� � � � � � � �

� �

( )'
'

2 1 1
( , ) ... 25a b

l l i j i ji jr d r P r r dr d rϕ ϕ+ +� � �� �
� � � � � �

 

where ( )'

1 1� � denotes a sum on ions ( )a b , while ( )'''''

1 1� � is a sum on neutrals ( )c d and 

( )'

2 2� � is the sum on ( )aa bb pairs, and so on. A crucial step in this formalism is the 

introduction of the cluster expansions (�,�p=a,b,c,d) 

    

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

' ''1 2 12
''

' ' ' '
' '1 1 2 1 12

' '

( ,..., ) , ...,

( ,..., , ,..., ) , ...,

M
M

i i i i i iM

i i

M M
M

i i j j i j i j i jM

i j i j

P r r g r g r r g r

P r r r r g r g r g r r g r g r

σ σ σ σ

σσ σ σ σσ σ σ

Ω = +

Ω = +

�∏ ∏

�∏ ∏ ∏ ∏

� � � � � �

� � � � � � � � � �

 

Inverting Eq. (23) the microfield distribution is given as 

                                  
( )

3

1
( ) exp( . ) ( )

2
W E ik E F k dk

π
= −�

�� � �� � �

                                                     (26) 
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where M  refers to particles located at ,...,
M

i ir r
� �

. Upon introducing the dimensionless 
0

u kE= , and 

taking the angular average in Eq.(26), one retrieves Eq.(21) with Eq.(25).  

For most cases of practical interest [2] [11,12], we shall restrict ourselves to weakly couples 

systems ( )1Λ ≤ . Eq. (25) may then stop at the order � with 

                            ( ) ( ) ( ) ( )1 1 1 1( ) exp a b c d

a b c dF u n h u n h u n h u n h u� 	≈ + + +� 
                           (27) 

 and 

                              ( )1 11 1 1( )h u g r dr
σ σ σϕ= �

� �

                                                                          (28) 

where 1r
�

 denotes location of  particle , , ,a b c dσ = , and 
1

g
σ  is  the pairs correlations functions.  

Making use of spherical harmonics expansion 

                           ( ) ( ) ( )
1 2

0 04 2 1 ,l

i l i l l i i

l

i l j Z Yσ σϕ π δ θ ω� 	= + −� 	� 
 � 
�                                     (29) 

where ( )lj Z is a spherical Bessel function, the h�'s are expressed as ( ),i i i i DZ kE X r
σ σ λ= = , 

                                3/2

1 1( )n h u u
σ σ

σ φ= −                                                                                (30) 

                                  ( )
( )

( ) ( ) 2

0 1 1 1 11/2 3

0

15 1
1

2 2
i i

e

n
a j Z g X X dX

n a

σ σ σσφ
π

∞

� 	= −� 
�                         (31) 

where the argument 1/2a u v=  is not to be confused with the upper index labeling the heavy-ion 

component. The central quantity F(u) is then well approximated by 

                                
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 1 1 1

3/2

1 1 1 1

( ) exp

exp 32

a b c d

a b c d

a b c d

F u n h u n h u n h u n h u

u a a a aφ φ φ φ

� 	≈ + + +� 


� 	≈ − + + +� 


 

It can be computed for any mixture though the φ 's and taking into account ions and neutrals 

screened by electrons with (�=a,b,c,d) 

                      [ ] ( )
2

1 1 12

1

1̈ exp , ,
Z a

Z X X a b
X

σ σ σ= + − =                                      (33) 

And 

                                  ( ) ( )
2 3

21
1 1 1 12

1

2
1 1 exp 2 ,

Z a v
Z X X X c d

X

σσ α
σ� 	= + + + − =

� 

             (34) 

Where 3

0/ rσ σα α=  

 

3. Results and discussion 

Here we allude to the possibility of using small traces of highly stripped ions 
17Ar +

 in 

plasma ( )17 1, , ,a Ar b H c Ar d H+ += = = = . The low-frequency distribution is thus taken on a heavy 

ion 
1 17aZ Z= = +  for 1p =  with 0a cN Z= = . Eq.(32), (33) and (34) now read (first order in �) 

                                     ( ) ( )1 1
( ) exp b d

b d
F u n h u n h u� 	≈ +� 
                                                        (35) 

with 

                                     [ ] ( )
2

1 1 12

1

1̈ expb a
Z X X

X
= + −                                                              (36) 

                                    ( ) ( )
2 3

2

1 1 1 12

1

2 17
1 1 exp 2d a v

Z X X X
X

σα � 	= + + + −
� 


                               (37) 
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and 

                                    

( )12

1

1

3

1

exp
exp

0,334 2 , 2, 1,

b

b

d

RX
g Z

X

v R g

−� 	
= − Λ
 �

� 


Λ = = =

                              (38) 

Let us consider with ( )1 0ap N= =  and ( )' 1 0, 0c dp N N= = = , ( )H β  is then deduces from 

Eq.(27) written as 

                                      

( ) ( )

( )
( )

( ) ( )

3/2

1 1

2

1 0 1 1 1 11/2 3

0

15 1
1

2 2

b a

b

b b bb
i

e

n h u u a

n
a j Z g X X dX

n a

φ

φ
π

∞

= −

� 	= −� 
�
                      (39) 

The resulting ( )H β  are given in Figure.1, for several values of  
0 D

v r λ= . 

Moving to the case where ( )1 0ap N= =  and ( )' 0.5 0ap N= = , for several values of 

electronic density 
e

n . Eq.(27) now take the following form for 0.01v =  

                                      ( ) ( ) ( ) ( )( )3 2

1 1 1 1

b d b d

b dn h u n h u u a aφ φ+ = − +                                      (40) 

with 

                                    

( )
( )

( )

( )
( )

( )

1

2 2

1 0 1 11/2 3

10

2

1 0 1 11/2 3

0

15 1 1
1 exp

2 2

15 1
1

2 2

RX
b b

i b

b

d bd

i

e

e
a j Z Z X dX

Z a X

n
a j Z X dX

n a

φ
π

φ
π

∞ −

∞

� 	
� 	= − − Λ
 �� 


� 


� 	= −� 


�

�

      (41) 

The resulting ( )H β are given in Figure.2, For 0.01v = , ( )1 0ap N= =  and 

( )17' 0.5 50% 50%p Ar and Ar
+= . 

Figure 3, display the given at 
1

17
a

Z Z= = +  for 0.2v =  and 1p = , for several values of 'p , 

where pp is seen play an important role, especially at the peak values. 
Although the previous counts have been driven in the simplest conditions (without 

correlation or with weak interaction), it is not possible to integrate the expression (25) analytically 

in the general case. En practice, the distribution ( )H β  depends on conditions of density and 

temperature of plasma, these sizes being introduced by the mediator of correlation terms. The 

function ( )H β is determined numerically as calculating the value of the parameter of electronic 

correlation v  corresponding to plasma studies, this one being proportional to the electronic density 

and vice versa proportional to the temperature. 

One notes that the Holtsmak distribution case, 
0

0
D

v r λ= = . The main feature of the results 

is the shift to smaller fields of the peak of the distribution as 
0 Dv r λ=  increases. The surface under 

the curve ( )H β remaining constant, this result is general and remains valid for all types of 

microfield [3, 7]. 

Although the calculation of ( )H β  within cold plasma at the thermodynamic equilibrium is 

complicated, the knowledge of the microfield distribution is an interest by reason of information 

that it contains. In particular, the studying of the results of the Stark effect of its action on the 

neutral point and the charged point of plasmas informs us on the density and the temperature of the 

environment. 
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Figure 1: Low-frequency electric microfield binary mixture cold plasma ( )H β  values  

in ( )17Ar H Ar H+ +− − −  at 17bZ = , and [ ] 30 30,7 10H cmα = ×  ( 1p =  and ' 1p = ). 

 

 

 

Figure 2: Low-frequency ( )H β  in ( )17Ar H Ar H+ +− − −  mixtures in various densities 

electronic ( )3

en cm
− .Weak coupling 0.01v = ( 1p =  and ' 0.5p = ). 
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Figure 3: Low-frequency ( )H β  in mixtures in various proportions 'p . 

Weak coupling 0, 2v = and 1p = . 
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