D. HADEF, B. DADAMOUSSA, M. SAIDI, T. LANEZ et A. MEGHEZZI

ETUDE STRUCTURALE D'UN COMPLEXE TÉTRANUCLÉAIRE TRI-THIO FER CARBONYLE :[FE(CO)₃]₄[S-C(CH₃)=C(CH₃)-CS₂ PRÉSENTANT DES PONTS FER-FER ET FER-SOUFRE

Derradji HADEF⁽¹⁾ ,Belkhir DADAMOUSSA⁽¹⁾, Mokhtar SAIDI⁽²⁾ Touhami LANEZ⁽²⁾ Et Ahmed MEGHEZZI⁽³⁾.

- (1) Laboratoire de protection des Ecosystemes en zones Arides et semi Arides . Université Kasdi Merbah Ouargla.
- (2) Laboratoire de volarisation et promotion des ressources sahariennes Université Kasdi Merbah Ouargla.
- (3) Laboratoire de chimie appliquée L.C.A. Université Med Kheider Biskra.

Summary: Among the coordination compounds of transitions metals, carbonyl metals represent a group of molecules particularly studied because of the richness of their properties and the variety of their filiations.

These compounds are used currently more and more in the synthesis of new molecular buildings which present interesting electronic properties in chemistry of coordination.

The objective of this study initially consists in seeking ligands being able to be grafted easily on organic molecules likely to lead to complexes with iron carbonyl.

Key Words : Metals, carbonyl, Ligand.

Résumé : Parmi les composés de coordination des métaux de transition, les métaux carbonyles représentent un groupe de molécules particulièrement étudiées en raison la richesse de leurs propriétés chimiques et la variété de leurs filiations. Ces composés sont actuellement de plus en plus utilisés dans la synthèse de nouveaux édifices moléculaires qui présentent des propriétés électroniques intéressantes en chimie de coordination.

L'objet de la présente étude a donc consisté dans un premier temps à rechercher des ligands pouvant être greffés facilement sur des molécules organiques susceptibles de conduire à des complexes avec le fer carbonyle.

Mots Clés : métaux, carbonyle, ligand.

1-INTRODUCTION

Nos travaux de recherche dans le domaine des composés de coordination binucléaires du fer carbonyle provenant de la complexation des trithiocarbonates linéaires et cycliques apportent des résultats intéressants mais cependant trop limités pour que l'on puisse en retirer des lois générales[1][2].

L'objet de la présente étude a donc consisté dans un premier temps à rechercher des ligands pouvant être greffés facilement sur des molécules organiques susceptibles de conduire à des complexes avec le fer carbonyle.

L'action du difer nonacarbonyle Fe_2 (CO)₉ sur le 1-2 benzodithiole – 3 – thione conduit à la formation de complexes tétranucléaires du fer (I) [3][4].

Des molécules telles que (I) rassemblent deux types de complexations binucléaires ; celle de l'éthylène tri thiocarbonate (II)[5][6]et la complexation des thio esters(III)[5].

Nous nous sommes proposés d'étudier le comportement du diméthyl – 4,5 dithiole 1,2 thione –3 (IV) en présence de $Fe_2(CO)_9$ dans des conditions de complexation analogues à celles citées dans la littérature[7][8][9], afin d'étudier en détail la structure du complexe tétramétallique par les méthodes physico-chimiques conventionnelles d'une part, et d'autre part voir le comportement de la dithiole – thione en remplaçant le cycle benzénique par des substituant (R = CH_3)[10].

2-PARTIE EXPERIMENTALE

La synthèse du complexe est réalisée en solution dans le toluène , par réaction entre le ligand libre et Fe_2 (CO)₉. la solution est chauffée à 50° C pendant vingt minutes .

Après distillation du toluène le résidu est repris à l'éther et chromatographiè sur plaques de gel de silice , Le complexe récupéré est ensuite séché sur $MgSO_4$.

On obtient des cristaux utilisables pour une étude par diffraction des rayons X.Un monocristal de couleur violette de dimentions approximatives 0,25 x 0,18 x 0,08 mm a été monté sur un diffractométre automatique CAD4 Enraf-Nonius , les paramétres de la maille cristalline triclinique ont été déterminés à partire de 25 réflexions avec 6,1° < $\theta < 19,2^\circ$.

Après optimisation des valeurs angulaires des pics de diffraction , les paramètres de maille obtenus sont les suivants : a = 9,116 (1) Å , b = 9,690(11) Å c= 14,959 (17) Å , α = 78,44 (8)° , β = 83,29 (8) ° , γ =69,40 (9)°.

Les principales données cristallographiques sont résumées dans le tableau I .

Les intensités des pics de diffraction ont été enregistrées avec un balayage de type ($\omega - 2\theta$) avec une amplitude de (1,20 + 0,35 tg θ) ° et une ouverture de compteur de : $(2,20 + 0,60 \text{ tg } \theta) \text{ mm}$, dans un domaine $1^{\circ} \leq 0 \leq 25^{\circ}$. Au cours de d'angle de Bragg: l'enregistrement des données, un contrôle d'intensité effectué toutes les heures sur trois réflexions ainsi que trois contrôles d'orientation toutes les 400 réflexions ont permis de vérifier la bonne stabilité du cristal . Le nombre total de réflexions permis de vérifier la bonne stabilité du cristal . Le nombre total de réflexions enregistrées dans l'espace $h(-10 \rightarrow 10)$ $K(11\rightarrow 11)I(0\rightarrow 17)$ est de 4428, Après corrections des facteurs de Lorentz et de la polarisation est moyenne des plans équivalents, il reste 3400 réflexions telles que $I > \sigma$ (1) pour la détermination structurale . La détermination structurale a été faite par méthodes directes. Les résultats obtenus ont permis de déterminer les positions des atomes lourds, fer et soufre. Les positions des atomes de carbone et oxygène ont été obtenus par des calculs de séries de Fourier [11].

L'affinement des coordonnées atomiques et des facteurs de température isotropes conduit à une valeur de R=0,11. Après correction d'absorption , on obtient un facteur R=0,069. Les derniers affinements font intervenir les facteurs de température anisotropes de tous les atomes à l'exception des atomes d'hydrogène pour lesquels seules les positions atomiques sont

affinées . Les valeurs finales sont : $R{=}0{,}039{\text{et}}$ ${\varpi}R{=}0{,}055{.}$

Tous les calculs ont été effectués sur un ordinateur micro VAX 3100à l'aide du systéme de programme SDP-plus (B.A.Frenz & Associates , Inc , 1983). Les coordonnées atomiques des atomes non hydrogène sont données dans le tableau II

3-DESCRIPTION ET DISCUSSION DE LA STRUCTURE

La molécule complexe (figure I) est constituée de deux groupements Fe_2 (CO)₆ liés par l'atome de soufre S₂ qui intervient comme pont entre les atomes métalliques Fe₄ du second groupement Fe₂(CO)₆ et les deux atomes Fe₁ etFe₂ du premier groupement difer hexacarbonyle . Cet atome de soufre S2 est tétracoordinée par trois atomes de fer : Fe₁ et Fe₂ et Fe₄ et L'atome de carbone C_{13} de la molécule organique . Les deux autres atomes de soufre S_1 et S_3 forment des ponts entre les deux atomes de fer des groupements $Fe_2(CO)_6$ et sont tricoordiés. Les atomes de fer sont tous hexacoordonnés avec une liaison fer-fer, deux liaisons fer-soufre ou carbone , et les trois carbonyles liés à chaque atome métallique . Ces atomes constituent autour des atomes métalliques un environnement de principales type octaédrique très déformé . Les distances et angles inter atomiques sont rassemblés dans le tableau III .Les valeurs obtenues sont très proches de celles observées par Bird , Siriwardane & al.(1981) dans le complexe préparé avec le benzodithiole-thione . On observe en effet dans le complexe méthylé un allongement de la liaison Fe3-Fe4 2,628 (1)Å par rapport à la liaison Fe_1 - Fe_2 2,513(1) Å, valeurs analogues à celles observées dans le cas ou le substituant est un phényle.

La principale différence observée entre les deux molécules réside dans le fait que les parties métalliques des deux complexes sont l'image l'une de l'autre par rapport à un plan miroir (Figure2) . en effet , l'orsque le substituant sur le trithiocarbonate est un radical phényl, l'atome Fe_1 se trouve au-dessus du plan

moyen défini par C_1, C_2 et C_3 et l'atome Fe₃ au –dessous de ce plan, alors que dans le cas des substituant méthyle on observe la géométrie inverse : le Fe₁ ce trouve au dessous du plan défini par C_{13} , C_{14} et C_{15} et le Fe₃ est situé au dessous de ce plan . cette modification ne semble pas provenir de problèmes de liaisans intermoléculaires car toutes les distances atomiques intermoléculaires sont supérieures à 3 Å.Comme dans le cas du benzodithiole thione ,le complexe méthylé n'est pas plan , seuls les atomes C_{13} , C_{14} , C_{15} et S_1 présentent une géométrie plane , le méthyle C_{17} se trouve également dans ce plan alors que les atomes C_{16} , S_2 et S_3 sont au dessous du plan avec respectivement des distances de 0,14 Å 0,23 Å et 0,90 Å par rapport à ce plan.

Tableau I

D. HADEF, B. DADAMOUSSA, M. SAIDI, T. LANEZ et A. MEGHEZZI

Figure2

Tableaux II

Détails expérimentaux Données cristallographiques

Formule chimique	Fe ₄ S ₃ (CO) ₁₂ C ₅ H ₆
Masse formulaire	721.8
Système cristallin	triclinique
Groupe spatial	Pī
a (Å)	9,116(10)
b (Å)	9,690(11)
c (Å)	14,959(17)
α(°)	78,44(8)
β (°)	83,29(8)
γ(°)	69,40(9)
dx(Mgm ⁻³)	1,98
Radiation	ΜοΚα
Longueur d'onde	0,7169
Nbre de réflxions pour	25
Les paramèt	res de maille
6,1-19,2	Intervalle $\theta(^{\circ})$
26,58	μcm-1
293	Température (K)
parallélépipéde	Forme du cristal
0,25 x 0,18 x 0,08	Dimentions du cristal(mm)
Enregistrement des données	
Enraf-Nonius CAD4	Diffractomètre
ω-20	Type de balayage
à partir de ∆f (Difabs,	Corrections d'aborption
Walker & Stuart , 1983)	
4428	Nbre de réfexions enregistrées
4076	Nbre de réfexions indépendantes
2923	Variation d'intensité des std(%)
I< 4ó(1)	C ritére de rejet
24,34	θ max (°)
0,58	$(\sin \theta / \lambda) \max (Å^{-1})$
$-10 \rightarrow h \rightarrow 10$	Limites h ,k et I
$-11 \rightarrow k \rightarrow 11$	
$0 \rightarrow 1 \rightarrow 17$	
3	Nombres de controles d'intensité
60 min	Fréquence de contrôle
-0,25	Nbre de réfexions observées

	Coordon	nées atomiqu	ies réduites a	avec les éca	rts types
	entre j	parenthèses	et facteur	s de ten	npérature
	équivale	nts(A ²)Beq (4	4/3) ∑i∑jßija	iaj	
	Atomes	Х	Y	Z	$B(A^2)$
	Fe1	0.09625(7)	0.00711(7)	0.2898(4)	2.42(1)
I	Eo2	0.28028(7)	0.00652(7)	0.1015(4)	2.64(1)

Fe1	0.09625(7)	0.00711(7)	0.2898(4)	2.42(1)
Fe2	0.28928(7)	0.09652(7)	0.1915(4)	2.64(1)
Fe3	0.66453(7)	0.34685(7)	0.24390(4)	2.63(1)
Fe4	0.52527(7)	-025729(7)	0.39636(4)	2.39(1)
S1	0.1413(1)	-0.0115(1)	0.13869(8)	3.04(3)
S2	0.3531(1)	-0.0217(1)	0.28577(7)	2.11(2)
S3	0.4942(1)	-0.4328(1)	0.32827(8)	2.75(3)
01	-0.2100(4)	0.2161(5)	.0.2425(3)	4.9(1)
O2	-0.0033(5)	-0.2654(5)	0.3647(3)	5.6(1)
O3	0.1017(5)	0.1072(5)	0.4551(3)	5.0(1)
04	0.3752(6)	0.2411(5)	0.3211(3)	6.6(1)
O5	0.5368(6)	0.1031(7)	0.0495(3)	8.1(2)
O6	0.0628(5)	0.3815(5)	0.1133(3)	5.7(1)
07	0.9636(5)	-0.5549(5)	0.3132(3)	5.7(1)
08	0.7317(6)	-0.4211(6)	0.06065(3)	6.7(1)
O9	0.7588(5)	-0.0823(5)	0.1975(4)	5.9(1)
O10	0.7826(5)	-0.4642(5)	0.5058(3)	5.4(1)
011	0.2848(5)	-0.2454(5)	0.5474(3)	4.7(1)
012	0.6413(5)	-0.0167(4)	0.4083(3)	5.6(1)
C1	-0.0940(5)	0.1312(6)	0.2618(4)	3.3(1)
C2	0.0335(5)	-0.1647(6)	0.3362(4)	3.3(1)
C3	0.1001(5)	0.0592(6)	0.3926(3)	3.1(1)
C4	0.3464(6)	0.1832(6)	0.2693(4)	3.8(1)
C5	0.4434(6)	0.0956(7)	0.1060(4)	4.4(1)
C6	0.1514(6)	0.2733(6)	0.1431(4)	3.7(1)
C7	0.8502(6)	-0.4729(6)	0.2882(4)	3.7(1)
C8	0.7072(6)	-0.3965(5)	0.1336(4)	4.0(1)
C9	0.7178(6)	-0.1831(6)	0.2157(4)	3.9(1)
C10	0.6832(6)	-0.3861(6)	0.4630(3)	3.4(1)
C11	0.3788(6)	-0.2481(5)	0.4887(3)	2.9(1)
C12	0.5946(6)	-0.1091(6)	0.4036(3)	3.4(1)
C13	0.4260(5)	-0.2836(5)	0.2348(3)	2.4(1)
C14	0.3456(5)	-0.3034(5)	0.1611(3)	2.7(1)
C15	0.2306(6)	-0.1963(6)	0.1165(3)	3.2(1)
C16	0.3972(7)	-0.4608(6)	0.1394(4)	4.4(1)
C17	0.1503(8)	-0.2186(7)	0.0404(4)	5.5(2)

Tableaux III

Principales distances inter atomiques(Å)et angles de liaisons(°). Les types donnés écarts sont entreparenthéses.

01101	chireput chirleses.									
FE1	S1	2.257(1)	FE4	S2	2.283(1)	08	C8	1.145(7)		
FE1	S2	2.210(1)	FE4	S3	2.261(1)	09	C9	1.138(8)		
FE1	C1	1.814(4)	FE4	C10	1.788(5)	010	C10	1.124(6)		
FE1	C2	1.799(6)	FE4	C11	1.798(5)	011	C11	1.150(6)		
FE1	C3	1.789(6)	FE4	C12	1.786(6)	012	C12	1.135(8)		
FE2	S1	2.261(2)	S1	C15	1.769(5)	C13	C14	1.470(8)		
FE2	S2	2.220(1)	S2	C13	1.765(5)	C14	C15	1.319(6)		
FE2	C4	1.782(7)	S3	C13	1.787(4)	C14	C16	1.520(8)		
FE2	C5	1.785(5)	01	C1	1.115(5)	C15	C17	1.511(9)		
FE2	C6	1.800(5)	02	C2	1.130(7)	FE1	FE2	2.513(1)		
FE3	S3	2.175(1)	03	C3	1.128(7)	FE3	FE4	2.6283(9)		
FE3	C7	1.811(5)	04	C4	1.144(9)	FE3	S2	2.998(1)		
FE3	C8	1.773(6)	O5	C5	1.138(7)	S1	S2	2.883(2)		
FE3	C9	1.777(7)	06	C6	1.119(6)	S2	S3	2.800(1)		
FE3	C13	2.054(5)	07	C7	1.111(6)					

S1	S2	FE1	176.9(5)	O3	C3	FE1	96.2(6)	C9	FE3	C8	80.38(7)
S1	C1	FE1	176.4(5)	04	C4	FE2	93.8(2)	C13	FE3	C8	86.7(2)
S1	C2	FE1	176.1(5)	O5	C5	FE2	108.0(2)	C13	FE3	C9	105.4(2)
S1	C3	FE1	178.2(6)	06	C6	FE2	76.09(5)	S3	FE4	S2	154.2(2)
S2	C1	FE1	176.8(6)	07	C7	FE3	167.1(2)	C10	FE4	S2	160.0(2)
S2	C2	FE1	176.5(5)	08	C8	FE3	95.6(1)	C11	FE4	S2	99.6(1)
S2	C3	FE1	176.9(4)	O9	C9	FE3	95.3(2)	C12	FE4	S2	92.0(1)

C1	C2	FE1	178.3(6)	010	C10	FE4	94.6(2)	C10	FE4	S3	98.5(2)
C1	C3	FE1	178.4(5)	011	C11	FE4	100.8(2)	C11	FE4	S3	93.1(2)
C2	C3	FE1	178.7(4)	012	C12	FE4	155.1(2)	C12	FE4	S3	100.1(3)
S1	S2	FE2	103.2(3)	S2	C13	FE3	94.9(2)	C11	FE4	C10	80.05(5)
S1	C4	FE2	68.6(1)	S3	C13	FE3	89.6(3)	C12	FE4	C10	156.7(7)
S1	C5	FE2	126.1(3)	C14	C13	FE3	103.3(2)	C12	FE4	C11	105.0(2)
S1	G6	FE2	104.0(2)	S3	C13	S2	67.59(5)	FE2	S1	FE1	86.7(2)
S2	C4	FE2	121.9(3)	C14	C13	S2	111.7(2)	C15	S1	FE1	92.0(2)
S2	C5	FE2	120.3(4)	C14	C13	S3	118.7(2)	C15	S1	FE2	109.6(2)
S2	C6	FE2	124.4(5)	C15	C14	C13	69.13(4)	FE2	S2	FE1	152.8(2)
C4	C5	FE2	116.1(4)	C16	C14	C13	132.78(5)	FE4	S2	FE1	98.3(3)
C4	C6	FE2	119.4(5)	C16	C14	C15	117.0(2)	C13	S2	FE1	91.0(3)
C5	C6	FE2	126.4(5)	C14	C15	S1	140.05(7)	FE4	S2	FE2	96.6(2)
S3	C7	FE3	109.9(3)	C17	C15	S1	116.5(1)	C13	S2	FE2	103.1(2)
S3	C8	FE3	123.6(5)	C17	C15	C14	85.2(1)	C13	S2	FE4	115.0(2)
S3	C9	FE3	47.32(3)	S2	FE3	FE4	72.65(5)	FE4	S3	FE3	140.9(2)
S3	C13	FE3	114.96(5)	S1	S2	FE3	61.6(2)	C13	S3	FE3	49.9(1)
C7	C8	FE3	43.89(3)	S3	S2	FE3	85.4(2)	C13	S3	FE4	94.6(2)
C7	C9	FE3	116.33(6)	S3	S2	S1	178.5(5)	01	C1	FE1	97.0(3)
C7	C13	FE3					178.7(4)	02	C2	FE1	152.5(2)

Conclusion

L'action du Fe₂ (CO)₉ sur le ligand diméthyl – 4,5 dithiole 1,2 thione conduit à un complexe tétranucléaire regroupant deux types de complexes étudiés issues de la complexation des trithiocarbonates et des dithio esters. Cela nous a été confirmé par une étude de diffraction en rayon X .

Il serait intéressant d'étudier le phénomène de fluxionnalité ainsi que l'échange de co par des ligands plus donneurs.

BIBLIOGRAPHIE

- [1] Dadamoussa, B , (1988) Thèse Université de Rennes I(France).
- [2] Patin .II , Mignani ;G Mahé . C . Le Marouille ,J.Y Southern , T.G . Bnoit A& Grandjean . D . (1980) J.Orgnomet . Chem .197 ; 315.
- [3] Bird , PII ; Siriwardone , U ;Shaver , A ; Loppez ; O& Harpp D.N. (1981) J.C.S. chem . Comm , 513 .
- [4] Thuiliez A. & violle J , (1962) Bull , Soc $% \left[{{\rm{A}}} \right]$. Chem ; Franc 2187 .
- [5] Lhadi E.K , patin H & Darchen A (1984) Organometallies 3,1128 .
- [6] Lagadee .A.; Misterkiewiez ,B; Darchen ,A Grandjean , D Mousser , A &Patin ,II; (1988) Organometallies , 7,242.
- [7] Frenz B .A & Associates ,Inc. (1983) ,SDP-Plus Structure Determination Package ,College Station , Texas , USA, &Enraf-Nonius , Delft, The Netherlands.
- [8] Johnson, CK(1965) ORTEP. Report ORNL-3794 Oak Ridge National Laboratory ,Tennessee , USA.
- [9] Lagadee , A ; Misterkiewiez , B ; Patin II ; Mousser, A&Le Marouille J.Y , (1986) J Organomet Chem ,315, 201.

[10] Hadef, D, (2003) mémoire de magister Université Kasdi Merbah Ouargla

[11] Walker , N ; & Stuart ,D . (1983) Acta Cryst . A39 ,159-166.