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Abstract—In this paper we present a multi-objective genetic 

algorithm to optimize the performance of a time-driven real-time 

distributed embedded system with mixed constraints and a 

shared bus based on the so-called technique: Dynamic Voltage 

Scaling (DVS). The three objectives to minimize are the energy 

consumption, the average response time and the number of tasks 

missing their deadlines. 
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I.  INTRODUCTION 

Embedded Systems (ES) [8] are increasingly present in our 
daily life. An ES is a system that contains application-specific 
hardware and software suited to a particular task that is part of 
a larger system that is not necessarily computer (e.g. electronic, 
mechanical, etc.). . An ES interacts with the outside world via 
the sensors / actuators and subjected to strict spatial, temporal 
and energy constraints. Design of such complex systems faces 
several challenges and requires collaboration between teams 
from different disciplines (e.g., software, hardware, system 
integrator, etc. . .). Indeed, ES are heterogeneous in nature due 
to the heterogeneity of the applications they implement. They 
typically combine software components (general purpose 
processors, Digital Signal processors, etc.). Unlike a hardware 
implementation, a software implementation has the advantage 
of providing flexibility (i.e. the possibility of reprogramming), 
but at the prize of satisfying performance constraints. 
A distributed embedded system (DES) represents the 
distributed version of the centralized ES with several 
controllers (node) independent which are interconnected by a 
shared bus, a hierarchy of buses or a communications network 
generally with three layers: the physical layer, the link layer 
and the application layer. Automobiles, aircraft, submarines, 
networks on chip (NOC: Network On Chip) are good examples 
of systems integrating DES. A DES is called real time if it is 
able to meet its timing constraints. In fact, we can classify the 
DES depending on time constraints into three classes: hard 
DES, soft DES and firm DES. Similarly, DES can be classified 
according to the type of process and/or communications in 
three families time-driven (periodic), event-driven (Aperiodic) 
or mixed. In what follows, we are interested in time-driven 

DES with mixed constraints (hard and soft). Since these 
systems have independent batteries, their design should 
minimize energy consumption to prolong the life of these 
batteries. Managing energy consumption has become a major 
challenge in such systems. Among the possible solutions we 
find energy-aware scheduling algorithms. The aim of this work 
is to apply multi-objective genetic algorithms to optimize the 
performance of a time-driven DES with mixed constraints and 
a shared bus topology relying on the so-called technique: 
Dynamic Voltage Scaling (DVS). We believe that genetic 
algorithms can find near optimal especially for nonlinear 
problems which have a vast space research. Although genetic 
algorithms are very sensitive to some random parameters (e.g. 
mutation probability), the experience of the user can play a 
leading role to drive the genetic algorithm towards good 
solutions. For this reason, we generally prefer to use interactive 
genetic algorithms. Our paper is organized as follows: the 
second section reviews briefly the state of the art on scheduling 
algorithms. The third section presents some energy reduction 
techniques. The fourth section will shed light on multi-
objective optimization using genetic algorithms. In the fifth 
section, we try to define and model our problem. The sixth 
section develops our proposed genetic algorithm. The seventh 
section talks about our implementation with an explanatory 
example. Finally, we conclude this paper by presenting the 
contributions of our solution and identifying the perspectives. 

II. STATE OF THE ART 

 Among the techniques that have been used to optimize the 
performance of real time DES, we find in particular 
schedulability analysis. In hard real time systems, the objective 
of this analysis is to ensure compliance with timing constraints. 
In soft real time systems, the primary objective is to minimize 
the response time of tasks. In fact, the literature is very rich and 
classifies the real-time scheduling algorithms according to 
several criteria such as: uniprocessor/multiprocessor off-
line/on-line, preemptible non- preemptible, time-driven/event-
driven or mixed, independent/dependent tasks, fixed or 
variable priority, etc. The schedulability analysis can be 
extremely difficult for complex systems. This is why the 
complex system may be transformed into a simpler model 
whose analysis is known. However, this practice provides only 



partial results (e.g. a necessary and sufficient condition for 
schedulability in uniprocessor becomes a necessary condition 
for multiprocessors). Recently, a new class of real-time 
scheduling algorithms that take into account the reduction of 
energy consumption (energy-aware scheduling algorithms)  
appear [1, 2, 3, 5, 6, 7, 9]. The problem becomes more complex 
by adding a new dimension that is energy. Find a good solution 
that minimizes consumption while meeting timing constraints 
is a difficult problem. For this reason, researchers resort to 
optimization heuristics as an alternative to exact solutions. 
According to the literature, we can state that there are few 
works that take into account real-time DES with mixed 
constraints. In addition, most works optimize only one or two 
goals and do not take into consideration tasks dependencies. 
Our contribution is therefore to apply multi-objective genetic 
algorithms to minimize three objectives that are the energy, the 
average response time of tasks and the number of tasks failing 
to meet their deadlines for real-time DES with a set of 
dependent tasks and mixed constraints. 

III. ENERGY CONSUMPTION REDUCTION TECHNIQUES 

Reducing techniques can be divided into two strategies: 
hardware and software solutions. The first strategy is working 
on the technology hardware.  For instance reducing the size of 
the components, limiting the power of the component blocks 
required for ongoing treatment, limiting the number of state 
changes in a circuit, using FPGAs and asynchronous 
electronic circuits. The software also has an important role to 
minimize energy consumption, for example, optimizing 
programs executable code and replacing memory operations 
by register to register ones. There are of course hybrid 
techniques based on synergy between hardware and software 
components; for example Dynamic Power Management 
(DPM) strategy and Dynamic Voltage Scaling (DVS) strategy. 
Many modern processors can dynamically lower the voltage to 
reduce energy consumption. Unfortunately, reduction of the 
supply voltage leads to an increase in the circuit delay. In turn, 
the propagation delay limits the clock frequency of the 
microprocessor. Therefore, the benefits of DVS technology 
can be operated in real-time systems only after careful 
identification of conditions under which we can safely slow 
down the processor without missing a deadline. 

IV. GENETIC ALGORITHMS AND MULTI-OBJECTIVE 

OPTIMIZATION 

Genetic algorithms are optimization algorithms based on 
techniques inspired from genetics and natural evolution 
mechanisms like crossover, mutation, selection, etc. They 
belong to the class of evolutionary algorithms [4]. However, 
the principle of multi-objective optimization is different from 
that of a single objective approach. In a multi-objective 
optimization problem, there are many objective functions to 
optimize; each objective function may have a different optimal 
solution. The purpose of a multi-objective problem is to find a 
compromise rather than a single solution. When there are 
multiple objectives, the concept of optimum change and it is 
better to use the optimal of Pareto. In the context of solving 
multi-objective problems, there is no accurate and efficient 
procedure. The NP-hard complexity and the multi-criteria 

framework of these problems justify the resort to heuristics 
that sacrifice completeness to gain efficiency. The literature is 
very rich, but we chose the weighted aggregation method 
which reduces the multi-objective optimization problem to a 
problem with a linear combination of the original objectives. It 
means to transform the multi-objective problem to a mono-
objective problem by associating a weight with each objective 
function and then summing them to obtain a new single 
objective function. The coefficients are generally selected 
based on the relative importance of objectives. The 
formulation of an appropriate fitness function is one of the 
major problems in a genetic algorithm. Suppose there are n 
attributes to minimize and m attributes to maximize. These 
attributes have different scales, values and measures. For this 
we must normalize them, then we associate to each attribute a 
weight that reflects its relative importance. The fitness 
function can be defined as follows: 
F = ∑ wi*((qi-qmin)/(qmax-qmin))+ ∑ wj*(1-(qj-qmin)/(qmax-qmin)) 
such that wi(wj) is the weight associated with the attribute to 
minimize (maximize) with   ∑wi+∑wj=1. 

qmin and qmax are the minimum and the maximum values of 

the objective function in the current population. 

V. PROBLEM DEFINITION AND MODELING  

A. Problem definition 

We deal with the well-known problem of allocation / 
scheduling in real-time time-driven (periodic tasks) DES with 
mixed constraints (tasks with hard and soft constraints). Our 
goal is to find the best pair: allocation /scheduling of tasks 
which minimizes the average response time of tasks, the total 
energy consumption and the number of tasks with soft 
constraints do not meet their deadlines so that all tasks with 
hard constraints must meet their deadlines. 

B. Modeling 

A real-time DES consists of two parts: the application and 
the hardware architecture on which the application runs. In our 
case, we assume that the application is modeled as a task graph 
which consists of a set of sub-graphs. Each sub-graph includes 
a set of nodes (dependent tasks) and is characterized by a 
period. So the tasks of a sub-graph have the same period. Two 
dependent tasks are connected by an arc labeled with a name of 
a message. Each task in the sub-graph is characterized by a 
name, the constraint type (hard or soft), the period, the 
precedence priority, the relative deadline and the execution 
time in terms of clock cycles which can be estimated for the 
worst case (WCET) if the constraint is hard or the average case 
(ACET) if the constraint is soft . Each message is characterized 
by its size in bytes and a priority. 

Similarly, the hardware architecture is modeled as an 
undirected graph where nodes denote the component 
architecture processors and edges denote the physical links 
between the processors (there are several topologies for linking 
processors but we choose the shared bus topology). Each 
processor has features such as a number to identify it and the 
different modes of functioning. For each mode, the dynamic 
energy consumed per cycle and the associated relative 
frequency and the static energy which is assumed constant. Of 



course, we introduced the time and energy overheads to pass 
from one mode to another. The bus also has its own 
characteristics such as the throughput (bytes/cycle), the average 
dynamic energy per cycle and the static energy. The allocation 
is to assign tasks to processors and messages to the shared bus. 
Scheduling, however, is to define the order of execution of the 
tasks(s) and messages on processor(s) and buses. The order of 
execution is defined by the priority. We assume that scheduling 
is not preemptible. Note that if two dependent tasks are 
allocated to the same processor, the message transfer time 
between the two tasks is considered neglected. For a complete 
model, we introduced for each task and message, the arrival 
date, the execution start date and the date of completion. The 
response time equals to the difference between the completion 
and arrival dates. Performance at the processor level is 
computed through a time interval that corresponds to the 
lowest common multiplier between tasks periods. 

VI. OUR ALGORITHM 

In this section, we will detail the main components of our 
multi-objective genetic algorithm. 

A. Fitness function 

This function allows us to measure the efficiency of the 
solution. The relevance of potential solutions essentially 
depends on the formulation of this function. Indeed, whatever 
its definition, the algorithm converges to an optimum of this 
function. In this work we minimize three objectives that are 
the average response time, the energy consumption, and the 
number of tasks missing their deadlines. The function is 
defined as follows: F = ∑ wi*((qi-qmin)/(qmax-qmin))  with  ∑ 
wi=1  

 wi is the weight associated with attributes to minimize. qmin 
and qmax are respectively the minimum and the maximum 
values of the objective function in the current population .  

We have three variables: 

q1 =( 1/n)* ∑Rt ( the average response time ), where Rt is the 
response time = time elapsed between the arrival date and the 
completion date of the task including transfer time messages. 
q2 = ∑ (Edyn+Estat) ( energy consumed = dynamic energy + 
static energy). 

Edyn=∑Ci*Ei+Em where Ci is the execution time of task i 
and Ei is the dynamic energy per cycle of the processor on 
which the task i runs, Em is the energy consumed by 
messages. 
q3 = comp (number of tasks missing their deadlines), where 
comp is an integer variable which is is incremented by 1 when 
a task exceeds its deadline. 

 Note that any processor with a number of allocated tasks 
equals to zero, have to be turned off (static energy equal to 
zero). 

B. Solutions coding 
The basic chromosome is an array of genes. Each gene is a 

composite structure that stores the relevant information about 
the task including like the task name, the task priority, the 
number of the processor on which the task runs, and the 

operating mode of the processor. All this information is 
extracted from the graph of tasks and the associated 
architecture. Generally dependent tasks keep their precedence 
priorities if they are assigned to the same processor. In the 
other cases, the priorities are set randomly. The initial 
population of chromosomes is generated randomly, but we 
must ensure that a task can not be assigned to different 
processors at the same time. Of course we must also ensure 
that all precedence priorities are respected and that each 
message has a different priority to resolve the conflict on the 
shared bus. 

 

 

 

 

 

Figure 1.   Chromosome coding 

 

   
                                       
                          
                           

 

 

 

 

 

 

 

 

 

 

Figure 2.   Chromosome generation from tasks graph and hardware 

architecture  

C. Selection 

We have adopted the so-called elitist selection technique to 
sort the solutions increasingly depending on their adaptation to 
the fitness function, then it takes up half of the population that 
improves the fitness function , that is to say, we choose the N / 
2 best solutions for the next generation. 

D. Crossover 

This operator allows the creation of new individuals from 
parents, and therefore it allows the exchange of information 
between chromosomes. Firstly two individuals are randomly 
selected then the genes are selected randomly from both 
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parents P1 and P2 according to their adaptations to the fitness 
function. The number of selected genes is defined as follows:  

if β = fitnessP1/ (fitnessP1+ fitnessP2) then P1gives β% 
and P2 gives 100 - β% genes. 

E. Mutation 

This operator allows the search to escape from local 
optima by changing the value of a single gene in a 
chromosome. In our case the change concerns the priority task 
(change the priority of a task randomly), the mode of CPU 
(choose high or low mode) and the CPU on which the task is 
allocated (change the number of CPU). For each mutation 
(e.g. change the processor) a certain probability (introduced by 
the user) is associated with. The algorithm generates a random 
number between 0 and 1. If this number is less than or equal to 
the probability of mutation then the gene value is changed 
otherwise we do not change it. 

VII. IMPLEMENTATION 

Our genetic algorithm is implemented in C + + Builder 9. 
We defined five classes that are subgraph, task, Message, 
architecture, processor, and bus classes. We also implemented 
the operators and the genetic algorithm. 

 Example 
lets assume that we have a graph composed of four (4) tasks 
with hard constraints and a period equals to 100 clock cycles. 
The architecture consists of three processors connected by a 
shared bus with a throughput equals to 400 bytes/cycle, a 
dynamic energy equals to 2 watts/cycle and a static energy 
equals to one watt. We assume that the three processors have 
two modes: the high mode: frequency = 1, the dynamic energy 
= 3 , the low mode : frequency = 0.1 , dynamic power = 0.5 . 
Note that all these values are normalized (high frequency 
corresponds to 1). The task parameters are shown in Table 2. P 
= period D = deadline, S = the date of arrival, WCET = 
execution time in the worst case. Table 3 gives messages 
parameters. . 

The weights associated with the three objectives are as 
follows: 
Average response time   w1 = 0.3.  
Energy consumption   w2 = 0.6. 

Number of tasks missing their deadlines   w3 = 0.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Tasks graph with dependencies 

 

TABLE I TASKS PARAMETERS 

 

TABLE II  PROCESSORS PARAMETERS 

 

TABLE III MESSAGES PARAMETERS 

 
 

 

 

 

 

The probabilities of mutations were initially set to 1. The 
population size is assumed to be constant (equals to 20). To do 
this, we always select the half (the top ten solutions) for the 
crossover. Each crossover between two parent solutions 
produced two new child solutions. In the end, we merge the ten 
parents with the ten new children to form a population of 
twenty (20) chromosomes. 

The algorithm stores the four best found solutions. The high 
processor mode is denoted by 0. The low mode is denoted by 1. 
Similarly, the hard constraint is denoted by 0 and the soft 
constraint by 1. Tasks and processors are numbered from 0 
(task A) to 3 (task D) and 0 (processor P1), 2 (P3 processor) 
respectively. The time and consumed energy overheads during 
transitions from one mode to the other are the same for all 
processors:  

From the high mode to the low mode: time = 1 clock cycle, 
energy = 1.5 watt. 

From the low mode to the high mode: time = 2 clock 
cycles, energy = 2.5 watt. 

Figure 4 shows the result of running the algorithm after 100 
iterations. The best solution found has a mean response time 
equal to 21 cycles, energy consumption equals to 126 watt and 
the number of tasks missing their deadlines equals to zero. The 
found solution suggests that tasks 0 (A), 1 (B) and 3 (D) are 
assigned to processor 2 (P3) with the high mode (0) and Task 2 
(B) is assigned to processor 1 (P2) with the high mode (0). We 
note that the processor 0 (P1) is free. 

Task Type P Priority WCET D S 

A Dure 100 1 13 16 0 

B Dure 100 2 13 30 0 

C Dure 100 3 15 50 0 

D Dure 100 3 1 40 0 

 Processor 

Number 

Dynamic energy/ 

frequency 

Static energy 

P1 0 3    1 

0.5  0.1 

3 

P2 1 3      1 

0.5  0.1 

2 

P3 2 3      1 

0.5  0.1 

1 

Message Size (Bytes) Priority 

m1 800 1 

m2 1200 1 

A 

B 

 

C 

 

D 

 

m1 

m2 



VIII. CONCLUSION AND PERSPECTIVES 

This work proposes the use of multi-objective genetic 
algorithms to optimize performance in real-time DES with 
periodic tasks and mixed constraints. The three objectives 
considered are the average response time, the energy 
consumption and the number of tasks missing their deadlines. 
To find a good compromise between time and energy, we 
adopted the DVS technique. We believe that our algorithm 
with the user support (for example, he can change the weights, 
the probability of mutation and the number of solutions to 
choose from) can find Pareto optimal. As a perspective, we 
plan to conduct more tests to investigate the influence of 
weights, the probability of mutation, the rate and the crossover 
technique on the quality of the solutions and also to 
incorporate Aperiodic tasks in our algorithm . 
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Figure 4.  Results of algorithm genetic running 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


