
Real Time Distributed Embedded Systems

Performance Optimization using Multi-objective

Genetic Algorithms

Fateh Boutekkouk

Department of Mathematics and computer science,

University of Oum El Bouaghi, Algeria

fateh_boutekkouk@yahoo.fr

Chafia Bounabi

Department of Mathematics and computer science,

University of Oum El Bouaghi, Algeria

Bounabi_ch@yahoo.fr

Abstract—In this paper we present a multi-objective genetic

algorithm to optimize the performance of a time-driven real-time

distributed embedded system with mixed constraints and a

shared bus based on the so-called technique: Dynamic Voltage

Scaling (DVS). The three objectives to minimize are the energy

consumption, the average response time and the number of tasks

missing their deadlines.

Keywords; Real Time distributed embedded systems; Real Time

Schedulingl; DVS; Gentic Algorithms ; Multi-Objective

Optimization

I. INTRODUCTION

Embedded Systems (ES) [8] are increasingly present in our
daily life. An ES is a system that contains application-specific
hardware and software suited to a particular task that is part of
a larger system that is not necessarily computer (e.g. electronic,
mechanical, etc.). . An ES interacts with the outside world via
the sensors / actuators and subjected to strict spatial, temporal
and energy constraints. Design of such complex systems faces
several challenges and requires collaboration between teams
from different disciplines (e.g., software, hardware, system
integrator, etc. . .). Indeed, ES are heterogeneous in nature due
to the heterogeneity of the applications they implement. They
typically combine software components (general purpose
processors, Digital Signal processors, etc.). Unlike a hardware
implementation, a software implementation has the advantage
of providing flexibility (i.e. the possibility of reprogramming),
but at the prize of satisfying performance constraints.
A distributed embedded system (DES) represents the
distributed version of the centralized ES with several
controllers (node) independent which are interconnected by a
shared bus, a hierarchy of buses or a communications network
generally with three layers: the physical layer, the link layer
and the application layer. Automobiles, aircraft, submarines,
networks on chip (NOC: Network On Chip) are good examples
of systems integrating DES. A DES is called real time if it is
able to meet its timing constraints. In fact, we can classify the
DES depending on time constraints into three classes: hard
DES, soft DES and firm DES. Similarly, DES can be classified
according to the type of process and/or communications in
three families time-driven (periodic), event-driven (Aperiodic)
or mixed. In what follows, we are interested in time-driven

DES with mixed constraints (hard and soft). Since these
systems have independent batteries, their design should
minimize energy consumption to prolong the life of these
batteries. Managing energy consumption has become a major
challenge in such systems. Among the possible solutions we
find energy-aware scheduling algorithms. The aim of this work
is to apply multi-objective genetic algorithms to optimize the
performance of a time-driven DES with mixed constraints and
a shared bus topology relying on the so-called technique:
Dynamic Voltage Scaling (DVS). We believe that genetic
algorithms can find near optimal especially for nonlinear
problems which have a vast space research. Although genetic
algorithms are very sensitive to some random parameters (e.g.
mutation probability), the experience of the user can play a
leading role to drive the genetic algorithm towards good
solutions. For this reason, we generally prefer to use interactive
genetic algorithms. Our paper is organized as follows: the
second section reviews briefly the state of the art on scheduling
algorithms. The third section presents some energy reduction
techniques. The fourth section will shed light on multi-
objective optimization using genetic algorithms. In the fifth
section, we try to define and model our problem. The sixth
section develops our proposed genetic algorithm. The seventh
section talks about our implementation with an explanatory
example. Finally, we conclude this paper by presenting the
contributions of our solution and identifying the perspectives.

II. STATE OF THE ART

 Among the techniques that have been used to optimize the
performance of real time DES, we find in particular
schedulability analysis. In hard real time systems, the objective
of this analysis is to ensure compliance with timing constraints.
In soft real time systems, the primary objective is to minimize
the response time of tasks. In fact, the literature is very rich and
classifies the real-time scheduling algorithms according to
several criteria such as: uniprocessor/multiprocessor off-
line/on-line, preemptible non- preemptible, time-driven/event-
driven or mixed, independent/dependent tasks, fixed or
variable priority, etc. The schedulability analysis can be
extremely difficult for complex systems. This is why the
complex system may be transformed into a simpler model
whose analysis is known. However, this practice provides only

partial results (e.g. a necessary and sufficient condition for
schedulability in uniprocessor becomes a necessary condition
for multiprocessors). Recently, a new class of real-time
scheduling algorithms that take into account the reduction of
energy consumption (energy-aware scheduling algorithms)
appear [1, 2, 3, 5, 6, 7, 9]. The problem becomes more complex
by adding a new dimension that is energy. Find a good solution
that minimizes consumption while meeting timing constraints
is a difficult problem. For this reason, researchers resort to
optimization heuristics as an alternative to exact solutions.
According to the literature, we can state that there are few
works that take into account real-time DES with mixed
constraints. In addition, most works optimize only one or two
goals and do not take into consideration tasks dependencies.
Our contribution is therefore to apply multi-objective genetic
algorithms to minimize three objectives that are the energy, the
average response time of tasks and the number of tasks failing
to meet their deadlines for real-time DES with a set of
dependent tasks and mixed constraints.

III. ENERGY CONSUMPTION REDUCTION TECHNIQUES

Reducing techniques can be divided into two strategies:
hardware and software solutions. The first strategy is working
on the technology hardware. For instance reducing the size of
the components, limiting the power of the component blocks
required for ongoing treatment, limiting the number of state
changes in a circuit, using FPGAs and asynchronous
electronic circuits. The software also has an important role to
minimize energy consumption, for example, optimizing
programs executable code and replacing memory operations
by register to register ones. There are of course hybrid
techniques based on synergy between hardware and software
components; for example Dynamic Power Management
(DPM) strategy and Dynamic Voltage Scaling (DVS) strategy.
Many modern processors can dynamically lower the voltage to
reduce energy consumption. Unfortunately, reduction of the
supply voltage leads to an increase in the circuit delay. In turn,
the propagation delay limits the clock frequency of the
microprocessor. Therefore, the benefits of DVS technology
can be operated in real-time systems only after careful
identification of conditions under which we can safely slow
down the processor without missing a deadline.

IV. GENETIC ALGORITHMS AND MULTI-OBJECTIVE

OPTIMIZATION

Genetic algorithms are optimization algorithms based on
techniques inspired from genetics and natural evolution
mechanisms like crossover, mutation, selection, etc. They
belong to the class of evolutionary algorithms [4]. However,
the principle of multi-objective optimization is different from
that of a single objective approach. In a multi-objective
optimization problem, there are many objective functions to
optimize; each objective function may have a different optimal
solution. The purpose of a multi-objective problem is to find a
compromise rather than a single solution. When there are
multiple objectives, the concept of optimum change and it is
better to use the optimal of Pareto. In the context of solving
multi-objective problems, there is no accurate and efficient
procedure. The NP-hard complexity and the multi-criteria

framework of these problems justify the resort to heuristics
that sacrifice completeness to gain efficiency. The literature is
very rich, but we chose the weighted aggregation method
which reduces the multi-objective optimization problem to a
problem with a linear combination of the original objectives. It
means to transform the multi-objective problem to a mono-
objective problem by associating a weight with each objective
function and then summing them to obtain a new single
objective function. The coefficients are generally selected
based on the relative importance of objectives. The
formulation of an appropriate fitness function is one of the
major problems in a genetic algorithm. Suppose there are n
attributes to minimize and m attributes to maximize. These
attributes have different scales, values and measures. For this
we must normalize them, then we associate to each attribute a
weight that reflects its relative importance. The fitness
function can be defined as follows:
F = ∑ wi*((qi-qmin)/(qmax-qmin))+ ∑ wj*(1-(qj-qmin)/(qmax-qmin))
such that wi(wj) is the weight associated with the attribute to
minimize (maximize) with ∑wi+∑wj=1.

qmin and qmax are the minimum and the maximum values of

the objective function in the current population.

V. PROBLEM DEFINITION AND MODELING

A. Problem definition

We deal with the well-known problem of allocation /
scheduling in real-time time-driven (periodic tasks) DES with
mixed constraints (tasks with hard and soft constraints). Our
goal is to find the best pair: allocation /scheduling of tasks
which minimizes the average response time of tasks, the total
energy consumption and the number of tasks with soft
constraints do not meet their deadlines so that all tasks with
hard constraints must meet their deadlines.

B. Modeling

A real-time DES consists of two parts: the application and
the hardware architecture on which the application runs. In our
case, we assume that the application is modeled as a task graph
which consists of a set of sub-graphs. Each sub-graph includes
a set of nodes (dependent tasks) and is characterized by a
period. So the tasks of a sub-graph have the same period. Two
dependent tasks are connected by an arc labeled with a name of
a message. Each task in the sub-graph is characterized by a
name, the constraint type (hard or soft), the period, the
precedence priority, the relative deadline and the execution
time in terms of clock cycles which can be estimated for the
worst case (WCET) if the constraint is hard or the average case
(ACET) if the constraint is soft . Each message is characterized
by its size in bytes and a priority.

Similarly, the hardware architecture is modeled as an
undirected graph where nodes denote the component
architecture processors and edges denote the physical links
between the processors (there are several topologies for linking
processors but we choose the shared bus topology). Each
processor has features such as a number to identify it and the
different modes of functioning. For each mode, the dynamic
energy consumed per cycle and the associated relative
frequency and the static energy which is assumed constant. Of

course, we introduced the time and energy overheads to pass
from one mode to another. The bus also has its own
characteristics such as the throughput (bytes/cycle), the average
dynamic energy per cycle and the static energy. The allocation
is to assign tasks to processors and messages to the shared bus.
Scheduling, however, is to define the order of execution of the
tasks(s) and messages on processor(s) and buses. The order of
execution is defined by the priority. We assume that scheduling
is not preemptible. Note that if two dependent tasks are
allocated to the same processor, the message transfer time
between the two tasks is considered neglected. For a complete
model, we introduced for each task and message, the arrival
date, the execution start date and the date of completion. The
response time equals to the difference between the completion
and arrival dates. Performance at the processor level is
computed through a time interval that corresponds to the
lowest common multiplier between tasks periods.

VI. OUR ALGORITHM

In this section, we will detail the main components of our
multi-objective genetic algorithm.

A. Fitness function

This function allows us to measure the efficiency of the
solution. The relevance of potential solutions essentially
depends on the formulation of this function. Indeed, whatever
its definition, the algorithm converges to an optimum of this
function. In this work we minimize three objectives that are
the average response time, the energy consumption, and the
number of tasks missing their deadlines. The function is
defined as follows: F = ∑ wi*((qi-qmin)/(qmax-qmin)) with ∑
wi=1

 wi is the weight associated with attributes to minimize. qmin
and qmax are respectively the minimum and the maximum
values of the objective function in the current population .

We have three variables:

q1 =(1/n)* ∑Rt (the average response time), where Rt is the
response time = time elapsed between the arrival date and the
completion date of the task including transfer time messages.
q2 = ∑ (Edyn+Estat) (energy consumed = dynamic energy +
static energy).

Edyn=∑Ci*Ei+Em where Ci is the execution time of task i
and Ei is the dynamic energy per cycle of the processor on
which the task i runs, Em is the energy consumed by
messages.
q3 = comp (number of tasks missing their deadlines), where
comp is an integer variable which is is incremented by 1 when
a task exceeds its deadline.

 Note that any processor with a number of allocated tasks
equals to zero, have to be turned off (static energy equal to
zero).

B. Solutions coding
The basic chromosome is an array of genes. Each gene is a

composite structure that stores the relevant information about
the task including like the task name, the task priority, the
number of the processor on which the task runs, and the

operating mode of the processor. All this information is
extracted from the graph of tasks and the associated
architecture. Generally dependent tasks keep their precedence
priorities if they are assigned to the same processor. In the
other cases, the priorities are set randomly. The initial
population of chromosomes is generated randomly, but we
must ensure that a task can not be assigned to different
processors at the same time. Of course we must also ensure
that all precedence priorities are respected and that each
message has a different priority to resolve the conflict on the
shared bus.

Figure 1. Chromosome coding

Figure 2. Chromosome generation from tasks graph and hardware

architecture

C. Selection

We have adopted the so-called elitist selection technique to
sort the solutions increasingly depending on their adaptation to
the fitness function, then it takes up half of the population that
improves the fitness function , that is to say, we choose the N /
2 best solutions for the next generation.

D. Crossover

This operator allows the creation of new individuals from
parents, and therefore it allows the exchange of information
between chromosomes. Firstly two individuals are randomly
selected then the genes are selected randomly from both

T1 T2 …

.
Ti …

…

…

…..

Tn

Priority Mode CPU

low low low high low

A B E D C

P1 P1

P3

P2

P3

1

2

2

1

1

P1 P2

P3

A

B

C

D

E

parents P1 and P2 according to their adaptations to the fitness
function. The number of selected genes is defined as follows:

if β = fitnessP1/ (fitnessP1+ fitnessP2) then P1gives β%
and P2 gives 100 - β% genes.

E. Mutation

This operator allows the search to escape from local
optima by changing the value of a single gene in a
chromosome. In our case the change concerns the priority task
(change the priority of a task randomly), the mode of CPU
(choose high or low mode) and the CPU on which the task is
allocated (change the number of CPU). For each mutation
(e.g. change the processor) a certain probability (introduced by
the user) is associated with. The algorithm generates a random
number between 0 and 1. If this number is less than or equal to
the probability of mutation then the gene value is changed
otherwise we do not change it.

VII. IMPLEMENTATION

Our genetic algorithm is implemented in C + + Builder 9.
We defined five classes that are subgraph, task, Message,
architecture, processor, and bus classes. We also implemented
the operators and the genetic algorithm.

 Example
lets assume that we have a graph composed of four (4) tasks
with hard constraints and a period equals to 100 clock cycles.
The architecture consists of three processors connected by a
shared bus with a throughput equals to 400 bytes/cycle, a
dynamic energy equals to 2 watts/cycle and a static energy
equals to one watt. We assume that the three processors have
two modes: the high mode: frequency = 1, the dynamic energy
= 3 , the low mode : frequency = 0.1 , dynamic power = 0.5 .
Note that all these values are normalized (high frequency
corresponds to 1). The task parameters are shown in Table 2. P
= period D = deadline, S = the date of arrival, WCET =
execution time in the worst case. Table 3 gives messages
parameters. .

The weights associated with the three objectives are as
follows:
Average response time w1 = 0.3.
Energy consumption w2 = 0.6.

Number of tasks missing their deadlines w3 = 0.1.

Figure 3. Tasks graph with dependencies

TABLE I TASKS PARAMETERS

TABLE II PROCESSORS PARAMETERS

TABLE III MESSAGES PARAMETERS

The probabilities of mutations were initially set to 1. The
population size is assumed to be constant (equals to 20). To do
this, we always select the half (the top ten solutions) for the
crossover. Each crossover between two parent solutions
produced two new child solutions. In the end, we merge the ten
parents with the ten new children to form a population of
twenty (20) chromosomes.

The algorithm stores the four best found solutions. The high
processor mode is denoted by 0. The low mode is denoted by 1.
Similarly, the hard constraint is denoted by 0 and the soft
constraint by 1. Tasks and processors are numbered from 0
(task A) to 3 (task D) and 0 (processor P1), 2 (P3 processor)
respectively. The time and consumed energy overheads during
transitions from one mode to the other are the same for all
processors:

From the high mode to the low mode: time = 1 clock cycle,
energy = 1.5 watt.

From the low mode to the high mode: time = 2 clock
cycles, energy = 2.5 watt.

Figure 4 shows the result of running the algorithm after 100
iterations. The best solution found has a mean response time
equal to 21 cycles, energy consumption equals to 126 watt and
the number of tasks missing their deadlines equals to zero. The
found solution suggests that tasks 0 (A), 1 (B) and 3 (D) are
assigned to processor 2 (P3) with the high mode (0) and Task 2
(B) is assigned to processor 1 (P2) with the high mode (0). We
note that the processor 0 (P1) is free.

Task Type P Priority WCET D S

A Dure 100 1 13 16 0

B Dure 100 2 13 30 0

C Dure 100 3 15 50 0

D Dure 100 3 1 40 0

 Processor

Number

Dynamic energy/

frequency

Static energy

P1 0 3 1

0.5 0.1

3

P2 1 3 1

0.5 0.1

2

P3 2 3 1

0.5 0.1

1

Message Size (Bytes) Priority

m1 800 1

m2 1200 1

A

B

C

D

m1

m2

VIII. CONCLUSION AND PERSPECTIVES

This work proposes the use of multi-objective genetic
algorithms to optimize performance in real-time DES with
periodic tasks and mixed constraints. The three objectives
considered are the average response time, the energy
consumption and the number of tasks missing their deadlines.
To find a good compromise between time and energy, we
adopted the DVS technique. We believe that our algorithm
with the user support (for example, he can change the weights,
the probability of mutation and the number of solutions to
choose from) can find Pareto optimal. As a perspective, we
plan to conduct more tests to investigate the influence of
weights, the probability of mutation, the rate and the crossover
technique on the quality of the solutions and also to
incorporate Aperiodic tasks in our algorithm .

 REFERENCES

[1] S. Albers and A. Antoniadis, “Race to idle: new algorithms for speed

scaling with a sleep state”. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA’12, pp. 1266–1285. SIAM,
2012.

[2] S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time
minimization”. ACM Trans. Algorithms, 3, November 2007.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejıa-Alvarez, “Power-aware
scheduling for periodic real-time tasks”. In IEEE Transactions on Computers,

53(5):584– 600, May 2004.

[4] P. Calegari, G. Coray, A. Hertz, D.Kobler, and P. Kuonen, “A

taxonomy of evolutionary Algorithms in combinatorial optimization”. Journal

of Heuristics, 5(2):145–158, 1999.

[5] T. Ishihara and H. Yasuura, “Voltage scheduling problem for

dynamically variable voltage processors”. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 197–202,

Monterey, CA, August 1998.

[6] C. Scordino and G. Lipari, “Using resource reservation techniques for

power-aware scheduling”. In Proceedings of the 4th ACM International

Conference on Embedded Software, pages 16–25, Pisa, Italy, September
2004.

[7] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time

embedded systems on variable speed processors”. In Proceedings of the

International Conference on Computer Aided Design, pages 365–368,
November 2000.

[8] W. Wolf, “Computers and Components Principles of Embedded
Computing System Design”, Morgan Kaufman Publishers, 2000.

[9] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy”. In Proceedings of the 36th Annual Symposium on Foundations

of Computer Science, FOCS ’95, pages 374–382, Washington, DC, USA,

1995.

Figure 4. Results of algorithm genetic running

