

Abstract— Ontologies are explicit conceptualization for logic

processing specifications. Building ontology is a difficult task.

The ability to obtain semantic concepts directly from a language

exchange is a new methodology that can help reduce the

complexity of the problem.

In this paper, we propose a new approach to construct domain

ontology from the conceptual data models. This approach takes

into account the syntactic and semantic aspects of conceptual

data models and uses information retrieval techniques to define a

similarity measure calculated based on the basic concepts of the

conceptual data models. Thus, we present a methodology for

extraction and construction of ontology from the conceptual data

models.

Key words— Ontology, conceptual data models, semantic

concepts, information retrieval, similarity.

1. INTRODUCTION

We propose, in this paper, a semi-automatic approach that

helps building domain ontology, based on the resources of

knowledge gained from the conceptual data models.

Conceptual data models are very interesting elements in

information systems and software engineering. In knowledge

engineering, conceptual data models play an important role in

representing concepts and relationships between concepts in a

particular domain. To conceive an information system is to be

able to give a representative scheme of this system, by

exploiting the knowledge within the system. In the domain of

knowledge, ontology represents the data in terms of syntax

and semantics. In fact, ontology are structured in concepts,

properties and relationships between concepts. It allows to

present, integrate and annotate the knowledge in a more

effective and efficient manner.

Ontologies are generally reusable. However, the

construction of domain ontology is necessary to minimize

ambiguities left during the conception of ontology; in fact,

several concepts can define one only term in different uses.

Our approach is consists of three steps: the first step is

based on the application of mapping techniques of UML

concepts (classes, properties and association), and the

application of the techniques of semantic research on these

concepts. The second step focuses on the translation of UML

concepts to XSD elements, exploiting the definition and

representations rules of XSD elements, specifically, complex

types, simple types, and data generated types. The third step

relates to the detection and extraction of the hidden semantics.

In this paper, we will to explain and justify our solution, so

we detail each phase of the proposed approach. We will

clearly define the complete architecture of our approach, while

explaining the phases and components.

2. RELATED WORKS

Several approaches for the construction of domain

ontologies have been proposed. In the continuation, we will

present some of these works.

Through the analysis of entities, relationships and attributes

[1] defines the mapping rules between the concepts of

databases (entity, attributes, relationships and constraints) to

the ontological concepts equivalent (class, properties, ...). A

process of mapping is established, where relational databases

are used for the construction of ontology. Entities transformed

into classes, relationships transformed into classes, the

attributes transformed into properties in the classes and the

tuples transformed into instances in the ontology.

 Benslimane and al. [2], propose an approach based on the

analysis of HTML forms. The semantics obtained is used to

produce the relational schemas in order to enrich them. The

transformation rules are applied to build the ontology.

Several works use UML conceptual models and ontologies

representation languages to generate the ontology, and

propose different approaches based on MDE (Model Driven

Engineering). In [3], the generation of ontology is done by

annotating UML models, and uses stereotypes in the UML

profile. The transformation is expressed in XSLT (eXtensible

Stylesheet Language Transformations) style defines the rules

for transforming a source tree into a result tree.

The EODM (EMF Ontology Definition Metamodel) project

is an implementation using EMF (Eclipse Modeling

Framework). EODM is derived from ODM (Ontology

Definition Metamodel) of the OMG (Object Management

Group), implemented in (EMF). To facilitate software

development and implementation EODM includes analysis,

serialization, reasoning, and the transformation between

RDFS/OWL and other data modeling languages such as UML,

Ecore. EODM is an open-source Eclipse project. In [4] some

techniques are used as the definition of UML profiles and

ODM. The objective is to represent ontologies in RDFS

format one using the graphical notation of UML.

3. PROPOSED APPROACH

Construction of a domain ontology from the

conceptual data models

Tami Abdelaziz*, Elberrichi Zakaria**

* a_tami@esi.dz, ** elberrichi@gmail.com

EEDIS Laboratory, Djillali Liabes University of Sidi Belabbes, Algeria.

The idea we propose to build ontology is based on a series

of steps and rules of transformation of conceptual data models

in XML Schema which is the pivot for other analysis rules and

transformations to get ontology based on the basic concepts

that carries the XML language. The functional architecture of

our approach in Fig. 1.

Fig. 1. The approach architecture

As we can see, the approach is composed of 3 main parts

explained below.

3.1. Module of extraction and transformation of conceptual

data models: This module includes the rules of extraction and

transformation of conceptual data models toward a XML

schema. These rules have the function to translate the

conceptual data model to XSD scheme. These rules take into

account the static structure (definition of concepts), and the

dynamic aspect concerning the integrity constraints such as

primary key and foreign key.

3.2. Module of extraction and transformation of ontology: The

xml model generated from the previous phase is used in the

module of extraction and transformation of ontology in order

to apply transformation rules XSD/OWL. These rules permit

the construction of the OWL ontology (classes construction

rules, properties, relationships between classes ...). The

generated ontology describes the knowledge specific to a

given domain and provides a formal understanding, consensus,

referenceable of the domain concepts.

3.3. Semantic search module: The semantic search plays an

important role for the analysis and the selection of the

concepts of the conceptual data models. Information retrieval

techniques are used to index and to find the pertinent concepts

of the class diagrams. This phase is applied in parallel with the

other phases of the approach to facilitate the detection of the

pertinent concepts in order to generate the xml model that

represents the class diagrams and to generate the domain

ontology.

The class diagram is represented by an XML document

under XSD format. UML concepts are defined from the senses

used. However, the detection of the senses of the concept is

not an easy task. For this, the knowledge base can overcome

the problem of heterogeneity of the senses of the concept since

the knowledge engineer can make the best choice between the

possible senses with the help of a semantic search engine.

For the knowledge base, we have chosen to use WordNet.

In fact, using WordNet can help apply queries to search for

words and senses of words and to follow the hierarchy of

senses of words. We can perform lexical disambiguation

algorithms. We need a similarity measure in the class

diagrams. The based similarity measure on the WordNet

linguistic resource may help to know that the concepts are

similar or not, and to perform the mappings in our

approach[5].

4. DETAILED DESCRIPTION OF THE APPROACH

4.1. Alignment of conceptual data models: In his approach [6]

defines an alignment that takes as input two schemes (S1 and

S2) and product in output an alignment between the elements

of S1 and S2. The alignment process generally passes by three

phases: 1) Conversion schemes S1 and S2 in the internal

format of the alignment method, 2) Calculation of similarities

for each mapping, 3) Selecting a subset of mappings.

External resources (e.g. Wordnet) and parameters are used

to adapt the operation of the alignment process.

In some approaches, the mappings are associated with a

similarity value ([0, 1]), and to a type of relationship (similar,

more general or different).

In our case the alignment of conceptual data models is

defined as the operation that takes as input a number of

conceptual data models and product in output a list of

correspondences between the concepts of these models. Since

the conceptual data models regroup knowledge with similar

correspondences, a similarity measure is used to find pertinent

concepts in order to produce the XML model.

4.2. Generation of an XML Model: This phase is performed to

extract the concepts found in class diagrams, specifically:

classes, attributes and associations, these concepts should be

grouped for each class diagram. In order to generate an XML

model, we follow a series of steps to perform mappings

between the concepts of class diagrams.

4.2.1. Selection of pertinent classes and associations: This

step permits to measure the pertinence for each class and each

association in a class diagram selected from a number (nd) of

class diagrams. Pertinent classes and associations are

represented by vectors. In this step, we do the calculations on

the occurrence of any class and any existing relationship to

make the mappings of classes and associations, in order to

choose pertinent classes and associations, and then we proceed

to clean and enrich the xml generated model. However, to

improve the results of pertinence, the knowledge engineer can

adapt a threshold to select pertinent classes and associations.

4.2.2. Technique of frequency calculation: We used the

weighting technique used in information retrieval in the text

corpus TF-IDF (term frequency-inverse documents frequency)

to calculate the frequency of occurrence of the class in order to

present a vector that contains the name of the class UML and

calculated frequency.

Formal definition

The frequency of a class Ci,j in the class diagram dj is

defined by:
jkm

jCin

jitf

,

,
, ,

with : nCi,j is the number of class occurrences Ci,j in the

diagram dj.

mk,j is the number of occurrences of all the classes in the

diagram dj.
k

jkjk nm ,,

The inverse frequency of a class diagram dj is defined by:

ndj

nd
idfi log

with : nd is the number of diagrams of classes in the corpus.

ndj is the number of class diagram where belongs the class Ci,j.

Thus, the weight of the class Ci,j in the class diagram dj is

defined by: iidfjitfjitfidf ,,

4.2.3. Mapping of the concepts: The techniques of information

retrieval can solve the problems of ambiguities of the names

of classes and associations in class diagrams, two class names

are designated the same class in two different class diagrams.

Through mapping classes, we can give up the semantic

ambiguity between class names, our proposition is to use the

concept of calculate of semantic distance to remove this

ambiguity. However, the knowledge engineer adjusts a

threshold (real value ([0..1])) for calculating the semantic

distance between two classes. If two classes are completely

similar, then the threshold to a value equal to 1. The threshold

value of value 0 indicates that there is no similarity between

the two classes.

For the mapping of the concepts we need some treatments

between the elements of the XSD documents that represent the

class diagrams, these treatments permit to establish operations

between classes, associations or properties. These operations

are defined in Table 1.

TABLE 1. OPERATIONS USED FOR MAPPING CONCEPTS

Operation Significance

IdentEle () Operation used if two elements are identical

RenEle () Operation used to reappoint an element of the
XML model

AddEle() Operation used to add an element to the XML

model

SuppEle() Operation used to suppress an element

MergEle () Operation used to merge two different elements

in only one element

EclatEle () Operation used to explode an element in several

equivalent elements

Calculations of similarity: The applications basing on the

calculation of similarity suffer of several problems as:

disambiguated, indexing, extraction of the data, integration of

the data... In our work we present a measure of similarity

between the classes that permits to use the semantic

neighborhood for the calculation of the weights of the class

participants in the class diagram.

The semantic similarity is applied in several domains of

research of information. To start our propositions, we took

advantage of notions of similarity calculation and we indexed

the concepts found by the semantic neighborhood.

In the literature, several approaches use the notions of graph

(node, arc, path, distance.). Two axes exist to measure the

similarity between the concepts ontology:

The first axis articulates on the tree structure, it regroups the

approaches based on the arcs of a graph, where the nodes are

the concepts and the arcs are links between concepts. The arcs

are used to browse the path and to calculate the distance

between the concepts.

R. RADA and his colleagues [7] presents a measure based

on the calculation of the distance between two concepts;

indeed, this distance represents the minimum number of arcs

to browse between a concept C1 who meets in a path joining a

concept C2. This distance is noted by)2,1(CCdist . The

measure of similarity is defined by:

)2,1(1

1
)2,1(

CCdist
CCradasim

 ,

with:)2,1(minmin)2,1(CCcheCCdist

W. Zhibiao and his colleague [8] presents a measure based

on the depth of two concepts (C1 and C2) in relation to the

smallest concept generalizing common (C) (e.g. Fig. 2),

indeed, the depth of a concept represents its distance with the

root (R) while passing by the concept (C). The measure of

similarity is defined by:

)2()1(

)(2
)2,1(&

CprofCprof

Cprof
CCPWusim

 ,

with :),()(RiCdistCiprof

Fig. 2. Example of hierarchy of concepts structure

The second axis articulates on the informational content of

the concepts, it regroups the approaches based on the nodes.

Several methods are developed in this axis. We present some

measures used by these methods. In [9] present a state of the

art where different measures are compared.

The informational content is introduced by [10], where the

notion of probability is used to select the pertinent concept in a

corpus, indeed, the frequency of apparition of a concept (C1)

as well as the frequency of apparition of another concept

subsumed (C2) imply that the concept (C2) is more specific

than the concept (C1). The informational content is defined by:

CI(C) = - log(P(C)).

Where P(C) represents the probability of the concept C.

If C1 is similar to C2 (C1 is-a C2), then P(C1) <=P(C2).

The measure of similarity is defined by:

[-logP(C)])
2

C,
1

Csubsumers(max)2,1(Re CCCsniksim

with)2C,1Csubsumers(: is the set of the concepts that are

ancestors of C1 and C2 in one of the senses of these concepts.

This equation means that we want a concept, with a

maximal value of the informational content, that subsumes the

two concepts (C1 et C2).

The probability P(C) is defined by the following formula:

N

Cfreq
CP

)(
)(

P(C) represents the probability of apparition of a concept C

in the corpus of reference. This probability corresponds to the

relative frequency:
)(

)()(
CW ordsN

NcountCfreq

N = total number of concepts in the corpus.

Words (C) is the set of names that have a meaning that one

of the ancestors is the concept C.

In addition, there are hybrid approaches offer the

combination of the two main axes. That is to say, these

approaches are based on a model that uses techniques based

on arcs (distances) and techniques based on the nodes

(information content).

[11] presents a measure based on the calculation of the

inverse of the semantic distance between the concepts (C1 et

C2) in order to rephrase the results by based calculations on

the nodes. The measure of similarity is defined by:

)2C,1dist(C

1
)2C,1(CJiacSim ,

where dist(C1, C2) = CI(C1) + CI(C2) -2CI(C)

with C : is the concept that maximizes the value of

similarity ()2C,1Csubsumers(C)

Leacock. C and Chodorow. M [12] presents a measure

based on the length of the shortest path in a hierarchy of

concepts (is-a) between two synsets of Wordnet, indeed, the

measure of similarity is defined by:

)]
2

)2,1(
(log[maxCho&LeacSim

D

CClength

length(C1,C2) represent the length of the shortest path

between the concepts C1 and C2.

D : represent the length of the longest path between the

concept root (R) and the lowest concept.

In our work, we used the measure of Wu&Palmer that

follows the first axis. Our work doesn't serve to validate the

techniques of measure of similarities, but, one to note the

utility to apply a measure of similarity to do the mappings

between the concepts of the different conceptual data models.

The pertinent classes and associations are regrouped in

order to form an xml document (XML schema), this document

will participate in the phase of ontology generation.

4.2.4. Extraction and transformation UML/XSD

4.2.4.1. Indexing of the class diagrams: The main idea is to

transform the basic concepts of conceptual data models by the

definition of XML schema, as shown in Fig. 3. Our approach

is to find a single and standard format as a pivot to generate an

ontology format.

Indexing class diagrams is based on the use of existing

pertinent concepts in class diagrams. The index structure is

important to make correspondences between models. An XSD

document permits to define the structure of an XML

document, as well as all the tools for processing XML

documents can be applied. For this we have chosen to use

XSD as an indexing format of the class diagrams.

XSD uses to support the creation, the manipulation and the

retrieval of the concepts while taking advantage of the

structure of the XSD documents. The elements of the

generated XML model can be defined through the

correspondence between UML concepts and XSD elements.

Several functions may be presented:

• XSD documents are manipulated by the applications of

research of the elements.

• XSD documents are exchanged between applications.

• XSD permits to makes the creation, the treatment, the

research and the access to the UML concepts through the

hierarchy and the content elements of the XSD document.

However, XPath (XML Path Language) permits to navigate

the XSD documents.

Fig. 3. Index of a class diagram

4.2.4.2. The transformation rules UML/XSD: In this section,

we present the transformation rules between the concepts of

UML class diagram (classes, attributes, associations ...) and

the elements of XML schema. These rules concern the

definition of concepts (UML class diagram), as well as

integrity constraints acting on primary key and foreign key

(e.g. Fig. 4). We propose the following rules for the

UML/XSD transformation.

Fig. 4. Example of correspondence UML/XSD

Rule for classes

Rule 1: A class in the conceptual model defines a complex

data structure. Each class of a conceptual data model is

transformed into an CompexeType element

<xsd:complexType>. The element name is the same as the

class name. If the attributes of a UML class is not limited to a

particular order, the <xsd:all> element is used to contain the

UML attributes, otherwise the element "sequence" is used. It

is possible to declare abstract type (abstract = "true").

Rules for attributes

In UML there is only one way to implement an attribute,

but in XML, there are two ways: elements and attributes.

These last are used to represent an UML attribute of complex

type, but for simple values both ways are favored. When we

take a decision to choose between XML element and XML

attribute, it is essential to understand the nature of data that is

assigned to the UML attribute. For our purposes, it is

important to support a choice between two ways.

Rule 2: Each non-key attribute is part of a class or an

association of a conceptual data model is transformed into a

simple element < xsd:element >. The primitive type is the

attribute (e.g. type = "xsd: string").

The minOccurs and maxOccurs attributes are used to reflect

the cardinality of the attribute of the class appropriate. The

attribute can be defined by a default value. If the attribute

refers to another class, the element declaration is followed by

a definition of complexType, which contains a reference to the

appropriate complexType.

Rule 3: Each key attribute is part of a class is transformed into

<xsd:attribute> attribute. The name, type and visibility

(obligatory or optional) are identical that the name, the type

and the visibility of the class attribute.

Rule 4: For a primary key attribute, using a <xsd:key>

element is useful to represent this constraint. While to

represent the foreign key constraint <keyref> the element is

used.

Rule 5: Associations:

Each association of a conceptual data model is transformed

in element (xsd:element), the name of element is defined by

the role of association, the element type is defined by the

name of the targets class. This element is added to the

complexType representing the class source. The attributes

minOccurs and maxOccurs reflect the cardinality of the

association. If the direction of the association is not specified,

then use the constraints of multiplicity to determine the

direction of the association. For n-ary associations, the

primary keys of the participating association classes are added

to the element that represents the association.

Rule 6: Generalization / Specialization:

To add additional attribute in a class, an element (xsd:

extension) is declared with the attribute (xsd: base) defined in

the name of the super-class. For restraint of the attributes of a

super-class, an element (xsd: restriction) is declared with the

attribute (xsd: base) defined in the name of the super-class.

The xsd elements (complexContent, simpleContent) are

generated to contain elements that represent the uml attributes

of the subclass in the elements of the declared extension or

restriction. For multiple inheritances the xsd attributes that

represent the primary key of super-class are added to the

subclass.

Rule 7: Composition / Aggregation

An element (xsd: element) is generated for each association

of aggregation or composition type, the element name is

defined by the role of association, the element type is defined

by the name of the aggregate class (class component). This

element is added to the complexType representing the

aggregate class (the composite class). In addition, the element

that represents the key attribute of the aggregate class and

added to the generated element to represent a composition.

The attributes minOccurs and maxOccurs reflect the

cardinalities of the association.

Rule 8: Enumeration

A simpleType element is declared to represent an

enumeration. A restriction element is generated. Attributes are

added to the restriction element as enumeration XSD

elements, defined with the UML attribute name value.

Rule 9: Comment

Each UML comment is transformed into <xsd:annotation>

element.

Rule 10: The data types

Data types such as (int, double, string ...) are represented in

the XML schema with the XSD standard notation (<xsd:int>,

<xsd:double> and <xsd:string> ...). The data types defined by

the user are represented by the XSD <simpleType> element.

Rule 11: Packages

An element (xsd: element) is generated for each UML

package.

4.3. Generation of ontology : The objective of this section is to

bridge the gap between XSD and OWL formats. In particular,

we present a strategy of the way who's OWL can be generated

from XML Schemas. This must be done through the

establishment of rules of correspondence between the different

data model elements XML and OWL (e.g. Fig. 5). Using the

correspondence between tag and concept, we can define rules

to identify the elements of XML schema in order to define the

transformation between XML Schema elements and the

concepts of owl.

Fig. 5. Example of a correspondence XSD/OWL

We propose the following rules for the creation of the owl

format:

The element (xsd: complexType)

Complex types of XML Schema and OWL classes are sets

of entities with common characteristics. The complex types of

XML Schema are converted to OWL classes.

Rule 1: A complex element (xsd: complexType) is

transformed into class under owl (owl: Class).

The element (xsd: simpleType)

A simple type element (xsd: simpleType) is an element that

doesn't contain any elements sons, and precise of the

constraints and information as text only. The properties of data

type (owl: DatatypeProperty) are used to connect individuals

to data values. The simple types of XML Schema are

transformed to the properties DatatypeProperty of OWL.

Rule 2: Every simple element (xsd:simpleType) is transformed

into property owl (owl: DatatypeProperty).

The element (xsd: attribute)

The attributes of XML Schema and the properties of OWL

represent the simple type. The attributes of XML Schema are

transformed into the properties datatype of OWL.

Rule 3: Each attribute (xsd: attribute) is transformed into

property owl (owl: DatatypeProperty).

The element (xsd: element)

Since XML Schema elements and OWL properties

represent common characteristics (simple and complex Type).

The XML Schema elements are transformed into properties of

OWL (Datatypeproperty and ObjectProperty).

Rule 4: Each element (xsd:element) that doesn't contain

another element (xsd:element), nor an attribute (xsd:attribute)

is transformed into property data type owl

(owl:DatatypeProperty).

Rule 5: Each element (xsd: element) that contains another

element (xsd:element) or an attribute (xsd:attribute) is

transformed into class relationship under owl (owl:

ObjectProperty).

Multiplicities (xsd: minOccurs) (xsd: maxOccurs)

Rule 6: The multiplicities (xsd: minOccurs) and (xsd:

maxOccurs) are transformed into their equivalent (owl:

minCardinality) and (owl: maxCardinality).

Elements (xsd: sequence), (xsd: all), (xsd: choice)

The sequences and the choices of XML Schema are

represented by the anonymous classes of OWL formed using

the operators of intersection and union.

Rule 7: Each element (xsd: sequence) or (xsd: all) is

transformed into (owl: intersectionOf). The element (xsd:

choice) is transformed into (unionOf).

The element (xsd: extension)

It exists in every OWL ontology a superclass named Thing,

which all other classes are subclasses. This brings us directly

to the concept of inheritance, available using the subClassOf

property.

Rule 8: An extension element (xsd: extension) is transformed

into subclass under owl (rdfs:subClassOf).

The element (xsd: restriction)

Rule 9: A restriction element (xsd: restriction) is transformed

into subclass under owl (owl: Restriction).

The element (xsd: enumeration)

Rule 10: An element (xsd: enumeration) is transformed into

subclass under owl (owl: oneOf).

The element (xsd:annotation)

Since XML schema annotations and OWL comments are

textual descriptions. The XML schema annotations are

transformed into OWL comments.

Rule 11: An element (xsd:annotation) is transformed to

comment under owl (rdfs: comment).

5. CONCLUSION

This paper was devoted to the construction of domain

ontology; the objective is to develop an approach for the

translation of conceptual data models in OWL ontology

format. The proposed approach is based on a strategic vision

of correspondence between the concepts of the conceptual

data model and the ontological concepts.

In this paper, we have presented the architecture of our

approach. We also justified our choice of using XML as

representation formalism intermediate formats between

conceptual data models and ontological models, as well as the

set of rules to justify our approach.

The approach we have proposed is to develop a

representation (XML Schema) as a pivot, then transform this

presentation into another data format (OWL) while adding the

syntactic and semantic enrichments to conduct the

confirmation and the best realization.

This work will be the subject of an implementation to

evaluate the proposed solution. It would be interesting to

develop a prototype permitting to automate the transformation

of conceptual data models to the ontological model.

REFERENCES

[1] J. Trinkunas and O. Vasilecas, "Building ontologies from

relational databases using reverse engineering methods", In:

CompSysTech '07: Proceedings of the 2007 international conference

on Computer systems and technologies New York, NY, USA, pages

1-6, 2007.

[2] SM. Benslimane, M. Malki, MK. Rahmouni, D. Benslimane,

"Extracting Personalised Ontology from Data-Intensive Web

Application: an HTML Forms-Based Reverse Engineering

Approach", INFORMATICA International Journal Vol 18(4), ISSN:

0868-4952, 2007.

[3] D. Gašević, D. Djurić, V. Devedžić, V. Damjanović, "Converting

UML to OWL Ontologies", In Proceedings of the 13 th International

World Wide Web Conference, NY, USA, pages 488-489, 2004.

[4] C. Faucher, F. Bertrand, JY. Lafaye, "Génération d’ontologie à

partir d’un modèle métier UML annoté", Revue des Nouvelles

Technologies de l’Information, vol 12, pages, 65-84, 2008.

[5] A. Amine, Z. Elberrichi, L Bellatreche, M Simonet, “Concept-

based Clustering of Textual Documents Using SOM.” In: proceedings

of the 6th ACS/IEEE International Conference on Computer Systems

and Applications AICCSA-08, 2008.
[6] JR. Falleri, "Contributions à l’IDM : reconstruction et alignement

de modèles de classes", Académie de Montpellier, Université

Montpellier II -Sciences et Techniques du Languedoc, 2009.

[7] R. RADA, H.,MILI, E.BICKNELL, M.BLETTNER,

"Development and application of a metric on semantic nets", IEEE

Transaction on Systems, Man, and Cybernetics, vol. 19, no 1, pages

17–30, 1989.

[8] W. Zhibiao, M. Palmer, "Verb semantics and lexical selection". In

Proceedings of the 32nd Annual Meeting of the Associations for

Computational Linguistics, pages 133-138, 1994.

[9] S. Patwardham, “Incorporating Dictionary and Corpus

Information in a Measure of Semantic Relatedness”, M.S. Thesis,

August 2003.

[10] Philip Resnik, "Using Information Content to Evaluate Semantic

Similarity in a Taxonomy", IJCAI, pages 448–453, 1995.

[11] Jay J. Jiang and David W. Conrath, "Semantic similarity based

on corpus statistics and lexical taxonomy". In Proceedings on

International Conference on Research in Computational Linguistics,

Taiwan, 1997.

[12] C. Leacock, and M. Chodorow, "Combining Local Context and

WordNet Similarity for Word Sense Identification". In WordNet: An

Electronic Lexical Database, C. Fellbaum, MIT Press, 1998.

http://www.mii.lt/informatica/htm/INFO688.htm
http://www.mii.lt/informatica/htm/INFO688.htm
http://www.mii.lt/informatica/htm/INFO688.htm
http://portal.acm.org/author_page.cfm?id=81100162173&coll=DL&dl=ACM&trk=0&cfid=1631427&cftoken=48264173

