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RESUME : Dans l'espace des phases non-commutative basé sur l’introduction des paramètres de déformations dans les 

relations de Heisenberg connues, nous allons utiliser la méthode d'intégrale de chemin pour construire de solution 

exacte de la fonction de Green associée au problème de l'oscillateur de Klein-Gordon. On va clarifier que, les 

expressions de spectre d’énergie et la fonction d’onde correspondant sont similaires au problème d’une particule de 

Klein-Gordon soumise à un champ magnétique constant dans l’espace des phases ordinaire. Les cas limites sont déduits 

pour les petits paramètres de déformations. 

 

MOTS-CLES : Intégrale de chemin, la fonction de Green, Particule de Klein-Gordon, l'espace des phases non-

commutative. 

 

ABSTRACT: In the non-commutative phase space based on introducing the parameters of deformation in the 

Heisenberg’s known relations, we shall use the path integral method for constructing exact solutions to Green’s function 

which is associated with the Klein-Gordon’s oscillator problem. Then, we shall clarify the expressions of energy 

spectrum and the wave function corresponding are similar to the problem of Klein-Gordon particle under a constant 

magnetic field in ordinary phase space. The limit cases are then deduced from small parameters of deformations.  
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I. Introduction 

In order to describe a non-commutative (NC) phase space in the plan ( ), we must change the 

usual commutations relations as follow [1]: 

 with                 (1) 

where  and  represent parameters of deformation, which describe the non-commutative 

geometry of phase space. These parameters are constant, anti-symmetric and have (length) ², 

(momentum) ² dimensions respectively. In the context of this deformation, the product of any two 

functions can be realized by substituting usual function product by the Weyl-Moyal star product [2]: 

 
,                               (2) 

with  and  are two arbitrary infinitely differentiable functions of the commutative 

variables  and . 

Our aim in this work is to illustrate how to use the formalism of Feynman in the presence of non-

commutative phase space. There have been very few applications; we recall exclusively; for 

example, the Gitman’s et al. [3], who could eradicate the difficulty of NC space-time via utilizing 

the concept of star-product which led them to work either in the ordinary coordinates bases  or in 

the momentum bases . The other proposition is Acatrine’s work [4]: his idea is based on working 

in the mixed bases  or alternative bases . In addition to the latter, the authors [5,6] 

have formulated the Feynman path integral on a NC plan by using coherent states. 
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In this letter, we use the same idea of work [3], where we attempt to calculate the Green function 

for the Klein-Gordon oscillator particle in a non-commutative phase space only in the usual 

coordinate space representation and also we can conclude the eigenvalues and their corresponding 

eigenfunctions. Eventually, we have applied the NC Klein Gordon (KG) and Dirac equation in [7] 

and the path integral for Spinless Relativistic Equation in the Two Component Theory [8]. 

In what follows, our interest is to calculate the Green function relative to the equation of Klein-

Gordon oscillator particle by following the Feynman's path-integral formalism. 

 

II. Path integral formalism in a non-commutative phase space 

In this section, let us take into account a Klein-Gordon oscillator particle of mass  and frequency 

 in (2+1) dimension, subjected in geometry of NC phase space. As known, the propagator of this 

system in a NC phase space is the causal Green's function  obeys the operator of K-G equation 

transformed by: 

.                                (3) 

The star product in K-G equation on NC phase space defined in Eq. (3) can be expressed in terms of 

commuting coordinate operators and their momentum operators in the form [2], 

,                                     (4) 

the operator term  is unchanged. So the equivalent Eq.(3) will change in a commutative phase 

space as follows: 

.                             (5) 

 

The operators  and  are commutative operators variables which satisfy ordinary Heisenberg 

commutations: It manifests, therefore, that the dynamic of a Klein-Gordon particle moves in a 

constant magnetic field. Now, we present  as a matrix element of an operator , 

.                              (6) 

 are eigenvectors of some self-adjoint operators of coordinates : The corresponding 

canonical conjugated operators of momenta   are: 

 

, .              (7) 

 

Now one can use the Schwinger proper-time representation for the inverse operator. We get: 

,                  (8) 

The Hamiltonian  consists of two terms  and : the former is the Hamiltonian operator 

of the usual quantum system and the latter depends on the NC space: 

, 

. 

(9) 

 

In order to derive a path integral representation for , we follow the standard discretization 

method for the kernel (8) as done in [9]. Then we get the Lagrangian path integral representation for 

the Green function , 
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,                         (10) 

where  is the proper-time and . The functional integration in (10) 

goes over trajectories  parameterized by some invariant parameter  and obeying 

the boundary conditions  and ; the measure  has 

the form: 

.                  (11) 

We can get rid of the functional integration over  and which give -functions for . It is clear 

that this problem will be solved easily by the polar coordinates. Then, the expression of the Green 

function (10) becomes: 

 

. 

 (12) 

After a shift on the angle , Green function (12) becomes formally 

identical with that of the radial path integral solution for the radial harmonic oscillator with time-

independent frequency [10,11]. The solution of this path integral can be written as: 

 

 

             (13) 

where: 

  .                                                  (14) 

For determining the energy-levels and wave functions, we must use the Hille-Hardy formula and 

the properties of Laguerre polynomial series [12] in (13).Then we integrate in Eq. (13) over the 

proper time ). We finally get: 

, 

                 (15) 

with: 

,      (16) 

 are generalized Laguerre polynomials. The poles of  yield the discrete 

energy spectrum: 
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 .         (17) 

To evaluate the wave functions and energy spectrum, let us integrate over the p  variable. This can 

be converted to a complex integration along the special contour C, and then by using the residue 

theorem, we get: 

,                         (18) 

where the energy eigenvalues are given by: 

.          (19) 

In (18), we have two types of propagation: one with positive energy  propagating to the 

future, and the other with negative energy  propagating to the past. From this result, we 

deduce the energy spectrum and the corresponding wave functions from (13) by writing: 

 

,                     (20) 

where  is defined in (19), and the  are given by 

=  

(21) 

When , we can get the same expressions of energy and wave functions corresponding through 

the results of our previous work [7], which studies the Klein-Gordon oscillators in NC space. 

 

III. The physical results in the presence of a uniform magnetic field 

In this section we discuss the physical results of Klein-Gordon particle in the presence of a uniform 

magnetic field and in a NC phase space.  

                                (22) 

and 

                                                               (23) 

with  is a magnetic field. Therefore, for the interaction of electromagnetic potential  

defined on a NC phase space, one gets the effective -dependent potential in usual commutative 

phase space as: 

and  .                       (24) 

After using Eq. (23), (24) and the equivalent of operator  in NC phase space defined in Eq. (4), the 

Hamiltonian will be change by 

 

.                                           (25) 

Following the same steps of the calculation in the previous section, the level energies and their 

corresponding wave functions become as follow: 

 ,          (26) 
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and  

= , 

(27) 

where : 

.                                        (28) 

In the end, it is remarkable if we take and , we obtain the exact usual form of energy 

spectrum when the system is studied in an ordinary phase space. 

 

IV. Conclusion 
In this work, we have presented the path integral formalism for the (2+1)-dimensional K-G 

oscillator particle in the presence of a non-commutative phase space. We could calculate the Green 

function, energy spectra and their corresponding eigenfunctions, which resemble the problem of 

Klein-Gordon particle under a constant magnetic field in ordinary phase space. In addition, we have 

also studied the dynamic of Klein-Gordon particle in a non-commutative phase space with the 

presence of a constant magnetic field. The exact expression of the energy spectrum and 

corresponding eigenfunctions expressed in terms of Laguerre polynomials are then deduced from 

both systems [13].The limit case is then deduced from small parameters of deformation. 

It would be interesting to treat the Dirac oscillator equation (spin 1/2) in the non-commutative phase 

space, and for the same purpose, we can also study the Dirac and Klein-Gordon oscillators through 

using the mixed-bases representation . 
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