MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

N° de série :	•
Nº d'ordre ·	

UNIVERSITE KASDI MERBAH -OUARGLA

FACULTE DES SCIENCES APPLIQUEES DEPARTEMENT DE GENIE MECANIQUE

MEMOIRE

Présenté par :

Mr.GHALEM Khaled

EN VUE DE L'OBTENTION DU DIPLOME DE

MAGISTER

Spécialité: Génie pétrolier

Option: Exploitation pétrolière

Thème

Etude et optimisation de la vitesse d'avancement d'un outil de forage.

Soutenu publiquement le: 11/05/15

Devant le jury composé de :

Pr HACINI Messaoud	Professeur	UKM, Ouargla	Président
Dr. ZEDDOURI Aziez	Maître de conférences	UKM, Ouargla	Examinateur
Dr.HAMZIOUI Louanes	Maître de conférences	UKM, Ouargla	Examinateur
Pr. SETTOU Noureddine	Professeur	UKM, Ouargla	Rapporteur

Année universitaire: 2014/2015

Dédicace

Je dédie ce travail à :

Mes parents.
Mes frères et sœurs.
Mes tentes et oncle.
La famille Ghalem.
La famille Zitouni.
Mes amis et collègues.

Khaled

Remerciement

Je tiens tout d'abord à remercier en premier lieu *ALLAH* le tout puissant, pour m'avoir donné autant de courage, de patience et de volonté pour atteindre ce but.

Mes premiers remerciements vont naturellement à mon Directeur de Mémoire, Monsieur Le Docteur SETTOU Noureddine, d'avoir accepté de suivre mes travaux de recherche, et pour ses conseils judicieux. J'ai également apprécié la grande liberté qu'il m'avait accordée dans la gestion de mon mémoire tout en étant très rigoureux sur le respect du programme et les délais de remise du travail.

Je tiens à remercier mon co-encadreur Dr.DOBBI Abdelmadjid pour sa disponibilité, sa rigueur dans le travail et le partage de ses connaissances scientifiques. Ce fût un vrai plaisir de travailler avec lui.

Merci pour m'avoir supporté tout ce temps et d'en avoir fait de cette période, une période très utile et agréable pour moi.

Je tiens à remercier vivement Le Président du Jury, Professeur HACINI Messaoud, de m'avoir fait l'honneur d'accepter de présider le jury de soutenance de ce mémoire et d'avoir examiné ce travail de recherche malgré ses lourdes charges.

Je remercie également les membres de jury, docteur ZEDDOURI Aziez et docteur HAMZIOUI Louanes d'avoir accepté de faire partie du jury d'évaluation de ce mémoire ainsi que pour le temps consacré à l'étude de celui-ci.

Je remercie sincèrement et profondément Mr Boukraa Mustapha, Mr Balouli Youssef, Mr saiebi Mehamed et tout le personnel de la division forage pour leurs aides.

Enfin, que toutes les personnes ayant contribuées de près ou de loin, à la réalisation de ce travail, soient chaleureusement remerciées.

Résumé:

L'objectif de forage pétrolier est d'atteindre la cible dans les meilleures conditions possibles, rapport qualité prix le plus élevé possible toute en respectant les aspects sécuritaires.

La présente étude est une contribution pour minimiser le prix de mètre foré, notamment par le choix judicieux des paramètres de forage mécaniques (le poids sur l'outil, la vitesse de rotation) qui permettra d'optimiser la vitesse d'avancement et l'usure de l'outil.

L'optimisation de la vitesse d'avancement est faite par la construction d'un modèle mathématique en se basant sur l'équation d'Eckel et la méthode des moindres carrées, alors que l'usure de l'outil de forage est optimisé sur la base de l'équation de Hareland, et pour évaluer le choix de l'outil de forage on a utilisé la théorie de l'énergie spécifique.

Mots clés : Forage, paramètres mécaniques, optimisation, vitesse d'avancement, poids sur l'outil, vitesse de rotation, outil de forage.

Abstract:

The oil well drilling objective is to reach the target in the best possible conditions, minimal cost and maximal quality and safety.

This study is a contribution to minimize the drilling cost per feet, in particular by the judicious choice of mechanical drilling parameters (weight on bit, speed of rotation) which will optimize the rate of penetration.

The optimization of the rate of penetration is made by the construction of an optimization model based on the model of Eckel and the least square method, while for the optimization of wear the model of Hareland was used. And the specific energy theory for the evaluation of the choice of the drilling bit.

Keywords: Drilling, mechanical parameters, optimization, speed of rotation, weight on bit, speed of rotation, drill bit

ملخص:

الهدف من حفر الأبار هو الوصول إلى مكمن النفط في أفضل الظروف الممكنة بأقل تكلفة ممكنة و في ظروف السلامة القصوى.

هده الدراسة هي مساهمة من أجل تقليل تكلفة الحفر للمتر الواحد, عن طريق حسن إختيار عوامل الحفر الميكانيكية (الثقل على رأس الحفر إسرعة الدوران) الثي تسمح بزيادة سرعة الإختراق مع حد أدنى من المشاكل و تآكل معتدل.

زيادة سرعة اختراق الصخر تمت من خلال بناء نمودج استنادا إلى معادلة إيكل و طريقة المقادير الصغرى المربعة, و تم إستعمال نمودج هرلند من أجل تقليص التآكل. و نظرية الطاقة السطحية من أجل تقييم إختيار رأس الحفر.

الكلمات الدلالية: الحفر، عوامل الحفر الميكانيكية ،التحسين، سرعة دوران، الثقل على رأس الحفر وسرعة الدوران، رأس الحفر

Liste des figures

Fig 1.1 : Nomenclature des différents éléments constituant un outil à molettes 5
Fig. 1.2 : Différents types de picots
Fig. 1.3 Terminologie d'un outil PDC
Fig. 1.4 : différents types de PDC.
Fig. 1.5: Structure d'un PDC
Fig 1.6 : outil TSP
Fig 1.7: outil imprégné 13
Fig 1.8: Outils hybrides.
Fig. 1.9: Mode de destruction de la roche par les outils diamant
Fig. 1.10 Différents tailles des PDC
Fig1.11: l'effet de l'overbalance sur la vitesse d'avancement dans les grés Berea 21
Fig 1.12: l'effet de l'overbalance sur la vitesse d'avancement dans les calcaires
d'Indiana21
Fig 1.13 . Des mesures pratiques montrent l'effet de l'overbalance sur la vitesse d'avancement dans les argiles
Fig 1.14. La réponse typique de la vitesse d'avancement à l'augmentation du poids sur l'outil
Fig 1.15 . La réponse typique de la vitesse d'avancement à l'augmentation de la vitesse de rotation.
Fig 1.16. La relation entre le niveau hydraulique de l'outil et la vitesse d'avancement 28
Fig 1.17. La vitesse d'avancement en fonction du nombre de Reynolds
Fig 3.1 . Présentation de la phase 6''.
Fig 3.2 : présentation de l'équation représentative de la vitesse d'avancement en fonction des paramètres de forage pour le mètre 4074
Fig 3.3 : présentation de l'équation représentative de la vitesse d'avancement en fonction
des paramètres de forage pour le mètre 4155

	Fig 3.4 : présentation de l'équation représentative de la vitesse d'avancement en fonction
	des paramètres de forage pour le mêtre 4170.
	Fig 3.5: les vitesses d'avancement enregistré et théorique en fonction de la profondeur 55
	Fig 3.6 : les vitesses d'avancement réalisé et optimisé en fonction de la profondeur de
	l'outil n° 1
	Fig 3.7 : comparaison entre les vitesses d'avancement réalisé et optimisé des différents
	outils61
	Fig 3.8 : comparaison entre les prix de mètre foré réalisé et optimisé
	Fig 3.9 : l'efficacité minimum et maximum calculées et celles enregistrées des sept outils
d	escendues de la phase 6''

Liste des tableaux

Tableau 1.1. Description de l'usure des outils	18
Tableau 2.1. Les coefficients de la corrélation pour les formations perméables et	
imperméable	45
Tableau 3.1 : les données des outils utilisés	47
Tableau 3.2 : présentation des profils des outils.	47
Tableau 3. 3 : présentation de l'usure des dents et des raisons de la remontée	47
Tableau 3.4 : les paramètres de forage appliqués et la vitesse d'avancement enregistré	48
Tableau 3.5 : la vitesse d'avancement calculé et l'erreur relative moyenne en	
pourcentage.(4074 m)	49
Tableau 3.6 : les paramètres de forage appliqués, la vitesse d'avancement calculé et	
l'erreur relative moyenne en pourcentage en fonction de la profondeur (4155 m)	50
Tableau 3.7 : les paramètres de forage appliqués, la vitesse d'avancement calculé et	
l'erreur relative moyenne en pourcentage en fonction de la profondeur (4170 m)	52
Tableau 3.8 : les vitesses d'avancement enregistré et théorique en fonction de la	
profondeur (4170 m)	55
Tableau 3.9 : Les erreurs pour les différents intervalles de calcul.	57
Tableau 3.10 : les vitesses d'avancement réalisé et optimisé en fonction de la profondeu	ır
de l'outil n° 1.	58
Tableau 3.11 : récapitulatif des résultats de l'optimisation	60
Tableau 3.12 : représentation de l'usure réel et celle résultante de l'application des	
paramètres optimisé.	62
Tableau 3.13 : les coefficients de la corrélation de Rampersard	63
Tableau 3.14: Efficacité mécanique en fonction de la profondeur du premier outil	
descendue.	64
Tableau 3.15 : Efficacité mécanique en fonction de la profondeur	65

Sommaire

Introduction
Chapitre 1 : généralités.
1. Introduction4
2. les types des outils de forage et leurs applications
2.1. Les outils à molettes
2.1.1. Les dents
2.1.2. Les picots de carbure
2.2. Les outils à diamant
2.2.1. Les outils à diamant naturelle
2.2.2. Les outils PDC
2.2.3. Les outils TSP (Thermally Stable Polycristalline)
2.2.4. Les outils imprégnés
2.2.5. Les outils hybrides
2.2.6. Mode de destruction de la roche par les différents types de diamants
2.2.7. Classification des outils à éléments de coupe fixes (Diamants, PDC, TSP,) . 16
2.2.8. Détermination de l'usure des outils
3. Les paramètres affectant la vitesse d'avancement
3.1. Le type de l'outil
3.2. Les caractéristiques de la formation
3.3. Les propriétés de fluide de forage
3.4. Les paramètres de forage: 24
3.5. L'usure de l'outil
3.6. L'hydraulique de l'outil
4. Conclusion
Chapitre 2: l'optimisation de la vitesse d'avancement
1. Introduction30
2. Synthèse bibliographique
3. l'optimisation de la vitesse d'avancement d'un outil PDC par l'utilisation du modèle d'Eckel

3.1. Calcul des coefficients a, b, c à l'aide de la méthode des moindres carrées	34
3.2. Le modèle d'usure d'un outil PDC	36
3.3. L'organigramme	39
3.4. L'optimisation en temps réel	40
4. l'optimisation du choix de l'outil à l'aide de la théorie de l'énergie spécifique	40
4.1. Définition de l'énergie spécifique	41
4.2. Définition de la résistance à la compression non-confinée (UCS)	42
4.2.1. Les tests de laboratoire	43
4.2.2. Détermination de l'UCS à l'aide des logs	43
4.3. Détermination de la résistance a la compression (CCS)	43
5. Conclusion	45
Chapitre 3 : application des méthodes d'optimisation et interprétation des résultats	46
1. Introduction	46
2. Optimisation des paramètres de forage	46
2.1. Présentation de la phase étudié	47
2.2. Présentation des outils utilisés pour le forage de la section	48
2.3. Exemples d'application de l'optimisation de la vitesse d'avancement	48
2.4. Comparaison entre les vitesses d'avancement calculée et réalisée	54
2.5. Calcul de l'erreur moyenne	56
2.6. Détermination des nombres de points qui permet d'avoir une erreur minimale	57
2.7. Résultats de l'optimisation de la vitesse d'avancement	57
2.8. Calcul de la vitesse d'avancement optimisée moyenne et le prix moyen de mètre	
foré des outils descendus	59
2.9. Comparaison entre l'usure réelle et l'usure optimisée	62
3. Optimisation du choix de l'outil de forage	62
4. Conclusion	67
Conclusion	68
Recommandation	69
Références	70
Annovo	72

Nomenclature

rop : la vitesse d'avancement de l'outil de forage (m/hr) F: la distance foré par l'outil (m). t: le temps (hr). V : le volume de roche enlevé (in³). D_b : le diamètre de l'outil (in). C_{fd} : le paramètre de forabilité de la formation. wob: le poids sur l'outil (KN). rpm: la vitesse de rotation (tr/min). a,b,c : des constantes d'équation. z: La somme des erreurs quadratiques commises. rop_{opt} : la vitesse d'avancement de l'outil de forage optimale (m/hr). wob_{opt} : le poids sur l'outil optimal (KN). rpm_{opt} : la vitesse de rotation optimal (tr/min). W_{ff} : La hauteur des dents finale en fraction. W_{f0} : La hauteur des dents initiale en fraction. W_{ci} : Coefficient d'usure dans le mètre i. A_{abri} : Le coefficient d'abrasivité de la roche dans le mètre i.

 CS_i : La résistance de la roche à la compression dans le mètre i (psi).

 W_{f0} : La hauteur des dents initiale en fraction.

 W_f : La hauteur des dents à la profondeur H en fraction.

H: La profondeur du forage (m).

 H_0 : La profondeur initiale de la descente de l'outil (m).

C : coefficient de proportionnalité.

 H_f : La profondeur de remonté de l'outil (m).

Es: l'énergie spécifique (psi).

 A_b : la surface du fond de puits (in²).

 $E_{S\,min}$: La résistance à la compression confinée de la roche (psi).

EFF_M: L'efficacité mécanique.

 \hat{S}_v : la charge effective verticale (psi).

 \hat{S}_h : la charge effective horizontale (psi).

 α : l'angle de rupture (rad).

 S_v : la charge totale (psi).

pp : la pression de pore (psi).

CCS : la résistance à la compression de la roche (psi).

UCS : la résistance à la compression simple (psi).

DP: La pression différentielle (psi).

FA: L'angle de frottement interne (rad).

ECD : densité équivalente de circulation (psi).

OB: la pression géostatique (psi).

```
CCS_SK : la résistance à la compression de skempton (psi).
phie : porosité effective.
a<sub>s</sub>: coefficient de formation.
b<sub>s</sub>: coefficient de formation.
tps opt : temps de forage optimisé (hr).
Tps: temps de forage dans le puits l'objet de l'étude (hr).
tps gain: temps gagné (hr).
rop opt : la vitesse d'avancement moyenne optimisé (m/hr).
rop : la vitesse d'avancement moyenne dans le puits l'objet de l'étude (m/hr).
C_o: le cout de l'outil (KDA).
C_l: le cout de location de l'appareil (KDA).
t_f: temps de forage (hr).
t_m: temps de maneouvre (hr).
t_c: temps de connexion (ajout des longueurs des tiges) (hr).
Cg: gain d'argent (KDA).
H: le tronçon foré (m).
T : torque fournie (lbf*ft).
```

Introduction.

La croissance de la demande mondiale des ressources énergétiques et la décroissance de la production pétrolière des gisements en Algérie ont poussé SONATRACH à faire des efforts supplémentaires pour augmenter la production et cela par l'augmentation des forages d'exploration et de développement.

L'expérience a montré que le temps de rotation de l'outil de forage a pris 52% du temps global de réalisation d'un puits (ex : puits foré dans la région de Berkine), alors une augmentation de l'efficacité de forage permettra de diminuer considérablement le temps de réalisation du puits et par conséquence le cout de forage. [1]

Aussi, une expérience faite par Sonatrach en association avec National Oilwell Varco dans la phase 16 "à Hassi Messaoud a montré que l'optimisation du choix de l'outil, des paramètres de forage et de la garniture de forage ont permis d'enregistrer une amélioration de 37% de la vitesse d'avancement, et une réduction de 40% du prix de mètre foré, ce qui conduit à une grande possibilité de faire des optimisations pour avoir de meilleurs résultats.[2]

Les paramètres affectant la vitesse d'avancement de l'outil de forage sont nombreux et compliqués à modéliser dans un seul modèle, pour simplifier l'optimisation on a considéré que les paramètres hydrauliques et le désigne de l'outil sont optimaux pour se concentrer sur l'optimisation des paramètres mécaniques, pour cela on utilise un modèle mathématique qui exprime la vitesse d'avancement en fonction du poids sur l'outil (WOB) et de la vitesse de rotation (RPM), On exploite les données des puits déjà forés pour définir les coefficients de l'équation ce qui nous permet de choisir les paramètres optimaux.

Afin de prédire l'usure après l'application des nouveaux paramètres on utilise le modèle de Hareland et rampersard, cela nous permet de choisir les paramètres qui donnent un meilleur avancement sans trop user l'outil et lui permettre d'achever le forage de l'intervalle dans les meilleures conditions.

Pour évaluer le choix de l'outil et des paramètres de forage on utilise généralement le cout du mètre foré, mais ce paramètre nous ne permet pas de savoir si cet outil a donné des meilleures performances possibles, la théorie de l'énergie spécifique présente le concept de

l'efficacité mécanique qui représente un indicateur adéquat pour évaluer les performances de l'outil de forage.

Notre étude est axée sur trois chapitres :

Chapitre 1:

On a fait dans ce chapitre une étude détaillé sur l'outil de forage, dans laquelle on a présenté ces types et ces éléments, la structure de coupe, le mode de fabrication, la classification des outils et l'évaluation de leurs usures, leurs dents et la mode de destruction de la roche.

Ensuite on a présenté les différents paramètres affectant la vitesse d'avancement : le type de l'outil, les caractéristique de la formation, les propriétés de fluide de forage, l'hydraulique de l'outil et la garniture de forage, dans notre étude on a supposé que ces paramètres sont optimaux pour se concentré sur l'optimisation des paramètres de forage en prenant en considération l'usure de l'outil.

Chapitre 2:

On a commencé ce chapitre par une étude bibliographique, dans laquelle on a présenté les études faite au sujet de l'optimisation de la vitesse d'avancement, et par la suite on a expliqué notre modèle d'optimisation, qui se base sur le modèle d'Eckel et la méthode des moindres carrées et les données d'un puits voisin et puis on a présenté l'organigramme du programme réalisé dans le matlab, et enfin on a déterminé l'énergie spécifique fournée par l'outil, la résistance à la compression non-confinée et la résistance à la compression confiné dans le bute de définir l'efficacité mécanique qui permet de bien évaluer le choix de l'outil.

Chapitre 3:

Dans ce chapitre, on a appliqué les différentes méthodes d'optimisation sur un puits foré à Berkine, tout d'abord on a appliqué le modéle l'optimisation de la vitesse d'avancement par l'utilisation du modèle d'Eckel et de la méthode des moindres carrées, par la suite on a testé la précision du modèle et enfin on a représenté les résultats. Et puis on a fait une application de la méthode d'optimisation du choix de l'outil de forage à l'aide de la théorie de l'énergie spécifique.

Et enfin on a sorti par un ensemble de conclusions et on a proposé quelques recommandations.

Chapitre 1 : généralités.

1. Introduction:

On peut distinguer deux types principaux d'outils de forage, les outils à molette et monobloc, dans chaque type on trouve une grande variété d'outil selon la conception l'outil, son profil, la nature des dents et leurs formes.

2. les types des outils de forage et leurs applications.

2.1. Les outils à molettes.

Le tricône (outil à 3 molettes) est le plus utilisé dans le domaine de forage pétrolier. Les éléments de coupe font partie de la molette, ils ce sont :

- Des dents usinées dans le cône.
- Des picots de carbure de tungstène emmanchés en force dans des perçages à la surface du cône.

Les outils à picots ont permis d'améliorer les performances de forage dans les formations dures, là où les outils à dents ne pouvaient forer que quelques mètres avec une vitesse d'avancement faible. Les picots de carbure et les paliers de friction ont permis d'appliquer des poids de plus en plus importants sur l'outil et d'augmenter la durée de vie des outils dans les formations dures (la durée de vie de ces outils est pratiquement trois fois plus longue que celle des outils à dents et à roulements à rouleaux).

La taille ou l'épaisseur des différents constituants de l'outil dépendent du type de formation à forer.

Les outils pour formations tendres, qui nécessitent peu de poids, ont des roulements plus petits, des cônes moins épais et des jambes de plus faible section que les outils pour formations dures. Ceci laisse plus de place pour des éléments de coupe longs et minces.

Les outils pour formations dures, qui travaillent avec des poids plus importants, ont des éléments de coupe plus trapus et plus courts, des roulements plus gros et des corps plus solides. [3]

Les fabricants ont développé plusieurs types d'outils, chacun adapté à un type particulier de formation.

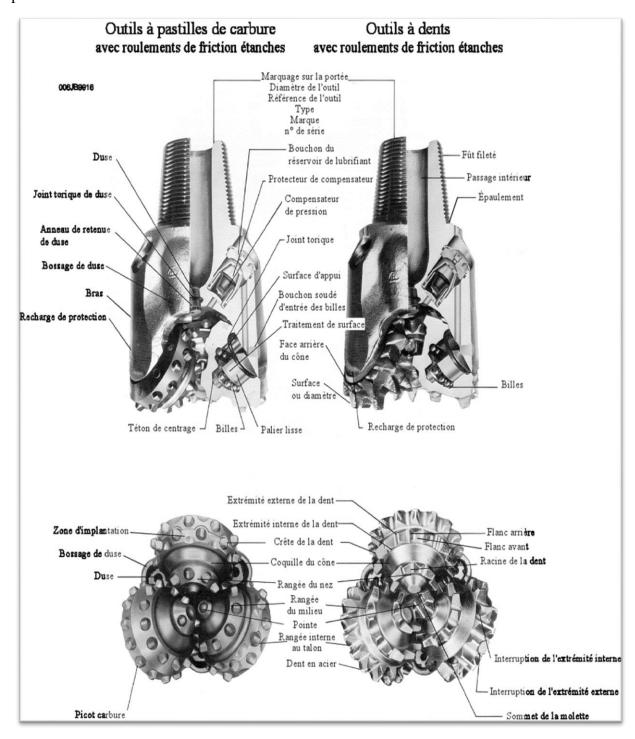


Fig 1.1: Nomenclature des différents éléments constituant un outil à molettes [3]

2.1.1. Les dents :

Les outils à dents acier sont utilisés en début de trou, dans les formations tendres, avec de grandes vitesses de rotation, ainsi que dans les zones où l'épaisseur des couches rend les outils à picots non économiques.

Les dents de la rangée de talon ont des profils de crête adaptés aux formations à forer; le but étant de limiter leur usure et ainsi de réduire la perte de diamètre de l'outil.

Les outils pour formations tendres sont conçus avec des dents longues, largement espacées, de façon à favoriser la pénétration dans le terrain et l'arrachement de fragments plus importants. Les dents des outils pour ce type de formation peuvent être conçues pour s'auto-affûter en s'usant. Cela est réalisé en rechargeant seulement un coté de la dent.

Les outils pour formations moyennes et mi-dures présentent des dents plus rapprochées. La dent a également des angles légèrement plus grands pour supporter la charge nécessaire pour vaincre la résistance de la formation.

Les formations dures ont de fortes résistances à la compression et sont habituellement très abrasives. Les outils conçus pour forer ces formations sont munis de dents solides et peu espacées ainsi que des cônes de molette épais de manière à supporter des poids importants. [3]

2.1.2. Les picots de carbure :

L'outil à picots (insert bit) de carbure de tungstène fut initialement conçu pour forer les formations très dures et abrasives composées de silice ou de quartzite qui, du fait de la durée de vie relativement courte des outils à dents, se révélaient très onéreuses à forer.

Les picots cylindriques en carbure de tungstène fritté sont sertis dans des trous usinés dans les cônes. Cet assemblage donne une structure de coupe présentant une grande résistance à l'usure par abrasion ainsi qu'aux efforts de compression.

Grâce aux progrès de la métallurgie, différentes formes de picots sont actuellement disponibles, ce qui permet d'utiliser ce type d'outil pratiquement dans tous les types de terrain.

• La forme ovoïde est la plus résistante et est dessinée pour l'action d'écrasement et d'éclatement nécessaire au forage des formations très dures.

• Les ogives présentent un peu plus de proéminence pour forer des formations un peu plus tendres.

• Le cône est également un profil solide convenant parfaitement à une action de forage du type écrasement et éclatement. Il est utilisé avec une action de raclage pour le forage des formations mi-dures.

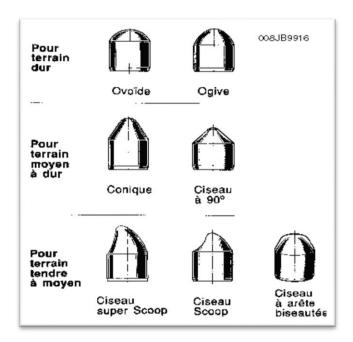


Fig. 1.2 : Différents types de picots [3]

• Le ciseau est utilisé dans les formations moyennes et tendres pour un avancement maximum grâce à une action de gouge et de raclage. Des formes spécifiques de ciseau sont choisies en fonction de la formation et des propriétés géométriques de l'outil.

Les picots utilisés sur la rangée de talon sont plus courts et plus arrondis que ceux des autres rangées car ils supportent des charges plus importantes. [3]

2.2 Les outils à diamant :

2.2.1 Les outils à diamant naturelle :

Les pierres employées pour la fabrication des outils de forage industriels de très bonne qualité. Des pierres de différentes structure et forme sont utilisées :

• Les pierres de qualité premium sont arrondies et conviennent pour de nombreuses utilisations. Leur résistance élevée à l'abrasion et aux chocs les rend particulièrement efficaces dans les argiles cassantes et dans les formations dures et fracturées.

- Les pierres de qualité supérieure sont des formes plus anguleuses que les précédentes. Grâce à une meilleure résistance à l'abrasion et à l'usure, elles sont recommandées pour les formations dures et abrasives. Cependant, il faut éviter de les utiliser dans les formations fracturées et cassées car leur résistance aux chocs est plus faible que celle des premiums.
- Les diamants de qualité standard sont de forme arrondie. De moins bonne qualité que les premiums, ils donnent de bons résultats dans les formations peu abrasives.
- Les diamants de forme cubique sont moins résistants aux chocs et à l'abrasion que les précédents. Ils sont très performants dans les formations tendres, mais sont déconseillés dans les formations dures ou fracturées.
- Les carbonados sont des formes irrégulières et anguleuses. Ils n'ont pas de structure cristalline bien définie et en particulier ne possèdent pas de plan de clivage (structure polycristalline contrairement aux autres formes). Cette structure particulière leur confère une plus grande résistance aux chocs. De ce fait, ils sont souvent associés avec les autres formes de diamant et placés aux endroits les plus exposés de l'outil. Ils permettent d'améliorer les performances dans les formations fracturées. [3]

La taille des pierres utilisées pour les outils de forage varie entre 1 à 15 pierres par carat.

2.2.2 Les outils PDC:

En 1971, General Electric a réussi à faire la synthèse du diamant en laboratoire à partir d'un mélange de graphite, de nickel et de cobalt soumis à des conditions de pression et de température très élevées (100 000 bar et 1 500 °C). La fine couche de diamant, grâce à la présence de cobalt, peut être fixée sur un support en carbure de tungstène. Le produit obtenu est appelé stratapax ou compact.

Les diamants obtenus par synthèse sont polycristallins (d'où le nom de PDC : Polycristalline Diamond Compact) : la couche de diamant ainsi formée est constituée de petits

cristaux qui se sont développés dans des directions aléatoires (structure comparable à celle du carbonado). Le cobalt, utilisé pour catalyser la synthèse, sert également de liant entre les cristaux. Cette structure poly cristalline confère au diamant synthétique une résistance à la compression et à l'usure plus élevée que celle du diamant naturel.

La couche de diamant s'use par micro-écaillage, ce qui entraîne un auto-affûtage du PDC qui maintient l'efficacité de l'arête de coupe. Les performances du taillant seront donc peu ou pas diminuées au cours de la vie de l'outil.

Cependant, les coefficients de dilatation thermique du liant et du diamant sont très différents (coefficient du liant beaucoup plus élevé). A partir de 400 °C, la dilatation différentielle des différents constituants produit la rupture des liaisons entre cristaux et le PDC perd progressivement sa résistance, la structure n'est plus stable aux environs de 750 °C. Il est donc essentiel de maintenir le PDC à une température la plus faible possible.

Les premiers compacts à être synthétisés avaient un diamètre de 8 mm, actuellement on sait fabriquer des compacts de 2 pouces. Les diamètres les plus couramment utilisés sont 0.5", 0.75" et 1 pouce. Les compacts peuvent être brasés sur le corps de l'outil ou peuvent être fixés sur des supports cylindriques de carbure de tungstène (figure 1.5) emmanchés en force à chaud dans le corps de l'outil. [3]

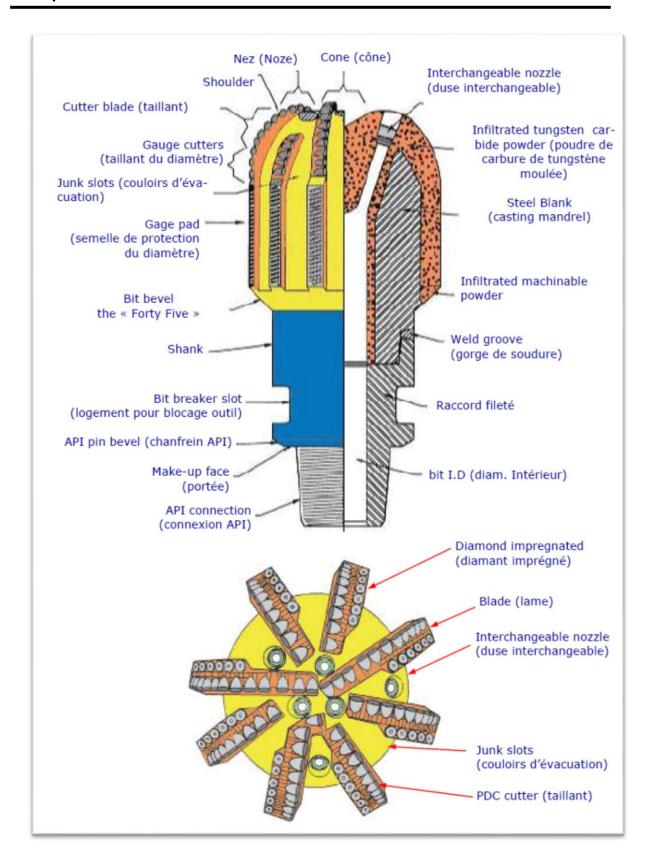


Fig 1.3. Terminologie d'un outil PDC (corps en matrice). [3]

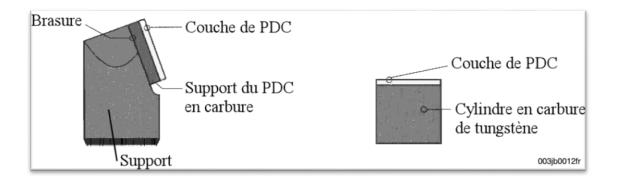


Fig. 1.4 : différents types de PDC.

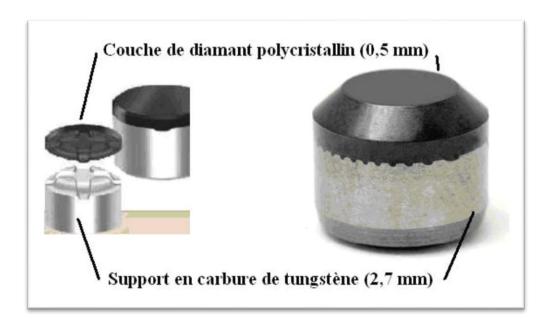


Fig. 1.5: Structure d'un PDC [3]

2.2.3 Les outils TSP (Thermally Stable Polycristalline):

Pour pallier à l'instabilité thermique des PDC, General Electric a mis au point un diamant synthétique où le catalyseur est éliminé par acidification. Le produit obtenu est stable jusqu'à des températures de l'ordre de 1 200 °C. Cependant l'élimination du cobalt fait qu'il n'est pas possible de fixer le diamant obtenu sur un support quelconque. Le TSP devra être maintenu en place mécaniquement comme le diamant naturel.

Il existe un autre procédé de fabrication où le cobalt et le nickel sont remplacés par du silicium. Le produit obtenu est encore plus stable du point de vue thermique, mais comme dans le cas précédent, il ne peut pas être fixé sur un support.

Les TSP sont disponibles sous plusieurs formes :

Triangulaire dont la taille est de l'ordre de 3 pierres par carat. Il est utilisé pour forer des formations moyennement dures.

Disque dont la taille est de l'ordre d'une pierre par carat. Il est utilisé pour forer le même type de formation mais est plus performant dans les situations où une plus grande résistance à l'usure et au choc est demandée. Cette forme permet d'avoir une vitesse d'avancement et une durée de vie plus élevées dans des formations dures et abrasives ou fracturées.

Les TSP peuvent être regroupés pour former des structures en mosaïque de la dimension des PDC. Cette structure a permis d'augmenter la vitesse d'avancement et d'allonger la durée de vie de l'outil dans des formations tendres, abrasives et dans les intercalations d'argiles et de roche plus dures, là où les PDC n'étaient pas rentables.

Fig 1.6: outil TSP. [3]

Le TSP présente de nombreux avantages sur les autres types de diamant :

- Il résiste mieux à la température que le PDC.
- Grâce à sa structure polycristalline, il résiste mieux au choc que le diamant naturel (à l'exception du carbonado qui est également polycristallin).
- Son usure irrégulière produit des faces tranchantes alors que le diamant naturel s'émousse. De ce fait, les performances des TSP diminuent peu ou pas au cours de la vie de l'outil.

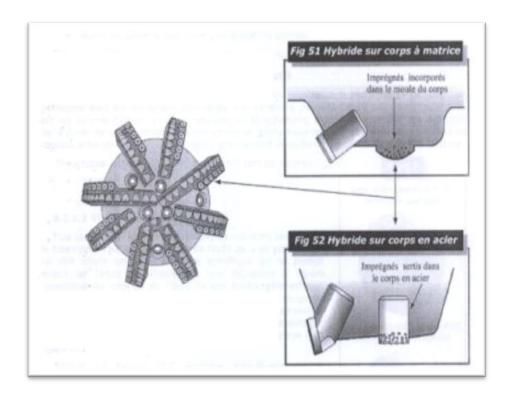
En définitive, le TSP a l'efficacité du PDC et la résistance à la température du diamant naturel. [3]

2.2.4 Les outils imprégnés :

Le corps est composé d'une matrice en carbure de tungstène imprégné de diamants synthétiques à l'intérieur. La structure abrasive est résistante aux hautes pressions et températures, et par conséquent ces outils sont utilisés dans les formations très dures à faible forabilité et haute abrasivité, Au fur et à mesure de l'usure de la matrice, les diamants exposés se déchaussent et de nouveaux taillants apparaissent.

En raison de la petite taille des diamants synthétiques imprégnés, la vitesse d'avancement obtenu par cet outil est très faible. [7]

Fig 1.7: outil imprégné. [7]


2.2.5 Les outils hybrides :

Le terme « hybride » vient du mariage de la technologie des taillants PDC et diamant naturel montés sur un même outil. Un élément secondaire de carbure de tungstène imprégné de diamant est placé derrière la dent en PDC. Ces seconds éléments sont généralement appelés « imprégnés ». Chaque imprégné va de pair avec un PDC spécifique situé à un endroit critique, potentiellement exposé à l'usure.

On trouve des outils hybrides aussi bien sur les corps en acier que sur les matrices.

Dans les deux cas, les imprégnés contiennent de nombreux petits diamants naturels sur la face exposée au contact de la formation durant les sévères conditions de forage.

Les outils hybrides à matrice ont l'imprégné incorporé dans le moule pendant le processus de fabrication du corps (figure 1.8).

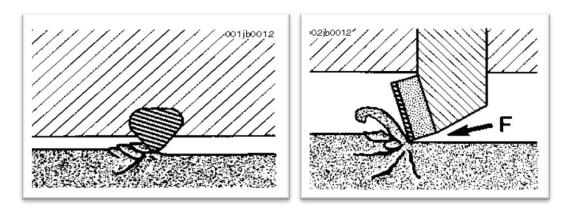
Fig 1.8: Outils hybrides.[4]

Les outils hybrides avec corps en acier utilisent des composants séparés qui sont fabriqués à partir du carbure de tungstène. La plupart des fabricants développent pour un même outil, les deux versions hybride et non-hybride. [4]

2.2.6 Mode de destruction de la roche par les différents types de diamants :

2.2.6.1 Les diamants naturels :

Il agit par abrasion en creusant un sillon autant par fracturation que cisaillement, il laboure la roche (voir figure 1.9). L'effort d'écrasement a autant d'importance que l'effort tangent. Il sera nécessaire d'appliquer un poids et une vitesse de rotation relativement élevés pour forer.


Le handicap du diamant naturel est la faible dimension des pierres utilisées. La profondeur de l'entaille produite dans la roche est très faible (de l'ordre de 0.1 mm). Cela limite l'utilisation du diamant naturel aux terrains les plus durs et abrasifs. Les vitesses d'avancement obtenues seront donc relativement faibles (de 2 à 5 m/h).

2.2.6.2 Les PDC:

Ils travaillent à la façon de l'outil d'une machine outil en cisaillant la roche. La mise en action de l'élément de coupe nécessite en premier un effort d'écrasement entraînant la pénétration dans la formation.

Les taillants soulèvent les copeaux de roche formés (voir figure 1.9) ce qui contribue à un meilleur nettoyage du front de taille, donc évite le bourrage de l'outil et permet d'obtenir une vitesse d'avancement maximale (dans les formations plastiques, l'avancement est plus limité par le nettoyage du front de taille que par la destruction de la roche).

Dans les formations tendres, c'est le mécanisme qui demande le moins d'énergie pour détruire la roche mais qui produit le plus de couple. Des vitesses d'avancement élevées sont obtenues avec des poids sur l'outil beaucoup plus faibles qu'avec les autres types d'outils. [3]

Action d'un outil à diamant naturel

Action d'un PDC

Fig. 1.9: Mode de destruction de la roche par les outils diamant. [3]

2.2.6.3 Les TSP:

L'action du TSP dépend de l'orientation et de la hauteur d'exposition du taillant. Il combine le mécanisme de destruction des PDC et des diamants naturels. Lorsque l'outil est conçu pour forer des formations tendres, le TSP cisaille la roche. Dans les formations dures, il laboure la roche de la même manière que le diamant naturel.

Quel que soit le type de diamant utilisé, la friction entre les taillants et la formation produit beaucoup de chaleur; le débit de circulation doit être important pour refroidir correctement l'outil et éviter de détruire les diamants. [3]

2.2.7 Classification des outils à éléments de coupe fixes (Diamants, PDC, TSP,...) :

Ici encore, un système à 4 caractères a été mis en place pour comparer les outils à éléments de coupe fixes des différents fabricants. Mais, ce système est différent du code IADC pour les outils à molettes. Dans le sens où la dureté et l'abrasivité des formations ne sont pas prises directement en compte dans le code. Seules les spécificités en termes de corps, taille des éléments de coupe, leur nombre et le profil de l'outil sont pris en considération.

Il y a deux codes différents, un pour les outils PDC, l'autre pour les diamants naturels, les TSP et les outils fabriqués par imprégnation.

2.2.7.1 Les outils PDC:

- Premier caractère : nature du corps de l'outil : M: matrice ou S: acier
- Deuxième caractère : densité des éléments de coupe en :
- 1. Très faible (< 30 PDC) pour formations très tendres.
- 2. Faible (30 à 40 PDC) pour formations tendres à moyennement tendres.
- 3. Moyenne (40 à 50 PDC) pour formations moyennement dures
- 4. Grande (plus de 50 PDC) pour formations dures.
- Troisième caractère : taille des PDC :
- 1. Diamètre supérieur à 24 mm ($> \sim 1$ ").
- 2. Diamètre compris entre 24 mm et 14 mm.
- 3. Diamètre compris entre 8 mm et 14mm.
- 4. Pour PDC 8 mm.

Fig 1.10. Différents tailles des PDC

- Quatrième caractère : profil de l'outil :
 - 1. Plat
 - 2. Faiblement conique ou faiblement parabolique.
 - 3. Moyennement conique ou moyennement parabolique.
 - 4. Fortement conique ou fortement parabolique.

2.2.7.2 Diamants naturels, TSP et outils à diamants imprégnés :

- <u>Premier caractère</u> : nature du corps de l'outil : (M: matrice ou S: acier)
- <u>Deuxième caractère</u> : taille des pierres :
 - 1. Pierres supérieures à 3 pierres par carats, pour formations moyennement dures.
 - 2. Pierres supérieures à 7 pierres par carats, pour formations dures
 - 3. Pierres inférieures à 7 pierres par carats, pour formations très dures
- Troisième caractère : type d'élément de coupe :
 - 1. Diamant naturel.
 - 2. TSP.
 - 3. Combinaison de diamants naturels et de TSP.
 - 4. Segments ou matrice imprégnés de diamants.
- Quatrième caractère : profil de l'outil :
 - 5. Plat
 - 6. Faiblement conique ou faiblement parabolique.
 - 7. Moyennement conique ou moyennement parabolique.
 - 8. Fortement conique ou fortement parabolique. [3]

2.2.8 Détermination de l'usure des outils :

La détermination de l'usure des outils est une opération difficile, elle peut varier d'une personne à l'autre. Cependant, une détermination précise et objective est très importante car elle servira à :

- sélectionner l'outil le mieux adapté au type de formation à forer,
- optimiser les conditions de forage (paramètres de forage, garniture, reprise du fond, temps de rotation, etc.),
 - obtenir le prix de revient du mètre foré le plus faible,
 - améliorer la conception des outils.

La détermination de l'usure se fait en considérant :

- les structures de coupe,
- les roulements,
- le diamètre de l'outil.

Elle sera grandement facilitée en comparant l'outil à évaluer avec un outil neuf.

L'ancienne façon de rendre compte de l'usure de l'outil ne considérait que l'usure globale des éléments de coupe, l'état des roulements et le diamètre de l'outil. La façon actuellement utilisée introduite en 1987 est plus complète. Elle s'applique aussi bien aux outils à molettes (dents et picots) qu'aux outils diamants (naturels, PDC, TSP).

8 colonnes d'information (voir tableau 5.3 et Formulaire du Foreur) sont utilisées pour rapporter l'usure de l'outil. Les 4 premières colonnes concernent les structures de coupe.

Structure de coupe			В	G	Remarques		
Rangées	Rangées	Caractéris	Localisati	Roulemen	Calibrage	Autres	Raison de
intérieure	extérieure	tiques de	on	ts	en 1/16"	caractérist	la
S	s	l'usure		/étanchéit		iques	remontée
				és			

Tableau 1.1. Description de l'usure des outils.

3. Les paramètres affectant la vitesse d'avancement :

La vitesse d'avancement réalisée par l'outil a un impact très important sur le coût de mètre foré, les paramètres les plus importants qui influent sur le taux de pénétration sont le type d'outil, les caractéristiques de la formation, les propriétés du fluide de forage, les conditions opératoires de l'outil, l'usure et l'hydraulique de l'outil.

3.1. Le type de l'outil :

L'outil sélectionné a un grand effet sur la vitesse de pénétration. Concernant les outils à molette la vitesse d'avancement initial est souvent haute dans certaines formations quand on utilise des outils avec longue dents et une grand offset. Alors que, ces outils sont pratiques que dans les formations tendres à cause de l'usure rapide des dents alors la vitesse d'avancement décline rapidement dans les formations dures.

Les outils à élément fixe sont désignés pour obtenir une vitesse d'avancement donné. Les outils à diamant et PDC sont désignés pour une pénétration donnée par tour par la sélection des dimensions et de nombre de diamants et des pièces PDC. La largeur et le nombre des taillants peut être utilisé pour compter le nombre effectif des lames.[6]

3.2. Les caractéristiques de la formation :

La limite élastique et la résistance à la rupture sont les propriétés les plus importantes qui affectent la vitesse d'avancement. La résistance au cisaillement est utilisée parfois pour caractériser la résistance de la formation. Maurer a reporté que le volume produit au-dessous d'un taillant est inversement proportionnel à la résistance à la compression et au cisaillement.

La force seuil ou le poids sur l'outil (W/d), requise pour initier le forage a été obtenue par le traçage de la vitesse d'avancement en fonction du poids sur l'outil et puis l'extrapoler à la vitesse d'avancement zéro.

La composition minérale de la roche a un effet sur la vitesse d'avancement. Les roches contenant des minéraux dures, abrasives peut causer une usure rapide des dents de l'outil. Les roches contenant des argiles collants peut causer le bourrage de l'outil ce qui affecte son avancement.[6]

3.3. Les propriétés de fluide de forage:

Les propriétés de fluide de forage qui affecte la vitesse de pénétration sont la densité, les propriétés rhéologiques de fluide, la filtration, les solides contenus et leurs dimensions et la composition chimique.

La vitesse d'avancement tend à diminuer avec l'augmentation de la densité, la viscosité et les solides contenus, et tend à augmentation avec l'augmentation de la filtration.

La densité, le pourcentage des solides, et les caractéristiques de filtration de la boue contrôle la pression différentielle dans la zone des roches broyées au dessous de l'outil.

La viscosité de fluide contrôle les pertes de charge dans la garniture et alors l'énergie hydraulique disponible au duse pour le nettoyage. il y a également une évidence expérimentale qu'une viscosité élevée réduit le taux de pénétration même lorsque l'outil est parfaitement propre.

La composition chimique du fluide a un effet sur le taux d'hydratation et sur la tendance de bourrage de l'outil dans quelque type d'argile.

L'effet de la densité de fluide et de la pression au fond sur la vitesse d'avancement ont été étudiés par plusieurs auteurs, l'expérience de Maurer qui a été réalisée par l'utilisation d'un outil dans des conditions de trou simulés a fourni un aperçu sur le mécanisme par lequel une augmentation de la densité de fluide de forage cause une diminution de la vitesse d'avancement d'un outil à molette, Une augmentation de la densité du fluide de forage entraine une augmentation de la pression de fond et alors une augmentation de la pression différentielle entre la pression de fond et la pression de fluide de formation. Cette pression différentielle est appelée l'overbalance.

Cunningham et Eenink ont travaillé avec un outil à molette de 1.25 pouces de diamètre dans une machine de forage de laboratoire, ils ont étudié l'effet de l'overbalance sur la vitesse de pénétration pour une variété de roche de perméabilités différentes.

Les résultats obtenues dans les grés de Berea ayant une perméabilité allant de 150 à 450 md sont montrés dans la fig 1.11 pour une grande gamme de pression de fluide de formation.

Une bonne corrélation entre la vitesse d'avancement et la pression différentielle est obtenue.

Les résultat obtenue dans les carbonates d'Indiana ayant une perméabilité allant de 8 à 10 md sont montrés dans la fig 1.12 et ils sont similaires à ceux obtenues dans les grés de Berea, qui ont une plus grande perméabilité. Apparemment, l'endommagement de la formation au dessous de l'outil entrainé par la déposition d'un filter cake empêche la filtration d'un volume de boue suffisant à l'égalisation de la pression différentielle.

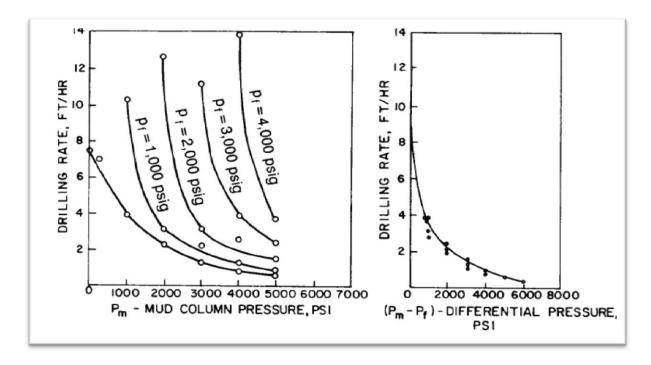


Fig 1.11. l'effet de l'overbalance sur la vitesse d'avancement dans les grés Berea [6]

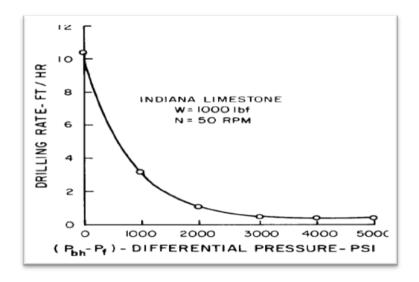
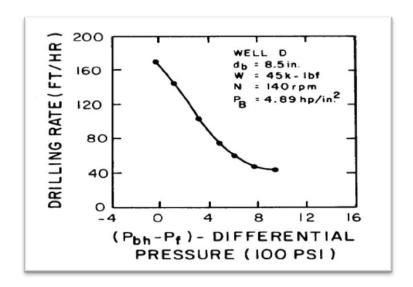
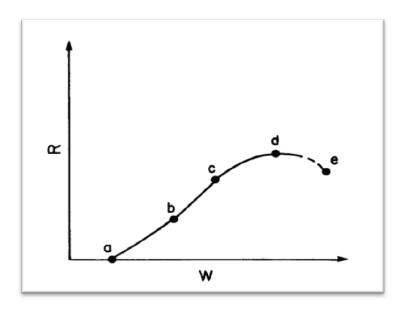



Fig 1.12. l'effet de l'overbalance sur la vitesse d'avancement dans les calcaires d'Indiana. [6]

Des données de champs concernant l'effet de l'overbalance sur la vitesse de pénétration sont disponibles. L'effet de l'overbalance sur la vitesse d'avancement dans l'argile dans 7 puits forés dans le nord de Louisiana a été étudié par Vidrine et Benit. Les résultats obtenus dans le puits D dans une profondeur de 4000 m avec un outil tricône de 8.5 in de diamètre sont montrés dans la figure 1.13. On remarque que la forme de la courbe est similaire aux résultats obtenus au laboratoire par Cunningham et Eenink. Ce type de comportement est accepté par le personnel de forage habitué au changement de vitesse d'avancement du au changement de la densité de boue. [6]

Fig 1 .13. Des mesures pratiques montrent l'effet de l'overbalance sur la vitesse d'avancement dans les argiles [6].


3.4. Les paramètres de forage:

L'effet du poids sur l'outil et de la vitesse de rotation ont été étudié par plusieurs auteurs dans le laboratoire et sur le champ. Typiquement, un graphe de la vitesse d'avancement en fonction du poids sur l'outil obtenu expérimentalement avec tous les autres paramètres maintenu constant a la forme caractéristique du graphe montré dans la figure 1.14. Aucune vitesse d'avancement significative est obtenue jusqu'à ce qu'on applique le poids sur l'outil seuil (point a). La vitesse d'avancement augmente rapidement avec l'augmentation du poids sur l'outil pour les poids modérés (segment ab).

Une courbe linaire est souvent observée pour les poids sur l'outil moyens (segment bc), alors que pour les valeurs plus grandes cette augmentation ne provoque qu'une légère augmentation de la vitesse d'avancement (segment cd).

Dans certain cas, une diminution dans la vitesse d'avancement est observée pour les valeurs du poids sur l'outil extrêmement grand.

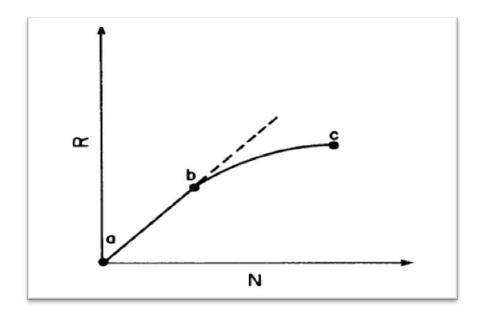

La réponse faible de la vitesse d'avancement pour les grandes valeurs du poids est usuellement attribuée au manque de nettoyage du fond de puits lors de la génération de grande quantité de déblais ou à la pénétration complète des éléments de coupe dans le fond du puits.

Fig 1.14. La réponse typique de la vitesse d'avancement à l'augmentation du poids sur l'outil. [6]

Un graphe typique de la vitesse d'avancement en fonction de la vitesse de rotation obtenue avec tous les autres paramètres maintenus constants est montré dans la figure 1.15.

La vitesse d'avancement augmente linéairement avec la vitesse de rotation pour les petites valeurs de la vitesse d'avancement. Pour des valeurs plus grandes de la vitesse de rotation la vitesse d'avancement diminue. (La réponse faible de la vitesse d'avancement pour les grandes valeurs de la vitesse de rotation est usuellement attribuée au manque de nettoyage du fond de puits).

Fig 1.15. La réponse typique de la vitesse d'avancement à l'augmentation de la vitesse de rotation.

Maurer a développé une équation théorique pour les outils à molette reliant la vitesse d'avancement au poids sur l'outil, la vitesse de rotation, le diamètre de l'outil, et la résistance de la roche.

$$R = \frac{K}{S^2} * \left[\frac{W}{d_b} - \frac{W_0}{d_b} \right]^2 * N \dots (1.1)$$

Dont:

K : constante de proportionnalité.

S : la résistance à la compression de la roche.

W: le poids sur l'outil.

 W_0 : le poids sur l'outil seuil.

d_b: diamètre de l'outil

N : la vitesse de rotation.

Cette relation théorique assume un nettoyage parfait du fond de puits et une pénétration incomplète des dents de l'outil.

L'équation théorique de Maurer peut être vérifiée en utilisant les données expérimentales obtenues pour des valeurs de poids sur l'outil et des vitesses de rotation relativement faibles correspondant au segment ab dans la figure 1.15.

Bingham suggère l'équation suivante sur la base des données de laboratoire et du champ :

$$R = K \left(\frac{W}{d_h}\right)^{a_5} \dots (1.2)$$

K : Constant de proportionnalité.

a₅: l'exposant du poids sur l'outil.

Dans cette équation le poids sur l'outil seuil a été assumé négligeable et l'exposant du poids sur l'outil doit être déterminé expérimentalement pour les conditions de forage actuelles. Alors qu'un exposant constant de la vitesse de rotation égale a un a été utilisé dans l'équation de Bingham même si certains résultats ont montré un comportement similaire à celui décrit dans la figure 1.15.

Plus récemment, plusieurs auteurs ont proposé la détermination des exposants du poids sur l'outil et de la vitesse de rotation. Young a inventé un système de contrôle de forage informatisé dans lequel le poids sur l'outil et la vitesse d'avancement varie systématiquement lorsqu'une nouvelle formation est traversée et l'exposant du poids sur l'outil et de la vitesse d'avancement est automatiquement calculé à partir de la réponse de la vitesse d'avancement observé. La valeur de l'exposant du poids sur l'outil obtenue à partir des données du champ est de 0.6 à 2, alors que celle de la vitesse de rotation est de 0.4 à 0.9.

Le changement fréquent de la lithologie avec la profondeur peut rendre l'évaluation des exposants du poids sur l'outil et de la vitesse de rotation à partir des séries de mesures de vitesse d'avancement pour des différents paramètres difficiles. Dans plusieurs cas, la lithologie peut être changée avant la fin des tests.

Le teste drilloff consiste en l'application d'un grand poids sur l'outil et puis verrouiller le frein et enregistrer le temps de chute du poids sur l'outil avec le maintien de la vitesse de rotation constante. La loi de Hook de l'élasticité peut être appliquée pour calculer la longueur de l'allongement de la garniture avec la chute du poids sur l'outil et l'augmentation de poids

au crochet. De cette manière, on peut déterminer la réponse de la vitesse d'avancement au changement des paramètres dans un intervalle de profondeur très court.

La loi de Hook énonce que la déformation relative est directement proportionnelle à la contrainte de traction :

$$\Delta \sigma = E \Delta \varepsilon$$
....(1.3)

 σ : La contrainte de traction (Pa).

 ε : La déformation relative.

E: Module de yong (Pa).

Dans le cas de la tension axiale appliqué à la garniture, la variation de la contrainte est égale à la variation du poids sur l'outil divisé par la section des tiges. La variation de la déformation relative est égale à la variation de la longueur des tiges par unité de longueur, alors la loi de Hook s'exprime par :

$$\frac{\Delta W}{A_s} = E * \frac{\Delta L}{L}....(1.4)$$

W: poids sur l'outil.

 A_s : La section des tiges.

L : la longueur des tiges.

La résolution de cette expression donne :

$$\Delta L = \frac{L*\Delta W}{E*A_S}....(1.5)$$

La moyenne de la vitesse d'avancement observée peut être obtenue par la division de cette équation par l'intervalle de temps Δt nécessaire pour une chute de poids de ΔW . [6]

$$R = \frac{\Delta L}{\Delta T} = \frac{L * \Delta W}{E * A_S * \Delta t}....(1.6)$$

R: La vitesse d'avancement.

3.5. L'usure de l'outil :

Les outils ont tendance à forer lentement avec l'avancement du forage à cause de l'usure des dents. La longueur des dents d'un outil de forage diminue continuellement par abrasion.

Plusieurs auteurs ont publié des modèles mathématiques pour calculer l'effet de l'usure des outils sur la vitesse d'avancement pour les outils à molette. Galle et Woods on publié en 1963 le modèle suivant :

$$R = \left(\frac{1}{0.928125 * h^2 + 6h + 1}\right)^{a_7} \dots (1.7)$$

Dont h est la fraction de la hauteur des dents usées, et a₇ est un exposant.

Dans un travail plus récent Bourgoyne et Young ont suggéré une expression similaire mais plus simple :

$$R = e^{-a_7 * h}$$
....(1.8)

Bourgoyne et Young ont suggéré que l'exposant a₇ est déterminé sur la base des observations faites sur le déclin de la vitesse de pénétration avec l'usure des dents dans les descentes précédentes de l'outil dans des conditions similaires.

3.6. L'hydraulique de l'outil :

L'introduction des outils dusés en 1953 a permis une amélioration significative de la vitesse d'avancement. L'action de jet a permis un meilleur nettoyage de l'outil et du fond de trou.

Il y a des incertitudes sur le meilleur paramètre à utiliser pour caractériser l'effet de l'hydraulique sur la vitesse d'avancement. La puissance hydraulique, la force de jet, et la vitesse de jet sont utilisées communément.

Le niveau de l'hydraulique de l'outil maximale affecte la vitesse d'avancement atteinte par l'outil pour un poids sur l'outil et une vitesse d'avancement optimale. La fig 1.16 est un exemple hypothétique de type de comportement de l'outil. Pour les faibles valeurs du poids sur l'outil et de la vitesse d'avancement, le niveau hydraulique nécessaire pour le nettoyage du fond de trou est petit. Plus on applique du poids sur l'outil la génération des déblais est plus grande, la vitesse de pénétration maximale est atteinte une fois le débit ne peut déplacer

les déblais générés. Si on augmente le niveau hydraulique on obtient la vitesse d'avancement maximale pour l'outil sans que le débit limite les performances de l'outil.

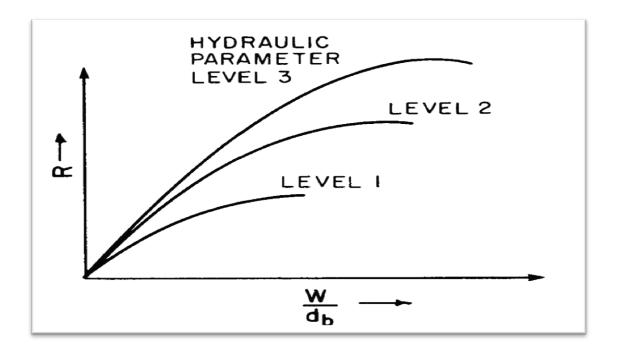


Fig 1.16. La relation entre l'hydraulique de l'outil et la vitesse d'avancement.

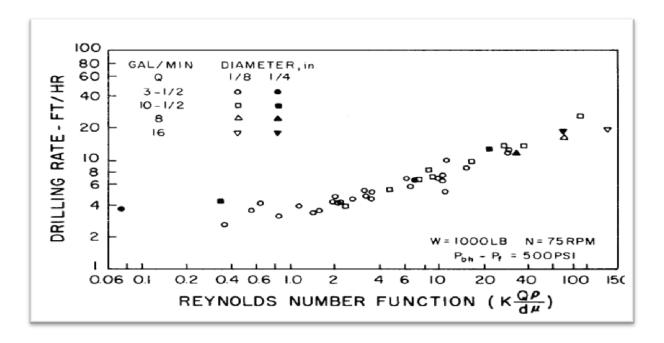
Eckel, travaillant sur des micro-outils dans une machine de forage au laboratoire, a fait les études les plus approfondies de la relation entre la vitesse d'avancement et le niveau hydraulique. Posant un poids sur l'outil et une vitesse de rotation constants, Eckel a remarqué que la vitesse d'avancement peut être corrélé au nombre de Reynolds donné par la relation suivante :

$$N_{Re} = K \frac{\rho * v * d}{\mu_a}....(1.9)$$

Dont:

N_{Re}: nombre de Renolds.

K : constante de mise à l'échelle.


ρ : la densité de boue.

v : débit de forage.

d : diamètre des duses.

 μ_a : la viscosité apparente du fluide dans les conditions de l'expérience d'Eckel.

Les résultats des expériences d'Eckel sont résumés dans les figures 1.17.

Fig 1 .17. La vitesse d'avancement en fonction du nombre de Reynolds.

4. Conclusion:

Voyant la variété des outils existante et les différents paramètres affectant la vitesse d'avancement on constate la difficulté de choisir l'outil le plus adapté au tronçon à foré, en tenant compte de l'hétérogénéité de ces formations.

Il existe une multitude de paramètres influant la vitesse d'avancement, alors on doit optimiser tous les autres paramètres avant d'arriver à l'optimisation des paramètres de forage mécaniques.

Chapitre 2: l'optimisation de la vitesse d'avancement.

1. Introduction

La recherche scientifique est un ensemble d'actions entreprises en vue de produire et de développer les connaissances scientifiques, pour cela on a fait une vue générale sur les études faites dans le domaine, pour donner par la suite une explication détaillé sur les modèles d'optimisation de la vitesse d'avancement, et de l'usure de l'outil et du choix de l'outil de forage utilisé dans notre étude.

2. Vue bibliographique:

Bourgoyne et Yong ont fait l'un des études d'optimisation de la vitesse d'avancement les plus importantes. Ils ont construit un model linéaire de la vitesse d'avancement et ils ont performé une analyse régressive des données de forage afin de calculer le poids sur l'outil, la vitesse de rotation, et l'hydraulique de l'outil optimale. Dans leur analyse ils ont inclus l'effet de la résistance de la formation, sa profondeur, sa compaction, la pression différentielle au fond, le diamètre de l'outil, le poids sur l'outil, la vitesse de rotation, l'usure de l'outil et son hydraulique. Ils ont trouvé que cette procédure d'analyse régressive peut être utilisée systématiquement pour évaluer plusieurs constantes dans l'équation de la vitesse d'avancement. Ils ont mentionné qu'on doit avoir les données de plusieurs puits pour l'évaluation des constantes par régression. Ils ont utilisé les données de 25 puits pour calculer les constantes a₁, a₂,....., a₈. Ils ont conclus que l'utilisation d'une équation d'optimisation relativement simple peut réduire les coûts de forage de 10%.

Et voila l'équation de Bourgoyne et Yong :

$$ROP = \exp\left(a_1 + \sum_{j=2}^{8} a_j * x_j\right) \dots \dots (2.1)$$

Dont ROP est la vitesse d'avancement de l'outil.

Speer a été le premier qui a proposé une méthode compréhensive en 1958 pour la détermination de la technique de forage optimale. Dans son étude des corrélations empirique

entre la vitesse d'avancement, le poids sur l'outil, la vitesse de rotation et l'énergie hydraulique et la forabilité de la formation ont été démontré.

Graham et Muench sont l'un des premiers chercheurs qui ont conduit une évaluation des données de forage pour déterminé la combinaison du poids sur l'outil et de la vitesse d'avancement optimale.il ont utilisé une méthode d'analyse mathématique du coût de forage. Des expressions mathématique empirique ont été établit pour la durée de vie de l'outil et la vitesse d'avancement en fonction de la profondeur, de la vitesse de rotation et du poids sur l'outil. Les relations mathématiques proposées contiennent des constantes représentatives de formations forées. Leur étude a abouti à la capacité de proposer un poids sur l'outil et une vitesse de rotation optimale à l'aide du calcule dans tous les conditions de forage afin de minimiser les coûts totale du forage.

Maurer a élaboré l'équation de la vitesse d'avancement pour les outils à molettes en considérant le mécanisme de destruction de la roche. L'équation a été fondée sur la condition «nettoyage parfait» où tous les débris de roche sont considéré être enlevés des dents et transporter vers la surface. Une relation entre la vitesse d'avancement, le poids sur l'outil et la vitesse de rotation de la garniture a été obtenue. Cette relation a été fonction de la profondeur du forage aussi. Et voila l'équation de la vitesse d'avancement :

$$\frac{dF}{dt} = \frac{4}{\pi * D_h^2} * \frac{dV}{dt} \dots \dots (2.2)$$

Dont F est la distance foré par l'outil, t est le temps, V et le volume de roche enlevé, et D_b est le diametre de l'outil.

Galle et Woods ont rapporté des graphes et des procédures pour l'application sur champs pour déterminer la meilleure combinaison du poids sur l'outil et la vitesse d'avancement. L'équation donnée est limitée à une application du poids de 10 000 lbf / in de diamètre de l'outil.

Ils ont également publié une équation donnant la relation entre le taux d'usure des dents et la vitesse de rotation pour les outils à dents fraisées conçus pour formations tendres.

Dans leur graphe le coût de forage, la profondeur forée, le temps de forage et l'état des dents et des roulements de l'outil usé peuvent être déterminés. Le coût de forage peut être

réduit en utilisant les combinaisons recommandées des paramètres de forage. Ils ont présenté l'équation de la vitesse d'avancement en fonction de WOB et RPM :

$$\frac{dF}{dt} = C_{fd} * \frac{\overline{W}^k * r}{a^p} \dots \dots (2.3)$$

Où C_{fd} est le paramètre de forabilité de la formation;

$$a = 0.028125 h^2 + 6 h + 1 \dots (2.4)$$

K= 1 (pour tout les formations à l'exception de ceux les plus tendres).

K=0.6 (pour les formations les plus tendres).

P = 0.5

$$r_{formation-dure} = \left[e^{\frac{-100}{N^2}} * N^{0.428} + 0.2N * \left(1 - e^{\frac{-100}{N^2}} \right) \right] \dots \dots (2.5)$$

$$r_{formation-tendre} = \left[e^{N^2} * N^{0.75} + 0.5N * \left(1 - e^{\frac{-100}{N^2}} \right) \right] \dots \dots (2.6)$$

$$\overline{W} = \frac{7,88 \, wob}{D_h} \dots \dots \dots (2.7)$$

Dont WOB est le poids sur l'outil, N est la vitesse de rotation.

Bingham a proposé une équation de taux de pénétration basée sur des données de laboratoire. Dans leur équation le poids sur l'outil seuil a été supposé négligeable et la vitesse de pénétration est fonction du poids appliqué sur l'outil et la vitesse de rotation de la garniture. L'exposant du poids sur l'outil a5 est déterminé expérimentalement dans les conditions actuelles.

$$R = K \left(\frac{wob}{D_b}\right)^{a_5} N \dots \dots (2.8)$$

Les études d'**Eckel** effectuées sur des micro-outils exprimant la vitesse d'avancement de façon exponentielle en fonction de nombre de Reynolds au fond du puits. La relation

présentée est indépendante du poids sur l'outil, de la vitesse de rotation, de la pression différentielle, et de la formation.

Young a développé un système informatique sur site pour contrôler le poids et la vitesse de rotation de l'outil. Il a introduit une définition du coût de forage minimum par quatre équations principales. La vitesse d'avancement en fonction du poids sur l'outil et la hauteur des dents, l'usure de l'outil en fonction de la vitesse de rotation de l'outil, l'usure des dents de l'outil et le coût de forage. La combinaison poids sur l'outil et vitesse de rotation optimale est obtenue Par l'intégration des équations introduites.

Lummus a travaillé sur l'importance de l'acquisition et l'analyse des données pour l'optimisation de la vitesse d'avancement. L'étude s'est concentrée sur la nécessité de planifier et d'évaluer le forage des puits. Les critères importants pour le forage optimisé sont les données d'entrée pour l'ordinateur nécessaires pour calculer les valeurs optimales des conditions de forage contrôlables. Les données quotidiennes de la plate-forme servent à déterminer le degré d'efficacité de l'optimisation de la vitesse d'avancement et à fournir une base pour suggérer les mises à jour requises. Enfin, ces données sont nécessaires pour forer les puits suivants plus efficacement.

Wilson et Bentsen ont étudié les diverses méthodes d'optimisation de forage en se concentrant sur l'optimisation du poids sur l'outil et de la vitesse de rotation. Avec la complexité croissante et l'exigence des données trois méthodes ont été développées. Première méthode ; Optimisation ponctuelle : minimisation du coût par foot durant le forage. La deuxième méthode ; optimisation d'un intervalle : minimisation du coût d'un intervalle sélectionné. La troisième méthode ; optimisation d'un multi-intervalle : minimisation du coût sur une série d'intervalles, Les auteurs ont conclu que leur modèle peut servir de guide vers les bonnes procédures de forage et que la réduction des coûts pourrait être considérable. [8]

3. l'optimisation de la vitesse d'avancement d'un outil PDC par l'utilisation du modèle d'Eckel.

L'optimisation du temps de réalisation d'un puits pétrolier peut être effectué par l'ajustement d'un ou plusieurs paramètres, Ceci peut être réalisé essentiellement par :

- ✓ la minimisation du prix de mètre foré.
- ✓ La minimisation des problèmes de forage.

La minimisation du cout de forage se fait par l'application d'une combinaison de paramètres optimaux de forage, autrement dit il faut minimiser au maximum les problèmes de forage générés par le choix des paramètres inadéquats.

L'optimisation du cout de forage est faite en considérant que les équipements de forage, la garniture de forage, les paramètres hydrauliques et l'outil utilisé sont sélectionné d'une façon optimale.

La présente étude est une contribution pour minimiser le prix de mètre foré notamment par le choix judicieux des paramètre de forage qui permettra d'augmenter la vitesse d'avancement avec un minimum de problème et une usure modéré.

Pour déterminer les paramètres optimaux on utilise le modèle d'Eckel présente par l'équation suivante :

$$rop = a * wob^b * rpm^c \dots \dots (2.9). [9]$$

rop: la vitesse d'avancement (m/hr).

wob: le poids sur l'outil (kN).

rpm: la vitesse de rotation (tours par minute).

a,b,c : des constantes.

Afin de définir les coefficients a, b, c dans chaque K mètres forés on utilise la méthode des moindres carrées.

3.1. Calcul des coefficients a, b, c à l'aide de la méthode des moindres carrées ::

Dans le but de calculer les coefficients a, b, c on procède comme suit:

D'après l'équation 2.9 :

$$\log(rop) = \log(a) + b * \log(wob) + c * \log(rpm) \dots \dots (2.10)$$

La minimisation de la vitesse d'avancement se fait par la minimisation de la fonction log (rop).

L'erreur commise au point i s'écrit :

$$e_i = \log(rop_i) - (\log(a) + b * log(wob_i) + c * \log(rpm_i)) \dots \dots (2.11)$$

Afin de simplifier l'écriture on pose à=log(a).

La somme des erreurs quadratiques commises dans l'intervalle [j-k, j] peut s'écrire sous la forme suivante :

$$z_j = \sum_{i=j-k}^{j} e_i^2 \dots \dots (2.12)$$

Dont j représente le point dans lequel on optimise les paramètres.

Une condition nécessaire et indispensable pour que z soit minimale dans l'espace de ces coefficient est que :

$$\frac{\partial z}{\partial \dot{\mathbf{a}}} = \sum_{i=j-k}^{j} (\log(rop_i) - (\dot{\mathbf{a}} + b * \log(wob_i) + c * \log(rpm_i))) = 0$$

$$\frac{\partial z}{\partial b} = \sum_{i=j-k}^{j} (\log(rop_i) * \log(wob_i) - (\dot{\mathbf{a}} * \log(wob_i) + b * (\log(wob_i))^2 + c * \log(rpm_i) * \log(wob_i))) = 0$$

$$\frac{\partial z}{\partial b} = \sum_{i=j-k}^{j} (\log(rop_i) * \log(rpm_i) - (\dot{\mathbf{a}} * \log(rpm_i) + b * \log(wob_i) * \log(rpm_i) + c * (\log(rpm_i))^2)) = 0$$

rpm_i, wob_i et le rop_i sont les paramètres mécaniques appliquées et la vitesse d'avancement obtenue pour chaque mètre foré dans un puits voisin et ils sont connues à partir de l'enregistrement instantané des paramètres (mud logging).

Alors on a 3 équations et 3 inconnues, on résout ce système pour calculer les coefficients a,b,c qui définissent l'équation de l'rop en fonction de l'rpm et du wob dans l'intervalle [j-k, j] :

$$rop = a_j * wob^{b_j} * rpm^{c_j} \dots \dots (2.16)$$

Et de-là on définit les paramètres optimaux qui nous permettent d'avoir la vitesse d'avancement optimale au point j :

$$rop_{optj} = a_j * wob_{optj}^{b_j} * rpm_{optj}^{c_j} \dots \dots (2.17)$$

Dont:

$$wob_{optj} = \min_{j-k+1 \le i \le j} (wob(i))$$
 si $b_j < 0$

$$wob_{optj} = \max_{i-k+1 \le i \le j} (wob(i))$$
 si $b_i \ge 0$

$$rpm_{optj} = \min_{i-k+1 \le i \le j} (rpm(i))$$
 si $c_i < 0$

$$rpm_{optj} = \max_{i-k+1 \le i \le j} (rpm(i))$$
 si $c_i \ge 0$

$$(i,k) \in \mathbb{N}$$
, et $j \in \mathbb{N} - [0,k-1]$, et $(i,j,k) \le n$

Dont n est le nombre des points sur les quels on fait l'optimisation.

3.2. Le modèle d'usure d'un outil PDC :

Afin d'optimiser l'usure générée par l'application des nouveaux paramètres on utilise le modèle de Hareland et Rampersad qui définit l'usure des dents de l'outil en fonction des paramètres appliqué et la vitesse d'avancement obtenue et les caractéristique de formation:

$$W_f = W_{f0} - \frac{1}{8} \sum_{i=1}^{n} W_{ci} * wob_i * rop_i * A_{abri} * CS_i \dots \dots (2.18)$$
[10]

 W_f : La hauteur des dents finale en fraction.

 W_{f0} : La hauteur des dents initiale en fraction.

 W_{ci} : Coefficient d'usure dans le mètre i.

wob_i: Le poids sur l'outil appliqué dans le mètre i.

rop_i: La vitesse d'avancement obtenue dans le mètre i.

 A_{abri} : Le coefficient d'abrasivité de la roche dans le mètre i.

 CS_i : La résistance de la roche à la compression dans le mètre i.

On suppose que l'usure est linéaire :

$$W_{f0} - W_f = C * (H - H_0) \dots \dots (2.19)$$

 W_{f0} : La hauteur des dents initiale en fraction.

 W_f : La hauteur des dents à la profondeur H en fraction.

H : La profondeur du forage.

 H_0 : La profondeur initiale de la descente de l'outil.

C : coefficient de proportionnalité.

On calcule la constante C à partir des données de forage d'un puits voisin :

$$C = (W_{f0} - W_{ff})/(H_f - H_0) \dots \dots (2.20)$$

 H_f : La profondeur de remonté de l'outil.

 W_{ff} : L'usure finale de l'outil en fraction.

Alors on a:

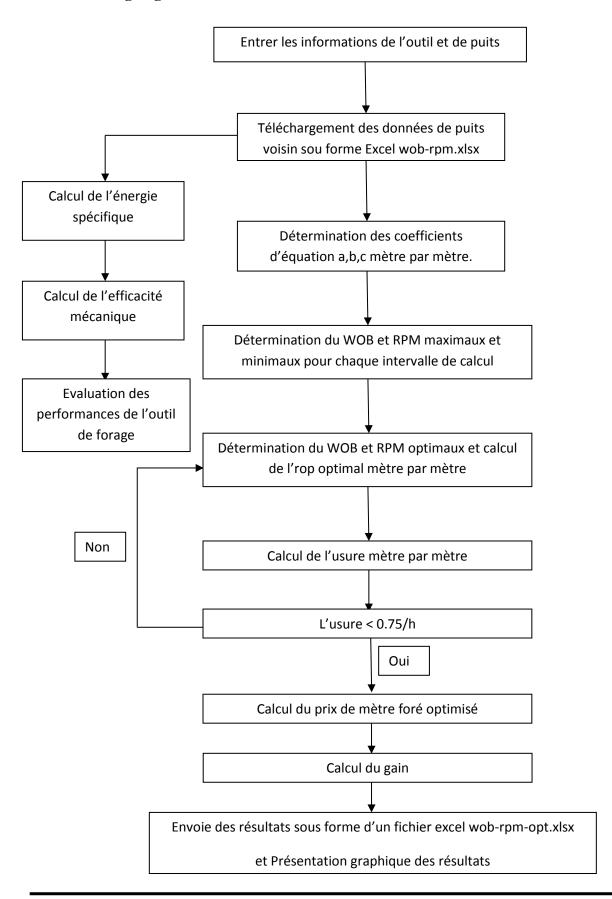
$$W_f = 1 - \frac{1}{8} \sum_{i=1}^{n} W_{ci} * WOB_i * ROP_i * A_{abri} * CS_i.....(2.21)$$

$$\rightarrow W_f = W_{f0} - C * (H - H_0)$$
....(2.22)

On suppose:
$$D_i = W_{ci} * A_{abri} * CS_i$$
....(2.23)

De 2.21 et 2.23 on a :
$$W_f = W_{f0} - \frac{1}{8} \sum_{i=1}^{j} D_i * WOB_i * ROP_i$$
....(2.24)

Et alors:


$$C * (H - H_0) = \frac{1}{8} \sum_{i=1}^{j} D_i * WOB_i * ROP_i \dots \dots (2.25)$$

Dont:

$$j = H - H_0$$

A partir des données de puits voisin et des équations 2.22 et 2.24 on peut déterminer les coefficients D_i mètre par mètre et on peut calculer alors l'usure résultante de l'application des nouveaux paramètres.

3.3. L'organigramme:

La programmation est faite sous le matlab.

3.4. L'optimisation en temps réel :

On a vue précédemment l'optimisation des paramètres de forage sur la base des données d'un puits voisin, mais le problème dans cette supposition est l'hétérogénéité horizontale de la formation, d'un côté et la variation arbitraire de la profondeur d'une région à une autre d'un autre coté ce qui influe sur les résultats de l'optimisation.

Le développement informatique important a permis de construire des processeurs de plus en plus puissant capable d'analyser et de traiter les données très rapidement, ce qui nous permit d'effectué l'analyse des données enregistré dans les mètres précédents en temps réel.

Afin d'avoir le plus grand rendement possible on construit un système qui permet d'effectuer le drill off teste dans les premier mètres forés pour choisir les paramètres optimaux, et qui modifie les paramètres appliqué après l'enregistrement d'une variation de la vitesse d'avancement ou du torque, ce qui indique un changement de formation, et appliquer les paramètres adéquats à cette formation.

En pratique, afin de réalisé les meilleurs performances ce système doit être relié à un système de forage automatique afin d'appliqué les paramètres précise.

4. l'optimisation du choix de l'outil à l'aide de la théorie de l'énergie spécifique.

Le bon choix de l'outil de forage est essentiel pour l'obtention de bonne performance avec la minimisation des problèmes de forage, mais malheureusement, la sélection du meilleur outil pour forer une section ne peut être fait que par l'essaie et l'erreur. Le critère le plus valide pour comparer les performances de défirent outils est le cout de mètre foré.

La sélection initiale de l'outil de forage pour forer une section peut être faite à la base de ce qu'on sait à propos des caractéristiques de la formation et le cout de forage dans la formation. Les formations sont usuellement décrète par la forabilité et l'abrasivité. La forabilité est la mesure de la facilité de forer une formation. Elle est inversement proportionnelle à la résistance à la compression, alors que l'abrasivité est la mesure de la rapidité d'usure des dents par la formation, alors selon ces critères on choisit notre outil.

Etant donné que la sélection de l'outil est faite essentiellement par l'essai et l'erreur, l'importance de l'évaluation de l'usure de l'outil après son remonté est très grande, il est

important aussi d'enregistrer les performances de l'outil mètre par mètre afin d'être une référence pour les puits suivants.

La théorie de l'énergie spécifique nous offre un atout très puissant pour l'analyse des performances de l'outil le long de toute la section foré.

4.1. Définition de l'énergie spécifique :

L'énergie spécifique (Es) est la quantité d'énergie dépensée par l'outil de forage pour arracher un volume unitaire d'une roche.

L'équation de l'énergie spécifique dérivé par Teal [11] pour le forage rotary est la suivante :

$$Es = \frac{wob}{A_b} + \frac{120 * \pi * rpm * T}{A_b * rop} \dots \dots (2.26)$$

Es : l'énergie spécifique (psi).

wob: le poids sur l'outil (lbf).

 A_b : la surface du fond de puits (in²).

rpm: la vitesse de rotation (tr/min).

T: le torque fournie (ft*lbf).

rop: la vitesse d'avancement (ft/hr).

Teal a introduit le concept de l'énergie spécifique minimale et l'efficacité mécanique maximale. L'énergie spécifique minimale est atteinte lorsque l'énergie spécifique soit égale à la résistance à la compression de la roche forée. L'efficacité mécanique (EFF $_{\rm M}$) de n'importe quel type d'outil est calculée comme suit :

$$EFF_M = \frac{E_{S \, min}}{E_s} * 100 \dots \dots (2.27)$$

 $E_{S min}$: La résistance à la compression confinée de la roche (CCS).

Alors:

$$EFF_M = \frac{CCS}{E_S} * 100 \dots \dots (2.28)$$

Le calcul de l'efficacité mécanique nous permet de définir l'optimalité de l'outil de forage. Les essaies faites par Chevron Exploration and Production Technology Company (EPTC) ont montré qu'une efficacité mécanique de 45% est l'efficacité maximale peut être atteinte dans les conditions normale. [11]

La résistance à la compression confinée (CCS) est calculée à la base de la résistance à la compression non-confinée (UCS).

4.2. Définition de la résistance à la compression non-confinée (UCS) :

C'est le paramètre de la mécanique de roche le plus important lors de la conduction de l'analyse de performance d'un outil de forage. L'UCS peut être déterminé à partir du critére de rupture de Mohr Coulomb [12], ce critère en terme maximaux s'écrit :

$$\hat{S}_v = UCS + \hat{S}_h * \tan \alpha \dots \dots (2.29)$$

 \hat{S}_{v} : la charge effective verticale.

 \hat{S}_h : la charge effective horizontale.

 α : l'angle de rupture.

La charge effective est définie comme la différence entre la charge totale et la pression de pore.

$$\hat{S}_v = S_v - pp \dots \dots (2.30)$$

 S_v : la charge totale.

pp: la pression de pore.

Il existe plusieurs méthodes pour obtenir l'UCS.

4.2.1. Les tests de laboratoire :

Les tests de laboratoire sur des échantillons de roche est la méthode la plus précise pour calculer la résistance à la compression de la roche, ces tests sont fait sur un échantillon cylindrique de roche dans une cellule triaxiale.

La cellule triaxiale peut contrôler la charge de confinement, la charge verticale, et la pression de pore. Tout d'abord on applique une charge de confinement isotopique sur l'échantillon, et puis on augmente la charge verticale jusqu'à que la roche atteint la charge de rupture.

4.2.2. Détermination de l'UCS à l'aide des logs :

L'utilisation du log sonique pour la détermination des propriétés élastiques des roches est souvent utilisée. Il existe plusieurs corrélations entre la résistance à la compression d'une roche et le temps de retour de l'onde sonore.

4.3. Détermination de la résistance à la compression (CCS) :

Les méthodes de calcul de la CCS sont basées sur l'UCS, la formule la plus utilisée dans l'industrie pour les roches perméables est:

$$CCS = UCS + DP + 2DP * \sin FA/(1 - \sin FA) \dots \dots (2.31)$$

$$DP = pression ECD - pression de pore (2.32)$$

Avec:

CCS : la résistance à la compression de la roche.

UCS : la résistance à la compression simple.

DP: La pression différentielle

FA: L'angle de frottement interne.

Pression ECD = pression exercée par un fluide de forage sous condition de circulation (densité équivalente de circulation)

Dans le cas d'une roche imperméable et d'un puits vertical on utilise la relation de Skempton :

$$CCS_SK = UCS + DP_SK + 2DP_SK * \sin FA/(1 - \sin FA) \dots \dots (2.33)$$

Dont:

$$DP_SK = pression \ ECD - pression \ de \ pore \ skempton \ ... \ ... \ (2.34)$$

pression de pore skempton =
$$pp - (OB - ECD)/3 \dots \dots (2.35)$$

Dont:

OB : est la pression géostatique.

Les deux solutions ci-dessus, «CCS_DP» et «CCS_Sk» sont considérés comme des limites. Une technique d'interpolation entre les deux limites a été conçue pour calculer la perméabilité intermédiaire entre les roches imperméable et les roches fortement perméable :

CCS_MIX = CCS_DP si phie
$$\geq 0.2$$

CCS_MIX= CCS_SK si phie
$$\leq 0.05$$

$$CCS_MIX = CCS_DP (phie - 0.05) / 0.15 + CCS_SK (0.2 - phie) / 0.15$$
 si $0.05 < phie < 0.2$.

Ou : phie = porosité effective. [11]

4.4.2. Détermination du CCS par la corrélation de Rampersad :

La résistance à la compression confinée est donnée par la corrélation de Rampersad exprimé comme suit:

$$UCS = CCS * (1 + a_s * P_e^{b_s}) \dots \dots (2.35)$$
 [10]

CCS: la résistance à la compression confinée. (psi)

UCS: la résistance à la compression non confiné. (psi)

a_s, b_s: coefficient de formation.

Formation	Perméable	imperméable
P _e	P _h -P _p	P _h
a_{s}	0.0133	0.00432
bs	0.577	0.782

Tableau 2.1. Les coefficients de la corrélation pour les formations

perméables et imperméable.

5. Conclusion:

Sur la base d'un modèle mathématique développé par Eckel et la méthode des moindres carrées et le modèle de Hareland et Rampersard concernant l'usure de l'outil et les données d'un puits voisin on a pu construire un modèle d'optimisation de la vitesse d'avancement qu'on a programmé dans le Matlab.

L'utilisation de la théorie de l'énergie spécifique et de la corrélation de Rampersard et du log de la résistance à la compression confinée nous ont permis de calculer l'efficacité mécanique afin de bien évaluer les performances faites par cet outil de forage.

Chapitre 3 : application des méthodes d'optimisation et interprétation des résultats.

1. Introduction:

Le forage des puits dans le champ de Berkine rencontre le problème de la diminution de la vitesse d'avancement dans la phase 6'' à cause de la dureté élevée de la formation , ce qui engendre des frais additionnels et un prix de mètre foré élevé, ce qui nous donne une grande marge d'optimisation de ce dernier.

2. Optimisation des paramètres de forage :

2.1. Présentation de la phase étudiée :

La phase 6'' est prévue pour être forée en vertical à travers le Dévonien en traversant les formations suivantes :

Frasnien: il se compose principalement des argiles.

Givétien/Eifelien: consiste en une succession de couches d'argiles et de grés.

Emsien (F4): il se compose des grés inter stratifiés avec des couches d'argile.

Seigénien: une alternance des couches de grés et d'argile.

Gédinnien: Grès massive.

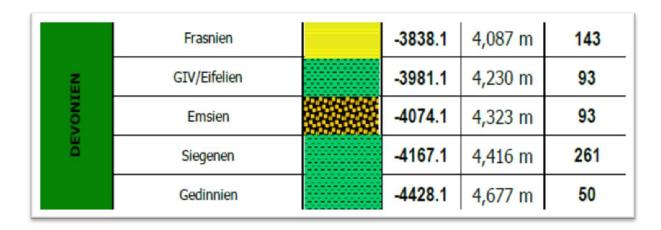


Fig 3.1. Présentation de la phase 6".

2.2. Présentation des outils utilisés pour le forage de la section :

			profondeur		metre	heures de	ron
Outil n°	Outil	fabricant	descente	remonté	forés	forage	rop
1	DSX713M-A4	HYCALOG	4070	4318	261	37,79	6,91
2	DSX713M-A4	HYCALOG	4327	4426	99	65,63	1,51
3	M09PX	SMITH	4429	4501	72	60,19	1,2
4	M16PX	SMITH	4501	4531	30	27,23	1,1
5	FM2941	DBS	4531	4568	37	29,37	1,26
6	FM2941	DBS	4577	4602	25	17,81	1,4
7	M09PX	SMITH	4602	4740	138	60,54	2,28

Tableau 3.1 : les données des outils utilisés.

outil	IADC code	Densité des taillants	Taille des taillants	profile
outii	TADC code	tamants	(mm)	
DSX713M-A4	M432	> 50	13,3	Court
M09PX	M442	> 50	9	Court
M16PX	M442	> 50	9	Court
FM2941	M432	> 50	13,3	Court

Tableau 3.2 : présentation des profils des outils.

Outil	Usure des dents	Raisons de remontée
DSX713M-A4	2	point de carottage
CI3124C	2	atteindre la cote finale de carottage
DSX713M-A4	2	point de carottage
CI3124C	2	remontée de pression
M09PX	1	vitesse d'avancement faible
M16PX	1	vitesse d'avancement faible
FM2941	1	point de carottage
ARC325	1	atteindre la cote finale de carottage
FM2941	1	vitesse d'avancement faible
M09PX	2	atteindre la cote finale

Tableau 3. 3 : présentation de l'usure des dents et des raisons de la remontée.

2.3. Exemple d'application de l'optimisation de la vitesse d'avancement :

On prend 3 points comme exemples d'applications de l'optimisation de la vitesse d'avancement en utilisant le modèle d'Eckel et la méthode des moindres carrés :

a. Le mètre 4074 :

D'après le modèle d'Eckel:

$$rop = a_j * wob^{b_j} * rpm^{c_j}......(3.1)$$

On a commencé l'optimisation dans le mètre 4070, on prend alors j=1 pour ce mètre, et par conséquence le mètre 4074 correspond à j=5 alors :

$$rop = a_5 * wob^{b_5} * rpm^{c_5}..........(3.2)$$

Dans l'intervalle des paramètres appliqués, c'est-à-dire :

$$\min_{1 \le i \le 5} (wob(i)) \le wob \le \max_{1 \le i \le 5} (wob(i))$$

$$\min_{1 \le i \le 5} (rpm(i)) \le rpm \le \max_{1 \le i \le 5} (rpm(i))$$

La vitesse d'avancement réalisée et les paramètres appliqués en fonction de la profondeur sont présentés dans le tableau suivant :

profondeur	rpm (tr/mn)	wob (KN)	rop (m/hr)
4070	65,25067139	57,16317544	6,52531778
4071	69,71047211	58,13575919	11,2239525
4072	72,05765533	79,24893225	7,7950183
4073	75,53585052	77,11844075	14,0609853
4074	79,27594757	56,44360773	8,77060994

Tableau 3.4 : les paramètres de forage appliqués et la vitesse d'avancement enregistré.

On applique la méthode des moindres carrés pour calculer les coefficients a, b et c dans l'intervalle des paramètres appliqués :

- > 56,44360773 < wob < 79,24893225.
- ► 65,25067139 < rpm < 79,27594757.

On obtient les résultats suivants : $a_5 = 0.00104761$, $b_5 = 0.4224698$ et $c_5 = 1.71306939$

Alors:

$$rop = 0.00104761 * wob ^{0.4224698} * rpm^{1.71306939}.......(3.3)$$

La vitesse d'avancement calculée obtenue par l'injection des paramètres de forage appliqués dans cette équation est représentée dans le tableau suivant :

Profondeur (m)	rop calculé (m/hr)	ERM (%)
4070	7,43084529	13,87
4071	8,381487185	25,32
4072	10,11118291	29,71
4073	10,8361155	22,93
4074	10,31727594	17,63

Tableau 3.5 : la vitesse d'avancement calculé et l'erreur relative moyenne en pourcentage.

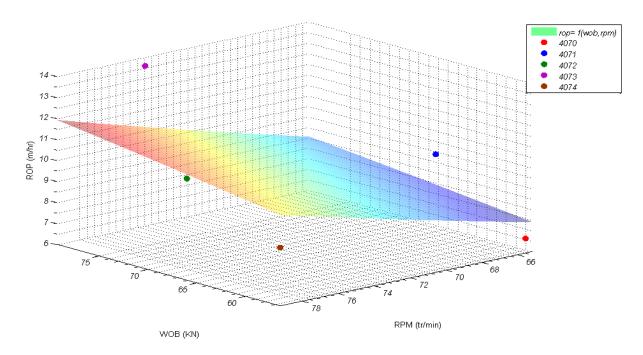


Fig 3.2 : présentation de l'équation représentative de la vitesse d'avancement en fonction des paramètres de forage pour le mètre 4074.

D'après la courbe représenté dans la figure 3.2 et l'équation 3.2 la vitesse d'avancement optimisé peut se présenter sous la forme suivante :

$$rop_{opt 5} = 0.00104761 * wob_{max}^{0.4224698} * rpm_{max}^{1.71306939}......(3.3)$$

rop_{opt} : la vitesse d'avancement optimisé à la profondeur 4074 m.

$rop_{opt} = 11,90 \text{ m/hr.}$

La valeur optimisée de la vitesse d'avancement 11,90 m/hr est obtenue par l'application des paramètres de forage suivants :

wob_{max}: le poids sur l'outil maximum appliqué dans l'intervalle 4070 à 4074 m.

 rpm_{max} : la vitesse de rotation maximale appliquée dans l'intervalle 4070 à 4074 m.

L'erreur est relativement grande à cause de l'instabilité des paramètres appliqués, cette instabilité est due au drill of test fait dans les premiers mètres forés par l'outil. Afin d'éviter ce problème on doit changer les paramètres progressivement et prendre des intervalles plus petits, c-à-dire au lieu de faire l'optimisation par mètres on la fait sur des intervalles de 10 cm par exemple.

Les paramètres appliqués dans le mètre 4073 ont donné le meilleur avancement, mais ce résultat ne suit pas la tendance des autres performances, il est probablement dû à un passage tendre donc le modèle ne considère pas ces paramètres comme des paramètres optimaux.

b. Le mètre 4155 m (j=86):

Les performances réalisées et la vitesse d'avancement calculé moyennant le modèle d'Eckel dans l'intervalle 4151 m à 4155 m sont présentées dans le tableau suivant :

Profondeur(m)	wob (KN)	rpm (tr/min)	rop (m/hr)	rop calculé (m/hr)	ERM (%)
4151	81,12870449	86,11893463	8,69862937	8,79616424	1,12
4152	87,56200762	87,1339798	7,85309171	7,3952997	5,82
4153	84,92272416	82,94919586	8,32273663	7,52559017	9,57
4154	88,04951571	83,9486618	6,40494778	6,98409193	9,04
4155	83,87550187	84,94861603	7,49019346	7,97749712	6,50

Tableau 3.6 : les paramètres de forage appliqués, la vitesse d'avancement calculé et l'erreur relative moyenne en pourcentage en fonction de la profondeur.

On applique la méthode des moindres carrés pour calculer les coefficients a, b et c dans l'intervalle des paramètres appliqués, c'est-à-dire :

- > 81,12870449< wob < 88,04951571.
- > 82,94919586< rpm < 87,133979

Et on a obtenue le résultat suivant :

$$rop = 2303,71173 * wob (-2,45296159) * rpm^{1,17048142}......(3.4)$$



Fig 3.3 : présentation de l'équation représentative de la vitesse d'avancement en fonction des paramètres de forage pour le mètre 4155.

D'après la courbe représenté dans la figure 3.3 et l'équation 3.4 la vitesse d'avancement optimisé **rop_{opt 86} = 8,91 m/hr** est obtenue par l'application des paramètres optimaux suivants :

$$wob_{opt 86} = \min_{82 \le i \le 86} (wob(i))$$

$$rpm_{opt 86} = \max_{82 \le i \le 86} (rpm(i))$$

Sachant que wob_{min} et rpm_{max} sont des limites des intervalles des paramètres appliqués dans l'intervalle 4151 m à 4155 m.

On a pu constater que l'erreur relative moyenne entre les valeurs de la vitesse d'avancement issues des calculs à partir du modèle d'Eckel et celles des valeurs d'enregistrement est relativement faible, donc la précision du modèle est acceptable .

c. Le mètre 4170 (j=101):

Les vitesses d'avancement réalisée et calculé moyennant modèle d'Eckel dans l'intervalle 4151 m à 4155 m sont présentées dans le tableau suivant :

Profondeur(m)	wob (KN)	rpm (tr/min)	rop (m/hr)	rop calculé (m/hr)	ERM (%)
4166	71,02439775	95,71501923	12,8893839	13,4125576	4,05
4167	75,04650094	92,79450989	8,44348609	7,99195	5,34
4168	85,43722301	92,7572937	12,281859	10,2778688	16,31
4169	85,73939775	92,57594299	10,0158876	9,94826045	0,67
4170	85,54320262	92,18415833	7,43927341	9,08706102	22,14

Tableau 3.6 : les paramètres de forage appliqués, la vitesse d'avancement calculé et l'erreur relative moyenne en pourcentage en fonction de la profondeur.

Pour le calcul des coefficients a, b, c On applique la méthode des moindres carrés dans le domaine d'application des paramètres mécaniques suivants :

- > 71,02439775 < wob < 85,73939775.
- > 92,18415833< rpm < 95,71501923.

On obtient le résultat suivant:

$$rop = 1,8563018E(-43) * wob ^{2,0026275} * rpm^{20,2683426}......(3.5)$$

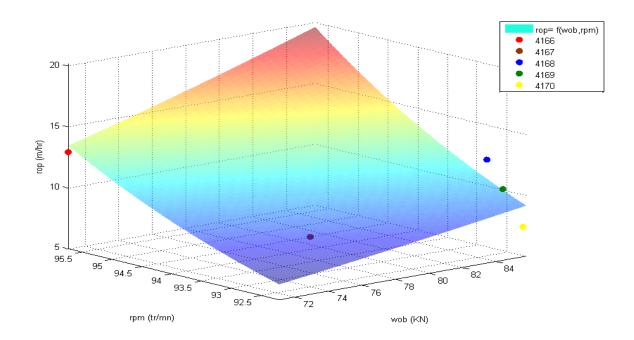


Fig 3.4 : présentation de l'équation représentative de la vitesse d'avancement en fonction des paramètres de forage pour le mètre 4170.

On a pu constater une grande variation de la vitesse d'avancement pour des faibles variations des paramètres appliqués, ce phénomène s'explique par l'hétérogénéité de la formation traversée (une formation dure intercalée avec des passages moins dures).

Afin de minimiser l'erreur entre les vitesses d'avancement calculée et réalisée, l'rpm et le wob ont été élevé a des puissances de valeurs plus grandes que les cas précédent (wob ^{2,0026275}, rpm^{20,2683426}).

D'après l'équation 3.5 :

$$rop_{opt\;101} = 1,8563018*10^{(-43)}*wob_{opt\;101}^{2,0026275}*rpm_{101}^{20,2683426}......(3.6)$$

Dont:

 $wob_{opt\ 101} = \max_{97 \le i \le 101} (wob(i))$

$$rpm_{opt\ 101} = \max_{97 \le i \le 101} (rpm(i))$$

La vitesse d'avancement obtenu à partir de l'équation précédente est beaucoup plus grande que l'rop réalisé ($rop_{opt} = 19,55 \, m/hr$, $rop_{réalisé} = 7,43 \, m/hr$) alors il

représente une performance impossible à réaliser et alors une défaillance dans le système d'optimisation.

2.4. Comparaison entre les vitesses d'avancement calculée et réalisée :

On calcule les coefficients de l'équation d'Eckel en utilisant la méthode des moindres carrés et on réinjecte les paramètres appliqués dans l'équation (3.7) pour calculer la vitesse d'avancement à partir du modèle afin de tester sa précision :

$$rop = a * wob^b * rpm^c \dots (3.7)$$

Tvd	Rop	Rop theorique	ER %
4078	8,945131	10,3232681	
4086	13,71625	13,3610352	15,406572
4094	•	16,0319647	2,589724
	15,36852		4,316909
4101	8,745082	9,23688573	5,623778
4109	12,1055	12,7128732	5,017366
4116	18,98289	17,1004862	9,916305
4123	9,451471	9,39430909	0,604789
4130	9,423195	9,27283984	1,595586
4137	9,658603	10,5844562	9,585786
4144	8,726453	9,19182024	5,332843
4151	8,698629	9,39140983	7,964243
4158	7,811698	8,45037052	8,175841
4165	10,27524	10,1955494	0,775579
4172	5,074316	4,89080917	3,616379
4179	5,309414	5,28217411	0,513055
4186	4,840274	5,1411294	6,215661
4193	5,235357	5,27656035	0,787014
4200	6,035744	6,40931362	6,189278
4207	7,110515	7,01957819	1,278907
4214	6,970612	6,8060319	2,361059
4221	6,462077	5,64346186	12,667992
4228	4,895109	4,89665423	0,031562
4235	7,845679	7,88284829	0,473764
4242	7,156404	7,74717309	8,25511
4249	6,830776	6,77251914	0,852852
4256	8,258399	8,40249029	1,744781
4263	6,788208	7,71454927	13,646326
4270	5,209909	5,63050907	8,073078
4277	4,260071	4,29532837	0,827615
4284	3,487647	3,67681821	5,424029
4291	6,725291	6,82239441	1,443848
4298	5,278863	5,08533431	3,666104
4305	4,748598	4,89572038	3,098241
4312	7,066505	7,08353952	0,241067

Tableau 3.8: les vitesses d'avancement enregistré et théorique en fonction de la profondeur.

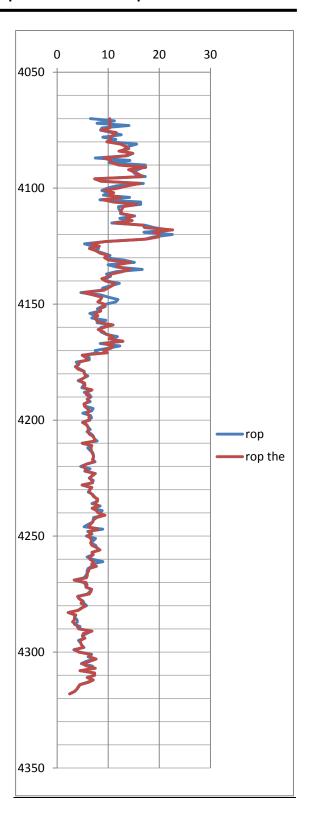


Fig 3.5: les vitesses d'avancement enregistré et théorique en fonction de la profondeur

On remarque que l'erreur est grande dans l'intervalle 4070 à 4173 m à cause de l'instabilité de la vitesse d'avancement due aux changements de la nature de la formation, alors que L'erreur est presque nulle dans l'intervalle 4173 à 4318 m qui se caractérise par la stabilité de la vitesse d'avancement.

2.5. Calcul de l'erreur moyenne :

L'erreur systématique :

$$ES = \frac{1}{N} * \sum_{i=1}^{N} (ropth(i) - rop(i)) = -0.077 \ m/hr \dots \dots (3.8)$$

L'erreur absolue moyenne :

$$EM = \frac{1}{N} * \sum_{i=1}^{N} |ropth(i) - rop(i)| = 0.585 \ m/hr \dots \dots (3.9)$$

L'erreur relative moyenne :

$$ERM = \frac{1}{N} * \sum_{i=1}^{N} \frac{|ropth(i) - rop(i)|}{|rop(i)|} = 0,065 = 6,5\%..........(3.10)$$

L'erreur quadratique moyenne :

$$EQM = \frac{1}{N} * \sqrt{\sum_{i=1}^{N} (ROPth(i) - ROP(i))^{2}} = 0,062 \, m/hr......(3.11)$$

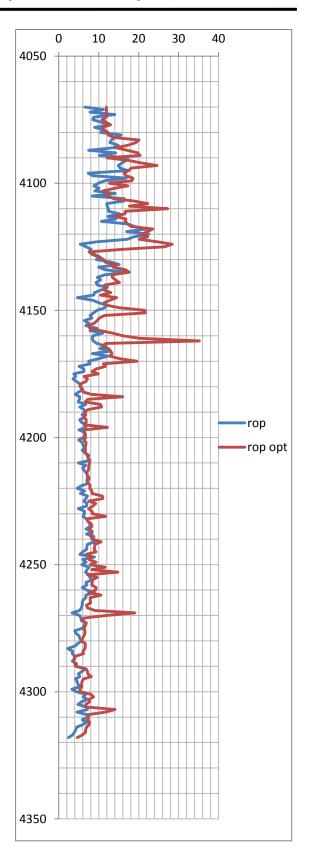
Les grandes erreurs enregistrées dans l'intervalle 4070 à 4173 ont causées l'amplification de l'erreur relative moyenne.

2.6. Détermination des nombres de points qui permet d'avoir une erreur minimale:

Sachant que les cœfficients de l'équation d'Ekel pour chaque mètre sont calculés à l'aide de la méthode des moindre carrées sur la base d'un nombre de points (profondeurs), et afin d'estimer le nombre qui donne la plus grande précision on a calculé l'erreur systématique, l'erreur absolue moyenne, l'erreur relative moyenne et l'erreur quadratique moyenne pour des différents intervalles ; les nombres de points utilisés sont : 5 points, 6, 7, 8 et 9 points.

K	ES (m/hr)	EM (m/hr)	ERM (%)	EQM (m/hr)
5	-0,077	0,585	6,5	0,062
6	-0,106	0,72	8,1	0,073
7	-0,09	0,824	9,7	0,08
8	-0,107	0,948	11,2	0,089
9	-0,119	1,012	12,1	0,095

Tableau 3.9 : Les erreurs pour les différents intervalles de calcul.


D'après Les résultats représentés dans le tableau 3.9 tout type d'erreurs est minimal pour un intervalle de 5 points, pour cela on va prendre le nombre 5 pour le calcul d'optimisation.

2.7. Résultats de l'optimisation de la vitesse d'avancement:

Les résultats de l'optimisation de la vitesse d'avancement du premier outil descendu (DSX713M) sont présentés dans le tableau et la figure suivants :

Tvd (m) (m/hr) (m/hr) 4070 11,90776139 6,525317784 4078 10,90080085 8,945130518 4086 14,38409246 13,71624819 4093 24,59175265 14,88864332 4100 12,7073904 9,87084215 4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4201 7,668188975 4,90738		Rop optimisé	Rop réalisé
4078 10,90080085 8,945130518 4086 14,38409246 13,71624819 4093 24,59175265 14,88864332 4100 12,7073904 9,87084215 4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944			
4086 14,38409246 13,71624819 4093 24,59175265 14,88864332 4100 12,7073904 9,87084215 4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6	4070	11,90776139	6,525317784
4093 24,59175265 14,88864332 4100 12,7073904 9,87084215 4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4238 8,289428483 6,914411063 4245 9,328399936	4078	10,90080085	8,945130518
4100 12,7073904 9,87084215 4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6	4086	14,38409246	13,71624819
4107 18,83267592 16,34737316 4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 <td< td=""><td>4093</td><td>24,59175265</td><td>14,88864332</td></td<>	4093	24,59175265	14,88864332
4114 16,82535602 14,324928 4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,32839936 6,006910671 4252 8,292135884	4100	12,7073904	9,87084215
4121 22,27566505 18,89994299 4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 </td <td>4107</td> <td>18,83267592</td> <td>16,34737316</td>	4107	18,83267592	16,34737316
4128 8,398775751 8,971907914 4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 </td <td>4114</td> <td>16,82535602</td> <td>14,324928</td>	4114	16,82535602	14,324928
4135 17,64708907 16,66523361 4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 </td <td>4121</td> <td>22,27566505</td> <td>18,89994299</td>	4121	22,27566505	18,89994299
4142 11,32980616 10,61313452 4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,32839936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491 <td>4128</td> <td>8,398775751</td> <td>8,971907914</td>	4128	8,398775751	8,971907914
4149 15,23293841 11,51481211 4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4135	17,64708907	16,66523361
4156 7,405860567 6,766265183 4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4142	11,32980616	10,61313452
4163 11,78256568 9,564806085 4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4149	15,23293841	11,51481211
4170 19,5556474 7,43927341 4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4156	7,405860567	6,766265183
4176 6,36065217 4,216960731 4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4163	11,78256568	9,564806085
4183 8,14405396 4,117011213 4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4170	19,5556474	7,43927341
4190 6,453460963 6,653890582 4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4176	6,36065217	4,216960731
4196 12,21780005 6,758316258 4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4183	8,14405396	4,117011213
4203 6,779231124 6,039176557 4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4190	6,453460963	6,653890582
4210 7,668188975 4,907385081 4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4196	12,21780005	6,758316258
4217 7,272019341 6,986944947 4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4203	6,779231124	6,039176557
4224 11,05010944 6,81368252 4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4210	7,668188975	4,907385081
4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4217	7,272019341	6,986944947
4231 11,76553859 6,069390516 4238 8,289428483 6,914411063 4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4224	11,05010944	6,81368252
4245 9,328399936 6,006910671 4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4231	11,76553859	
4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4238	8,289428483	6,914411063
4252 8,292135884 7,0757615 4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4245	9,328399936	
4259 9,344600741 5,873850093 4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491			7,0757615
4266 6,925251423 5,879491886 4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491			·
4273 6,91736454 6,700227205 4280 5,649979629 5,782917253 4287 3,84937758 3,982435491	4266	·	
4280 5,649979629 5,782917253 4287 3,84937758 3,982435491			
4287 3,84937758 3,982435491			
		,	
4309 7,320021342 7,072022354			

Tableau 3.10 : les vitesses d'avancement réalisé et optimisé en fonction de la profondeur de l'outil n° 1

Fig 3.6 : les vitesses d'avancement réalisé et optimisé en fonction de la profondeur de l'outil n° 1.

> Remarque et interprétation :

On remarque que les nouveaux paramètres appliqués (annexe n°1) donnent théoriquement de très bons résultats avec un gain de temps de 8,76 heures dans un intervalle de 249m qui représente un gain de 1065,11 KDA.

Cependant, une grande différence entre la vitesse d'avancement réalisée et optimisé a été constatée après des changements brusques de la vitesse d'avancement dus au changement de la nature de formation, ces résultats représentent un point faible pour la méthode d'optimisation basée sur le modèle d'Eckel et la méthode des moindres carrés.

2.8. Calcul de la vitesse d'avancement optimisée moyenne et le prix moyen de mètre foré des outils descendus:

$$rop = \frac{interval foré(m)}{temps de forage(hr)}.....(3.12)$$

cout de l'interval = $C_o + C_l * (t_f + t_m + t_c)$ (3.13)

$$prix\ de\ metre\ for\'e = \frac{c_o + c_l*(t_f + t_m + t_c)}{h}......(3.14)$$

tps opt : temps de forage optimisé (hr).

Tps: temps de forage dans le puits l'objet de l'étude (hr).

tps gain : temps gagné (hr).

rop opt : la vitesse d'avancement moyenne optimisé (m/hr).

rop : la vitesse d'avancement moyenne dans le puits l'objet de l'étude (m/hr).

 C_o : le cout de l'outil (KDA).

 C_l : le cout de location de l'appareil (KDA).

 t_f : temps de forage (hr).

 t_m : temps de maneouvre (hr).

 t_c : temps de connexion (ajout des longueurs des tiges) (hr).

Cg: gain d'argent (KDA).

H: le tronçon foré (m).

> Tableau récapitulatif des résultats de l'optimisation :

Dans le tableau ci-dessous on représente une comparaison entre les performances réalisées et les résultats de l'optimisation de chaque outil utilisé dans la phase 6'':

Outil n°	H (m)	Tps (hr)	Tps opt (hr)	Tps gain (hr)	C (KDA)	C opt (KDA)	C gain (KDA)
1	249	36,23	27,47	8,76	9305,64	8240,53	1065,11
2	99	65,61	50,10	15,51	13443,31	11562,64	1880,66
3	73	62,10	34,45	27,64	13052,54	9700,94	3351,60
4	30	27,50	18,96	8,54	8858,46	7822,46	1036
5	36	29 ,67	21,10	8,57	10014,00	8974,94	1039,06
6	24	17,75	11,96	5,78	7700,83	6999,72	701,10
7	137	59,25	31,91	27,33	12877,66	9563,63	3314,02
total	648	268,44	195,95	102,13	81167,58	68681,13	12486,4

Outil n°	rop (m/hr)	rop opt (m/hr)	P (KDA/m)	P opt (KDA/m)
	, ,	. ,	,	
1	6,87	9,06	37,37	33,09
2	1,50	1,97	135,79	116,79
3	1,17	2,11	178,80	132,88
4	1,09	1,58	295,28	260,74
5	1,21	1,70	278,16	249,3
6	1,35	2	320,86	291,65
7	2,31	4,29	93,99	69,80
total	2,41	3,3	116,13	97,01

Tableau 3.11 : récapitulatif des résultats de l'optimisation.

Les résultats de l'optimisation des paramètres mécaniques sont très satisfaisants, On a abouti à un gain total de 36% de temps de forage de la phase 6'' (tableau 3.11), Ces bons résultat méritent d'être tester sur terrain.

Ce gain de temps est équivalent à un gain d'argent de l'ordre 12486,4 KDA qui représente une somme colossale d'argent et fait de cette optimisation un très bon investissement.

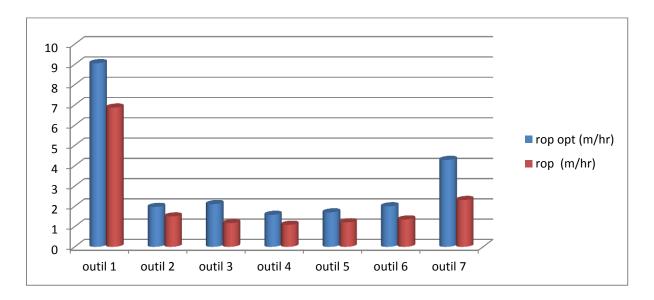


Fig 3.7 : comparaison entre les vitesses d'avancement réalisé et optimisé des différents outils.

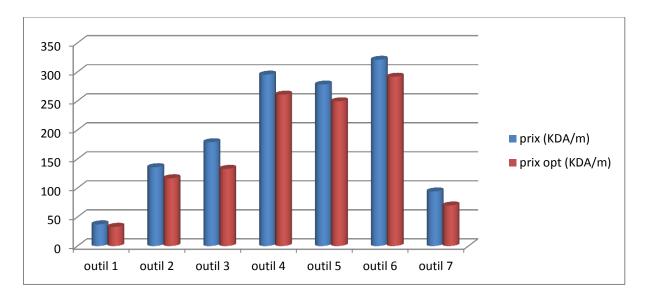


Fig 3.8 : comparaison entre les prix de mètre foré réalisé et optimisé.

2.9 Comparaison entre l'usure réelle et l'usure optimisée :

Ce tableau représente les valeurs de l'usure réelle enregistrées et celle résultante de l'application des paramètres optimisés calculé sur la base du modèle Hareland et Rampersad (exprimés en système IADC):

Outil n°	Usure réel	Usure optimale
1	2	3
2	2	3
3	1	3
4	1	2
5	1	2
6	1	2
7	2	6

Tableau 3.12 : représentation de l'usure réel et celle résultante

de l'application des paramètres optimisé.

D'après le tableau, l'usure s'accentue après l'application des paramètres optimisé à cause de l'augmentation de la vitesse d'avancement, afin d'éviter une usure excessive on a limité l'usure à 6/8, lorsque les paramètres appliqué peut causer une usure supérieur à 6/8 on les réduit pour que l'outil peut achever le tronçon, une usure excessive induit une diminution importante de la vitesse d'avancement ce qui nous pousse à changer l'outil et alors une remontée du fond à la surface, ce qui représente une manoeuvre de plus, alors un temps perdue qu'on doit l'éviter au maximum.

3. Optimisation du choix de l'outil de forage :

L'énergie spécifique peut être calculée à partir de l'équation dérivée par Teal :

$$Es = \frac{wob}{A_b} + \frac{120*\pi*rpm*T}{A_b*rop}$$
.....(3.15)

Es: énergie spécifique (psi).

wob: poids sur l'outil (pounds).

 A_b : surface du fond de puits (in²).

rpm: vitesse de rotation (tr/min).

T: torque fournie (ft.lb).

rop: vitesse d'avancement (ft/hr).

La résistance à la compression confinée est donnée par la corrélation de Rampersad et peut s'écrire de la façon suivante :

$$UCS = CCS * (1 + a_s * P_e^{b_s}) \dots (3.16)$$

CCS: la résistance à la compression confinée (psi).

UCS: la résistance à la compression non confiné (psi).

a_s, b_s: coefficient de formation.

Formation	Perméable	imperméable
Pe	P _h -P _p	P_h
$a_{\rm s}$	0.0133	0.00432
b _s	0.577	0.782

Tableau 3.13 : les coefficients de la corrélation de Rampersard.

L'efficacité mécanique est donnée en fonction de l'énergie spécifique et la résistance à la compression confinée:

$$EFF_M = \frac{CCS}{E_S} * 100....(3.17)$$

 EFF_{M} : l'efficacité mécanique.

CCS: la résistance à la compression confinée (psi).

E_s: l'énergie spécifique (psi).

Les résultats de calcul pour le premier outil descendu (pdc type dsx 713 A4) sont illustrées dans le tableau suivant :

Profondeur (m)	ROP (m/hr)	Es (Kpa)	UCS (psi)	CCS (Kpa)	EFF %
4070	6,52531778	308167,032	3040	117351,601	38,0805178
4080	10,4379328	279336,264	1530	59154,7616	21,1769001
4090	17,2931562	173019,528	500	19361,9764	11,190637
4100	9,87084215	294331,366	1000	38784,6306	13,17
4110	12,4492973	221967,225	2400	93728,6623	42,00192
4120	16,98883	134241,373	1500	58358,8338	33,0128085
4130	9,42319499	322628,279	8050	92111,7056	28,5504128
4140	9,70270932	297140,296	8010	91703,9201	30,8621622
4150	9,54958402	311195,244	10110	115809,08	37,2142834
4160	8,57223856	332805,944	8080	92605,8709	27,8257863
4170	7,43927341	396545,152	6120	70180,0895	17,6978811
4180	5,3303014	586207,559	15020	172332,583	29,397878
4190	6,65389058	478318,459	10040	115256,595	24,0962046
4200	6,03574446	525704,962	10010	114974,199	21,87048
4210	4,90738508	459054,062	10070	115725,66	25,2095928
4220	4,60287131	673171,315	10020	115212,987	17,1149578
4230	6,3881471	493039,978	10060	115735,037	23,4737632
4240	8,4105775	384801,247	9010	103710,916	26,9518138
4250	5,73922208	589082,755	11090	127721,4	21,6814019
4260	6,92980208	445212,174	9020	103937,137	23,3455291
4270	5,2099086	576049,347	10030	115637,018	20,0741514
4280	5,78291725	544283,251	9220	106355,084	19,5403926
4290	4,38946871	749949,774	11050	127532,433	17,0054632
4300	4,41861939	695416,664	15040	173674,83	24,9742118
4310	7,19463022	473009,749	9030	104329,501	22,0565223

Tableau 3.14: Efficacité mécanique en fonction de la profondeur du premier outil descendue.

Les résultats de calcul relatifs aux autres outils sont présentés dans le tableau suivant :

outil n°	Profondeur	ROP (m/hr)	Es (Kpa)	UCS (psi)	CCS (Kpa)	EFF %
	(m)					
2	4330	5,620449	412800,4	15060	174182,3	42,19528
	4340	4,745678	556167,2	12220	141409,8	25,42577
	4350	3,095314	826540,8	21620	250318,5	24,5139
	4360	1,556561	1798367	17500	246164,1	13,6882
	4370	0,940605	2386531	24430	283150,7	11,86453
	4380	1,273644	2074375	15120	175337,1	8,452528
	4390	2,047511	1277413	9040	104886,1	8,210821
	4400	1,543939	1715349	8030	93216,42	5,434255
	4410	2,696133	907669,7	9020	104763,6	11,54204
	4420	1,051441	2443335	17020	197783,4	8,094813
3	4430	1,395515	1778573	19010	221023,6	12,42702
	4440	0,766338	4545573	19120	222418,2	4,893074
	4450	2,118527	1879373	18180	211593,3	11,25872
	4460	1,212988	2567508	15210	177117,9	6,898438
	4470	1,718048	1805047	18190	211929,3	11,74093
	4480	1,062222	2825281	18180	211922,3	7,50093
	4490	0,51136	5145616	17110	199552,4	3,878106
	4500	0,812953	4072646	15230	177717,8	4,363693
4	4510	2,36019	1354863	18140	211783,4	15,63135
	4520	1,025319	3448922	18100	211425	6,130178
	4530	0,708695	3870259	17210	201132,2	5,196868
5	4540	0,746381	3580324	17300	202287,7	5,649984
	4550	1,447808	2038672	16020	187416,7	9,193079
	4560	1,457196	2436965	12380	144906,7	5,946195
6	4580	2,842525	1114441	11320	132634,7	11,90145
	4590	0,750754	4507958	18210	213472,4	4,735457
	4600	2,105209	1493730	18110	212408	14,21998
7	4610	5,461593	766717,4	18210	213711	27,87351
	4620	4,513416	935659,5	15310	179749,7	19,21102
	4630	26,4604	193445,5	6000	70479,7	36,43387
	4640	19,24369	184026	6212	73006,87	39,67204
	4650	2,336016	1417974	12120	142512,9	10,05046
	4660	1,575146	2200619	13310	156584,3	7,115467
	4670	1,217919	2474985	12210	143715,8	5,806732
	4680	3,868141	962922,3	13100	154268,9	16,02091
	4690	5,269385	626844,7	14210	167424,5	26,70909
	4700	0,76916	626844,7	10090	118941,6	18,97465
	4720	1,488391	626844,7	9440	111335	5,479878

Tableau 3.15 : Efficacité mécanique en fonction de la profondeur.

Des tests faits par Chevron exploration and production technology company (EPTC) ont prouvé que l'efficacité d'un outil PDC de plus de 7 lames est bonne lorsqu'elle est dans l'intervalle suivant :

Eff min= 0.0008*CCS+ 8.834

Eff max= 0.0011*CCS+ 13,804

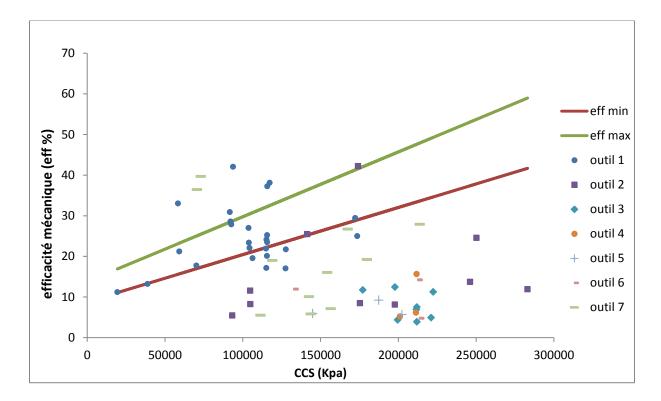


Fig 3.9 : l'efficacité minimum et maximum calculées et celles enregistrées des sept outils descendues de la phase 6''.

Interprétation :

La majorité des valeurs de l'efficacité mécanique enregistrée du premier outil descendue (dsx 713) appartient à l'intervalle [eff min, eff max], ce qui prouve que l'outil est bien choisi, les puits forés par la suite dans le bloc confirme ces résultats, la vitesse d'avancement enregistrée par cet outil était l'une des meilleures performances réalisées.

Aussi, le même outil (outil n° 2 : dsx 713) a été moins efficace dans une plage de résistance à compression plus grande, puisque ce type d'outil est conçu pour les formations de dureté moyenne.

Cependant, pour des même valeurs de la résistance à la compression confinée, cet outil était plus efficace dans l'intervalle [4130, 4160 m] que dans l'intervalle [4390, 4410 m], cette contre-performance dans l'intervalle [4390, 4410 m] est peut être due au mauvais choix des paramètres de forage, ou aux phénomènes de vibration de l'outil de forage, on peut conclure que l'efficacité mécanique est un paramètre indicateur des problèmes pourront être rencontrés par l'outil en cours de forage.

4. Conclusion:

D'après les résultats obtenus, le modèle d'Eckel est un bon modèle, il représente d'une bonne manière le comportement de la vitesse d'avancement en fonction des paramètres mécaniques de forage, et avec l'utilisation de la méthode des moindres carrées et du modèle de Hareland et Rampersard il nous permet de faire l'optimisation de la vitesse d'avancement, et de générer des gains de temps importants. L'application de la méthode ne peut être faite que par l'utilisation d'un système informatisé, par conséquent les systèmes de forage doivent être automatisé afin d'augmenter l'efficacité de l'optimisation et augmenter les gains réalisés.

Conclusions

Les résultats obtenus ont prouvé que les coûts de forage peuvent être réduits d'une façon considérable par une application judicieuse des paramètres, ces paramètres sont calculés par l'utilisation du modèle d'Eckel, de la méthode des moindre carrées et des données des puits voisins. Les données utilisées dans le cadre de cette étude appartiennent à des puits forés à Hassi Berkine.

Cette méthodologie d'optimisation est applicable en temps réel à condition que le treuil de forage soit équipé d'un système de forage automatique relié à un ordinateur mené d'un processeur puissant qui peut suivre l'avancement de forage et analyser les données enregistrés afin d'obtenir les paramètres optimaux.

Aussi, l'usure de l'outil de forage peut être prédit par l'utilisation du modèle de Hareland et Rampersad et des données des puits déjà forés, on peut également contrôler les paramètres appliqués d'une façon à réaliser de bonnes performances sans trop user l'outil de forage et lui permettre d'achever le tronçon à forer dans des bonnes conditions.

Le calcul des efficacités mécaniques réalisées et théoriques minimales et maximales nous permet de bien évaluer l'outil de forage, et de définir la marge d'optimisation du choix de l'outil possible dans les puits à forer par la suite, ainsi par l'utilisation des équations donnant l'efficacité mécanique minimale et maximale théorique des différents type d'outil on peut déterminer aussi le type d'outil le plus adapté à une formation donnée.

Recommandations

Le modèle d'optimisation de la vitesse d'avancement a donné des résultats théoriques très encourageants, il mérite d'être testé sur le terrain afin de le valider et le développer pour pallier à ces défaillances.

L'optimisation des paramètres de forage dans un puits doit être faite sur la base des données d'un puits voisin proche afin de minimiser l'effet de l'hétérogénéité horizontale, d'autre part les paramètres à appliquer peuvent être décalés selon les tops des formations pour pallier à ce problème.

Afin d'avoir une plus grande précision et minimiser l'effet de l'hétérogénéité verticale on doit faire l'optimisation sur des intervalles plus petit, au lieu de faire l'optimisation mètre par mètre on prend des intervalles de 10 cm par exemple (selon les performances réalisées), pour cela on doit avoir des données plus précises.

L'optimisation en temps réel résoudre le problème de l'hétérogénéité horizontale, elle utilise les données obtenues lors du forage des mètres précédant, un programme informatique doit être développé afin de rendre notre modèle utilisable en temps réel.

References

- [1] T.Al Sharif, drilling program, Sonatrach –activité amont- division forage.
- [2] Zerari Djamel, Chafai Ridha, Nacer Rihani, Sofiane Doudou, Lamali Rachid, Dhina Okba, Khelif Amar, ''Optimizing drilling parameters and drill bit design boosts ROP by 37% in Algerian field'', National Oilwell Varco & Sonatrach, 2010.
- [3] F.GRONDIN, ''outils de forage'', ENSPM Formation Industrie Forage Production Gisement. 2009.
- [4] Mr. HARCHOUCHE Zaoui, ''Forage au diamant et carottage'', Centre de Développement et d'Application des Techniques Pétroliers et Gazières.
- [5] Horra Hichem, 'approche adaptive d'optimisation des paramètres mécanique de forage', mémoire de magistère en forage et production, Université M'hamed Bougara, Faculté des hydrocarbures et de la chimie, 2010.
- [6] Adam T. Bourgoyne Jr. Keith K.millheim, Martin E. CHeneveret, F.S. Young Jr., "Applied drilling engineering", Society of petroleum ingineers –first printing-, Richardson-TX, 1986.
- [7] Piotr Boryczko, '' drill bit selection and optimization in exploration well 6507/6-4A in the Nordland Ridge Area'', Master's thesis, university of stavanger, faculty of science and technology, 2012.
- [8] Tuna Eren, '' Real time optimization of drilling parameters during drilling operation'', a thesis submitted to the graduate school of natural and applied sciences of middle east technical university, 2010.
- [9] R.V Barragan, Petrobas, and O.L.A Santos, Petrobras, and E.E Maidla Csiro Petroleum, "Optimization Of Multiple Bit Runs", a paper presented at -Society of petroleum ingineers/international association of drilling contractors- drilling conference, 1997.

- [10] Paul Rampersard, Geir Hareland, and Thamarat Pairintra, New Mexico Inst. Of Mining & Technology, '' Drilling Optimization of an Oil or Gas Feild'', a paper presented at -Society of petroleum ingineers/ international association of drilling contractors- drilling conference, 1993.
- [11] Hector U. Caicedo, William M.Clhoun, and Russ T. Ewy, SPE, Chevron Texaco Energy Technology Company (ETC), ''Unique ROP Predictor Using Bit-Specific Coefficient of Sliding Friction and Mechanical Efficiency as a Function of Confined Compressive Strength Impacts Drilling Performance'', a paper presented at -Society of petroleum ingineers/international association of drilling contractors- drilling conference, 2005.
- [12] Runar Nygaard, Geir Hareland, U. of Calgary, 'Application of Rock Strength in Drilling Evaluation', a paper presented at Latin American & Caribbean Petroleum Engineering Conference, 15-18 April, Buenos Aires, Argentina, 2007.

Annexe

Dans les tableaux ci-dessous on représente les paramètres de forage appliqués et les vitesses d'avancement réalisés ainsi que les résultats de l'optimisation pour les défirent outils descendus :

Outil n°1:

Tvd	Rop	Rpm	wob	Wob opt	Rpm opt	Rop opt	e 4°
(m)	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	(m/hr)	formation
4070	6,525318	65,25067	57,16318	79,24893	79,27595	11,90776	
4071	11,22395	69,71047	58,13576	79,24893	79,27595	11,90776	
4072	7,795018	72,05766	79,24893	79,24893	79,27595	11,90776	
4073	14,06099	75,53585	77,11844	79,24893	79,27595	11,90776	
4074	8,77061	79,27595	56,44361	79,24893	79,27595	11,90776	
4075	8,503345	86,07825	44,72035	79,24893	69,71047	10,79495	
4076	10,66296	84,30524	79,22652	79,24893	86,07825	11,84581	
4077	12,55349	85,81045	70,00724	79,22652	75,53585	12,96097	
4078	8,945131	89,31082	73,22145	79,22652	79,27595	10,9008	
4079	11,49245	92,77547	64,64769	79,22652	92,77547	11,30952	
4080	10,43793	93,98615	78,41938	64,64769	84,30524	12,35536	
4081	15,58648	93,65062	80,66393	80,66393	93,98615	12,37299	
4082	13,92229	93,66915	85,9796	85,9796	93,98615	13,80299	£
4083	13,21125	93,53785	82,08057	85,9796	92,77547	20,09806	rasnien
4084	12,77946	94,59321	66,92927	66,92927	93,53785	19,25851	[S]
4085	14,85435	96,29463	66,84815	85,9796	96,29463	17,39107	ni
4086	13,71625	92,65476	56,17979	56,17979	96,29463	14,38409	e
4087	7,47265	91,24439	66,81623	56,17979	96,29463	17,13679	n
4088	14,2418	92,4206	67,03698	56,17979	96,29463	19,7394	
4089	10,11606	93,99624	73,00126	56,17979	96,29463	20,362	
4090	17,29316	91,55318	74,04266	56,17979	93,99624	12,11109	
4091	16,94434	90,94328	77,32679	77,32679	90,94328	17,34765	
4092	15,78686	92,75816	69,64351	67,03698	90,94328	20,64162	
4093	14,88864	91,10623	78,94608	69,64351	90,94328	24,59175	
4094	15,36852	92,71543	65,20376	65,20376	90,94328	18,19268	
4095	17,26202	92,90131	72,71046	78,94608	92,90131	17,51287	
4096	7,360594	75,1395	49,58077	78,94608	92,90131	16,38464	
4097	8,512288	83,81287	34,96719	78,94608	92,90131	16,80499	
4098	16,88767	95,41644	55,40086	72,71046	95,41644	18,58655	
4099	11,58501	96,01807	48,36762	72,71046	96,01807	18,30613	

4100 9,870842 94,18899 68,23085 34,96719 96,01807 12,70 4101 8,745082 92,80923 72,18977 34,96719 96,01807 17,28 4102 10,08792 95,25764 63,88861 48,36762 96,01807 13,85 4103 9,047741 95,02855 58,74484 48,36762 96,01807 11,0 4104 14,17984 95,86462 53,07411 53,07411 95,86462 12,48 4105 8,366534 93,3286 64,9952 53,07411 95,86462 12,33 4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26 4109 12,1055 84,79661 86,84136 64,9952 84,79661 17,63	865 442 522 449 6662
4102 10,08792 95,25764 63,88861 48,36762 96,01807 13,85 4103 9,047741 95,02855 58,74484 48,36762 96,01807 11,0 4104 14,17984 95,86462 53,07411 53,07411 95,86462 12,48 4105 8,366534 93,3286 64,9952 53,07411 95,86462 12,33 4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	6442 622 6449 6662
4103 9,047741 95,02855 58,74484 48,36762 96,01807 11,0 4104 14,17984 95,86462 53,07411 53,07411 95,86462 12,48 4105 8,366534 93,3286 64,9952 53,07411 95,86462 12,33 4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	622 6449 6662
4104 14,17984 95,86462 53,07411 53,07411 95,86462 12,48 4105 8,366534 93,3286 64,9952 53,07411 95,86462 12,33 4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	449 662
4105 8,366534 93,3286 64,9952 53,07411 95,86462 12,33 4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	662
4106 16,35908 94,34917 65,57524 65,57524 95,86462 13,74 4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	
4107 16,34737 85,13359 77,60621 53,07411 85,13359 18,83 4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	250
4108 12,01289 85,34708 85,51171 53,07411 85,13359 22,26	356
	268
4109 12,1055 84,79661 86,84136 64,9952 84,79661 17,63	005
	725
4110 12,4493 86,26604 83,41484 65,57524 84,79661 27,28	479
4111 12,41941 86,04664 82,46682 77,60621 84,79661 16,68	495
4112 15,192 85,68369 80,58485 80,58485 84,79661 16,58	681
4113 12,24178 85,37634 81,3499 80,58485 84,79661 14,01	689
4114 14,32493 84,56335 72,56637 72,56637 86,26604 16,82	536
4115 10,67081 84,62035 66,92187 82,46682 84,56335 16,61	611
4116 17,22334 87,03933 76,36458 81,3499 87,03933 17,17	886
4117 18,98289 86,69461 76,30938 66,92187 87,03933 18,1	559
4118 21,83365 86,31684 84,90581 84,90581 87,03933 23,	54
4119 16,98883 86,29993 81,53833 84,90581 87,03933 22,1	589
4120 22,55622 86,34742 80,03276 84,90581 86,29993 20,66	433
4121 18,89994 86,3269 82,11266 84,90581 86,69461 22,27	567
4122 17,18673 86,73184 84,26219 84,90581 86,29993 20,14	736
4123 9,451471 85,93482 88,32427 80,03276 86,73184 24,73	198
4124 5,372661 85,87407 89,18418 80,03276 86,73184 28,4	026
4125 6,889427 87,10635 85,57957 82,11266 85,87407 26,42	303
4126 8,10695 87,00163 88,56145 84,26219 85,87407 15,93	909
4127 7,585278 87,66612 89,51219 85,57957 87,66612 7,646	884
4128 8,971908 87,64362 87,25704 85,57957 87,66612 8,398	776
4129 10,3654 87,96648 82,43176 82,43176 87,96648 10,00	347
4130 9,423195 86,82452 86,49847 82,43176 86,82452 11,24	659
4131 13,12098 87,96767 86,48673 82,43176 87,96767 11,64	198
4132 15,14685 88,17938 77,39964 77,39964 88,17938 14,30	432
4133 9,963378 88,56541 82,26726 77,39964 88,56541 13,50	956
4134 11,5823 84,99146 66,58597 66,58597 88,56541 16,6	559
4135 16,66523 85,8692 76,29158 86,48673 84,99146 17,64	709
4136 11,52906 85,88932 80,35959 66,58597 84,99146 13,2	734
4137 9,658603 84,03397 87,10081 66,58597 88,56541 13,4	288
4138 10,47582 84,269 83,78603 66,58597 85,88932 14,21	224
4139 9,325994 84,52994 89,88621 76,29158 85,88932 15,18	738
4140 9,702709 84,11883 90,02358 80,35959 85,88932 11,48	862
4141 12,1912 84,52434 84,50113 83,78603 84,52994 11,55	456
4142 10,61313 85,33997 84,3714 83,78603 84,11883 11,32	981
4143 8,945173 84,79163 86,79656 84,3714 84,11883 13,02	397

4144	8,726453	85,44664	72,10008	90,02358	84,11883	10,45101	
4145	4,655961	86,19125	88,88286	72,10008	84,52434	14,4997	
4146	8,482487	86,041	80,41068	72,10008	84,79163	12,78133	
4147	10,07662	87,46664	72,53398	72,10008	84,79163	11,338	
4148	11,89494	86,74173	79,31472	72,10008	87,46664	12,19232	
4149	11,51481	86,4224	83,11331	72,53398	86,041	15,23294	
4150	9,549584	85,48208	85,61935	85,61935	87,46664	21,5783	
4151	8,698629	86,11893	81,1287	85,61935	87,46664	21,66849	
4152	7,853092	87,13398	87,56201	79,31472	85,48208	11,46435	
4153	8,322737	82,9492	84,92272	81,1287	87,13398	10,18295	
4154	6,404948	83,94866	88,04952	81,1287	87,13398	9,615185	
4155	7,490193	84,94862	83,8755	81,1287	87,13398	8,917637	
4156	6,766265	85,01629	82,0116	82,0116	87,13398	7,405861	
4157	9,557074	85,08134	85,89919	88,04952	85,08134	7,782569	
4158	7,811698	85,08807	84,90576	88,04952	85,08807	10,47061	
4159	10,97171	85,77469	82,62052	85,89919	85,77469	13,57148	
4160	8,572239	86,31734	79,68766	85,89919	86,31734	15,99865	
4161	8,362091	87,17941	74,3598	85,89919	87,17941	20,33333	
4162	8,612055	87,86952	72,7902	84,90576	87,86952	35,20346	
4163	9,564806	92,43108	74,556	82,62052	92,43108	11,78257	
4164	11,81596	93,3476	70,81338	70,81338	93,3476	10,88989	
4165	10,27524	95,22977	76,2237	70,81338	95,22977	12,45358	
4166	12,88938	95,71502	71,0244	70,81338	95,71502	13,00983	
4167	8,443486	92,79451	75,0465	70,81338	95,71502	13,30949	
4168	12,28186	92,75729	85,43722	85,43722	95,71502	12,78177	
4169	10,01589	92,57594	85,7394	85,7394	95,71502	15,2253	
4170	7,439273	92,18416	85,5432	85,7394	95,71502	19,55565	
4171	7,890952	92,82317	81,6192	85,7394	92,82317	11,18461	
4172	5,074316	89,82381	86,6223	86,6223	92,82317	11,70046	
4173	6,285152	90,11195	84,366	86,6223	92,82317	9,357532	
4174	6,287255	89,60899	82,9926	81,6192	92,82317	8,330761	
4175	3,73738	89,81327	79,6572	86,6223	92,82317	9,886539	
4176	4,216961	90,66735	81,6192	86,6223	89,60899	6,360652	
4177	3,555216	90,18621	79,8534	84,366	89,60899	7,216072	ma
4178	4,470234	89,37482	78,26377	82,9926	89,37482	6,768278	gévinien
4179	5,309414	88,20153	68,5427	68,5427	88,20153	5,282174	₹.
4180	5,330301	87,4492	70,81674	68,5427	87,4492	5,502474	2.
4181	6,03392	87,55733	70,02211	68,5427	87,4492	5,858348	en
4182	5,059769	86,59343	77,85408	68,5427	86,59343	5,990267	
4183	4,117011	89,16828	57,47328	77,85408	89,16828	8,144054	
4184	5,248463	89,58328	57,50752	77,85408	89,58328	15,99999	
4185	5,174667	88,70138	67,20445	77,85408	89,58328	7,276172	
4186	4,840274	88,8022	66,7569	77,85408	89,58328	6,591753	
4187	6,762898	88,67018	78,57529	78,57529	89,58328	10,43913	

4188	5,294675	88,182	86,07699	86,07699	89,58328	10,73572
4189	6,332961	88,06319	83,484	86,07699	88,8022	7,306536
4190	6,653891	87,08195	85,88155	86,07699	87,08195	6,453461
4191	5,852101	84,37651	73,66372	73,66372	88,67018	6,749592
4192	6,502156	87,44676	79,15859	73,66372	88,182	6,236943
4193	5,235357	91,3181	69,87848	85,88155	84,37651	6,889655
4194	5,578648	91,13474	68,31636	85,88155	84,37651	6,836083
4195	7,059061	90,1292	69,29052	79,15859	84,37651	6,363875
4196	6,758316	88,01335	78,44032	68,31636	87,44676	12,2178
4197	5,03002	88,50329	72,3444	78,44032	91,3181	6,461646
4198	6,546752	88,97801	63,69812	63,69812	88,01335	6,311218
4199	6,738557	87,08658	74,49861	78,44032	90,1292	6,613014
4200	6,035744	87,52847	69,75755	63,69812	87,08658	6,708158
4201	4,963141	75,18391	58,29182	58,29182	88,97801	6,325662
4202	5,85964	73,10835	71,92032	74,49861	88,97801	6,824175
4203	6,039177	94,67923	66,05196	74,49861	94,67923	6,779231
4204	6,473546	94,94083	62,56475	71,92032	94,94083	6,648443
4205	5,838791	95,0154	63,62586	71,92032	95,0154	6,665806
4206	6,742388	94,96155	65,7836	71,92032	95,0154	6,467805
4207	7,110515	94,15472	73,31522	73,31522	95,0154	7,506961
4208	7,270802	93,30789	75,48129	75,48129	95,0154	7,317255
4209	7,8414	93,53474	73,41074	75,48129	93,30789	7,611546
4210	4,907385	77,01936	65,11634	75,48129	94,96155	7,668189
4211	6,744212	91,30323	69,83466	75,48129	94,15472	7,528285
4212	5,973404	91,34264	70,73362	75,48129	93,53474	7,520452
4213	6,416426	90,10625	71,40588	73,41074	93,53474	7,378938
4214	6,970612	89,07103	73,26287	73,26287	91,34264	6,913998
4215	7,103454	90,44762	78,23745	78,23745	89,07103	7,284132
4216	7,145042	90,15494	77,68023		89,07103	7,594169
4217	6,986945	92,68888	73,53718	78,23745	92,68888	7,272019
4218	7,433913	93,07129	75,03335	78,23745	93,07129	7,347998
4219	5,692888	88,64374	70,4176	78,23745	93,07129	7,893148
4220	4,602871	86,7326	78,49781	78,49781	93,07129	7,728573
4221	6,462077	85,80927	82,1486	82,1486	93,07129	8,294644
4222	5,395415	85,78773	82,57825	82,57825	93,07129	8,286091
4223	7,19463	85,93519	80,32277	70,4176	85,78773	10,87499
4224	6,813683	86,18097	79,09468	78,49781	85,78773	11,05011
4225	6,282183	84,98578	81,68416	79,09468	84,98578	7,461462
4226	7,083028	84,50189	82,58204	79,09468	84,50189	9,254182
4227	6,922619	85,11192	81,77008	82,58204	86,18097	8,542205
4228	4,895109	81,9296	76,63844	82,58204	86,18097	7,422965
4229	6,450648	85,77486	82,94074	82,94074	81,9296	8,330282
4230	6,388147	86,42949	82,67834	82,94074	81,9296	8,456716
4231	6,069391	87,16423	83,60013	83,60013	81,9296	11,76554

eifelien

4312 4313 4314 4315 4316 4317 4318	7,19463 5,87188 7,066505 5,92041 4,435528 4,21903 3,867011 3,439311 2,439511	91,64859 92,9222 92,20926 92,65754 84,86351 87,16362 86,57792 87,95969 79,37437	63,10456 63,34051 61,14096 62,09905 62,87782 66,63174 67,65304 79,79246 85,42122	66,26972 62,8978 61,14096 61,14096 61,14096 61,14096 61,14096 62,09905 62,87782	91,64859 91,64859 91,64859 91,64859 92,9222 92,9222 92,65754 92,65754 87,95969	7,431136 7,295943 7,700889 7,556698 6,933447 6,700536 6,686576 5,870632 4,648401	eimisie
4313 4314 4315 4316	7,19463 5,87188 7,066505 5,92041 4,435528 4,21903 3,867011	91,64859 92,9222 92,20926 92,65754 84,86351 87,16362 86,57792	63,10456 63,34051 61,14096 62,09905 62,87782 66,63174 67,65304	62,8978 61,14096 61,14096 61,14096 61,14096	91,64859 91,64859 91,64859 92,9222 92,9222 92,65754	7,295943 7,700889 7,556698 6,933447 6,700536 6,686576	
4313 4314 4315	7,19463 5,87188 7,066505 5,92041 4,435528 4,21903	91,64859 92,9222 92,20926 92,65754 84,86351 87,16362	63,10456 63,34051 61,14096 62,09905 62,87782 66,63174	62,8978 61,14096 61,14096 61,14096 61,14096	91,64859 91,64859 91,64859 92,9222 92,9222	7,295943 7,700889 7,556698 6,933447 6,700536	
4313 4314	7,19463 5,87188 7,066505 5,92041 4,435528	91,64859 92,9222 92,20926 92,65754 84,86351	63,10456 63,34051 61,14096 62,09905 62,87782	62,8978 61,14096 61,14096 61,14096	91,64859 91,64859 91,64859 92,9222	7,295943 7,700889 7,556698 6,933447	
4313	7,19463 5,87188 7,066505 5,92041	91,64859 92,9222 92,20926 92,65754	63,10456 63,34051 61,14096 62,09905	62,8978 61,14096 61,14096	91,64859 91,64859 91,64859	7,295943 7,700889 7,556698	
	7,19463 5,87188 7,066505	91,64859 92,9222 92,20926	63,10456 63,34051 61,14096	62,8978 61,14096	91,64859 91,64859	7,295943 7,700889	
1212	7,19463 5,87188	91,64859 92,9222	63,10456 63,34051	62,8978	91,64859	7,295943	
4311	7,19463	91,64859	63,10456				
4310	_			66.06070	01 (4050	7 421126	
4309	7,072022	91,66962	62,8978	62,8978	91,66962	7,320021	
4308	4,565351	93,81052	66,26972	63,07331	84,2437	11,67488	
4307	7,180585	91,99683	63,07331	63,07331	84,2437	14,09919	
4306	6,896466	92,04771	64,77063	64,77063	84,2437	6,850169	
4305	4,748598	92,56055		73,44783	84,2437	6,70006	
4304	5,662871		69,00029			7,713387	
4303	7,251765	85,33105	68,44805	68,44805	85,33105	7,659972	
4302	6,064729	85,97631	73,44783	58,22755	85,97631	8,734336	
4301	6,756981	86,13873	70,39587	58,22755	86,13873	8,027826	
4300	4,418619	87,2775	74,51352	58,22755	87,2775	5,379599	
4299	3,259767	88,84209	72,30777	58,22755	87,39706	5,252071	
4298	5,278863	88,00616	58,22755	58,22755	89,38525	5,772062	
4297	4,795329	87,72456	60,02186	60,02186	90,83762	5,710698	
4296	4,614219	87,39706	60,38472	60,38472	90,83762	5,79746	
4295	4,160718	87,48519	78,14629	67,04866	90,83762	6,164644	
4294	5,294148	89,38525	67,04866	80,68911	89,21716	8,168068	
4293	4,908362	90,83762	74,85469	87,48055	89,21716	7,267016	
4292	5,753644	90,59246	80,68911	71,94729	89,21716	7,184635	
4291	6,725291	89,21716	71,94729	71,94729	89,21716	6,822394	
4290	4,389469	91,47136	76,75153	76,75153	87,79699	4,226404	
4289	4,472521	91,3363	87,48055	87,48055	92,07964	3,984461	
4288	3,380826	91,79984		77,07221	92,07964	3,813964	
4287	3,982435	92,07964	78,28552	83,87997	86,61577	3,849378	
4286	3,892941	87,79699	83,87997	75,68092	86,61577	4,287155	
4285	3,375967	86,61577	79,8099	72,1004	86,61577	6,208007	
4284	3,487647	87,95983	77,07221	70,45044	87,95983	6,032052	
4283	2,178673	91,40427	78,41548	70,45044	87,5946	6,559584	
4282	4,080184	88,86417	75,68092	70,45044	87,5946	6,638743	
4281	4,754212	88,60801	72,1004	70,45044	87,5946	6,631671	
4280	5,782917	88,29134	70,45044	70,45044	88,52955	5,64998	
4279	5,255709	87,5946	77,31391	80,73815	82,16771	5,956915	
4278	5,071153	88,04545	78,92781	81,56989	82,16771	6,319454	
4277	4,260071	88,52955	76,95983	82,01052	82,16771	6,57579	
4276	3,985362	85,98358	75,23062	82,01052	82,16771	6,530008	

Outil n° 2:

Tvd	Rop	Rpm	wob	Wob opt	Rpm opt	Rop opt	formation
(m)	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	(m/hr)	
4328	10,62034	61,21344	44,145	34,02501	87,99712	11,00644	
4329	4,489079	63,79458	43,16281	34,02501	87,99712	11,00644	
4330	5,620449	74,98997	49,99004		87,99712	11,00644	
4331	11,14032	83,1673	34,02501	34,02501	87,99712	11,00644	
4332	7,18023	87,99712	50,19257	34,02501	87,99712	11,00644	
4333	10,39609	74,48237	49,96362	34,02501	87,99712	11,58763	
4334	12,32334	85,57776	40,52011	34,02501	87,99712	12,52841	
4335	9,408236	88,48882	53,81326		74,48237	13,30447	
4336	6,9085	84,42588	60,71581	40,52011	74,48237	13,63206	
4337	6,490485	79,46679	63,25324	40,52011	74,48237	13,44049	
4338	9,457375	79,66663	60,06487	40,52011	79,46679	13,21591	
4339	5,364216	79,37682	69,72742	53,81326	79,37682	13,22703	
4340	4,745678	80,7771	67,65886		79,37682	8,972623	
4341	4,816459	80,69259	67,5247	60,06487	79,37682	9,057383	
4342	4,803024	78,46886	67,61215		78,46886	9,450214	
4343	4,62364	77,04871	71,04375	71,04375	80,7771	5,305291	
4344	4,602897	72,2626	75,8991	67,5247	72,2626	4,951789	
4345	5,30202	73,84875	74,81413	75,8991	80,69259	5,460981	œ
4346	4,638155	74,81203	76,08875	67,61215	72,2626	5,127682	
4347	4,155229	76,19508	70,13705	76,08875	77,04871	4,973997	I •
4348	2,696131	76,94789	74,91076	70,13705	72,2626	6,818392	
4349	2,765489	76,76025	73,47118	70,13705	73,84875	7,019622	e
4350	3,095314	76,00756	72,76251	70,13705	74,81203	5,650845	n
4351	1,843326	77,87992	69,84758	69,84758	76,00756	3,909962	
4352	1,861776	76,20578	78,21788	69,84758	76,00756	3,678555	
4353	1,609032	76,59103	76,58886	69,84758	76,00756	4,416786	
4354	1,409811	76,5857	81,65641	69,84758	76,00756	3,633862	
4355	1,36771	77,28651	86,9273	69,84758	76,20578	2,035473	
4356	1,785452	82,77813	88,4862	76,58886	82,77813	2,443468	
4357	1,263194	79,93034	88,0938	76,58886	82,77813	2,306926	
4358	2,503546	76,75415	95,93347	95,93347	76,5857	2,295676	
4359	1,558328	76,71256	88,32907	95,93347	82,77813	2,74903	
4360	1,556561	87,0948	70,08738	95,93347	87,0948	2,10528	
4361	0,897138	84,15784	83,91079	70,08738	76,71256	3,466602	
4362	1,009078	80,16238	76,68906	95,93347	76,71256	1,772836	
4363	0,792595	78,41648	89,4097	70,08738	76,71256	1,858749	
4364	0,918115	73,89065	85,08795	70,08738	87,0948	1,44692	
4365	0,957106	83,87594	87,15145	76,68906	84,15784	1,032353	
4366	0,768144	85,57626	81,24007	76,68906	73,89065	1,006617	
4367	0,861201	77,34905	79,45314	89,4097	73,89065	0,900454	

4368	0,978191	76,23696	80,36663	87,15145	73,89065	1,012512
4369	0,8785	76,38578	83,35256	87,15145	76,23696	1,035429
4370	0,940605	67,5385	81,09859	79,45314	67,5385	0,993893
4371	0,928087	74,54272	84,28756	79,45314	67,5385	0,94946
4372	0,790783	77,75523	93,21104	80,36663	77,75523	0,962047
4373	1,214346	72,84655	93,01084	93,21104	67,5385	1,238828
4374	0,840463	74,452	88,83045	93,21104	67,5385	1,364931
4375	1,337111	72,9411	88,74736	93,21104	72,84655	1,258198
4376	0,955706	73,75812	93,08875	93,21104	72,84655	1,166177
4377	0,831617	73,88384	94,91281	88,74736	72,84655	1,377751
4378	1,304138	73,31318	93,16633	88,74736	72,9411	1,418474
4379	1,265135	71,87764	93,32577	88,74736	71,87764	1,624205
4380	1,273644	73,04797	92,71971	92,71971	71,87764	1,436336
4381	1,444103	79,12566	91,583	91,583	71,87764	1,786589
4382	1,517674	79,90352	87,62665	87,62665	79,90352	1,515307
4383	1,606285	80,59218	87,11994	87,11994	80,59218	1,576343
4384	1,472024	83,57083	86,19707	86,19707	83,57083	1,573677
4385	1,524531	82,87872	72,72117	72,72117	79,12566	1,570034
4386	1,502954	77,00603	84,70819	87,62665	77,00603	1,534126
4387	1,67668	78,50594	83,55065	72,72117	77,00603	1,599926
4388	1,610481	77,54638	83,11847	72,72117	77,00603	1,635092
4389	1,568575	75,98629	82,46121	84,70819	82,87872	1,73167
4390	2,047511	71,47739	79,20827	79,20827	78,50594	2,10299
4391	1,711715	79,9555	82,98775	79,20827	79,9555	2,536464
4392	1,458505	78,57539	83,21147	79,20827	79,9555	2,703035
4393	1,510427	76,94806	78,2923	83,21147	71,47739	1,997762
4394	1,509177	77,18037	82,3855	83,21147	71,47739	2,062404
4395	1,625522	78,26607	89,43322	89,43322	79,9555	1,682708
4396	1,772537	76,9963	90,17112	90,17112	76,94806	1,764308
4397	1,674222	77,09661	93,77982	93,77982	76,94806	1,74445
4398	1,444319	77,74896	87,2284	93,77982	76,9963	1,746529
4399	1,946583	74,8521	87,97598	93,77982	74,8521	2,059063
4400	1,543939	72,41543	90,7807	93,77982	72,41543	1,7018
4401	1,896304	76,23211	95,47302	95,47302	72,41543	1,82677
4402	1,531346	77,86859	91,87704		72,41543	1,849251
4403	1,374935	77,06105	92,80574	87,97598	72,41543	1,737009
4404	1,329797	74,42967	91,7368	95,47302	72,41543	1,959064
4405	1,45445	74,088	88,32048	95,47302	74,088	1,715901
4406	1,365152	75,87324	89,05881	88,32048	77,86859	1,542955
4407	1,302313	77,15553	88,81761	88,32048	74,088	1,404541
4408	1,496097	77,84705	90,12401	88,32048	77,84705	1,409597
4409	2,048032	73,35291	95,81917	95,81917	73,35291	2,059745
4410	2,696133	72,06342	89,4672	88,81761	72,06342	2,482003

4411	1,389315	72,77212	92,3121	88,81761	72,06342	2,202184	
4412	1,522718	72,66345	91,7235	89,4672	72,06342	2,039064	
4413	1,079442	77,72476	92,67733	89,4672	72,06342	2,040095	
4414	1,110203	79,5115	89,93241	89,4672	72,06342	2,416435	0.1.1.
4415	1,143478	79,10713	90,93021	89,93241	72,66345	1,621773	Siégénien
4416	1,943537	77,54805	91,26913	89,93241	72,66345	1,786288	
4417	1,111758	70,26269	91,47573	89,93241	79,5115	1,271016	
4418	1,122392	70,52631	92,06449	92,06449	79,5115	2,031661	
4419	1,29672	73,4128	98,74151	98,74151	79,10713	1,547373	
4420	1,051441	68,73843	99,06032	91,26913	77,54805	1,863506	
4421	0,847508	70,95407	96,48552	91,47573	73,4128	1,216805	
4422	0,726165	81,82307	94,2833	99,06032	68,73843	1,142297	
4423	0,611273	96,3031	84,98848	99,06032	96,3031	1,313384	
4424	1,017768	71,35249	99,05303	99,06032	68,73843	0,989628	
4425	1,264363	68,59159	102,2137	102,2137	96,3031	1,202175	
4426	0,82613	67,74416	93,04672	102,2137	67,74416	1,152885	

Outil n $^{\circ}$ 3:

Tvd	Rop	Rpm	wob	wob opt	Rpm opt	Rop	formation
(m)	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	opt	
1.120	0.7.600.7	0.0	45.4004	44.0400	100 00 111	(m/hr)	
4429	0,76985	92	47,4804	44,2429	123,09611	8,87354	
4430	1,39552	89,27733	44,2429	44,2429	123,09611	8,87354	
4431	5,62181	121,7246	52,9509	44,2429	123,09611	8,87354	
4432	3,79655	123,0867	57,39612	44,2429	123,09611	8,87354	
4433	2,97435	123,0961	59,2109	44,2429	123,09611	8,87354	
4434	2,81742	122,6324	59,25405	44,2429	123,09611	7,85749	
4435	2,56381	123,0113	60,82037	52,9509	123,09611	6,58701	
4436	2,65862	124,2289	61,36319	57,39612	124,2289	4,21396	Si.
4437	1,28431	117,2663	58,89722	58,89722	124,2289	3,68677	ié
4438	1,17723	117,3059	58,34452	58,34452	124,2289	3,88314	000
4439	0,76269	115,3578	62,66908	58,34452	124,2289	3,23204	© `
4440	0,76634	116,1774	64,88244	58,34452	124,2289	3,11131	ni
4441	1,04873	114,9582	79,4923	79,4923	117,30592	2,02437	en
4442	1,16102	110,4479	78,71293	79,4923	110,44787	1,08187	
4443	1,37301	105,5425	78,1717	79,4923	105,54248	1,39448	
4444	1,41875	113,69	73,0276	79,4923	105,54248	1,42689	
4445	1,44692	123,2916	63,02171	63,02171	105,54248	2,30195	
4446	0,99493	107,7426	74,7111	78,71293	123,29157	1,54995	
4447	1,17302	105,8711	77,39045	78,1717	123,29157	3,72738	
4448	1,28139	104,9076	78,66332	78,66332	123,29157	3,68569	
4449	1,00617	105,7501	78,79509	78,79509	123,29157	2,0254	

1150	2 11052	125 0000	77 04450	79 70500	125 00000	2 10490	
4450	2,11853	125,9009 119,0444	77,94459	78,79509	125,90089	2,19489	
4451	0,85944 1,22568	121,3908	80,3612 78,7567	77,39045	125,90089 125,90089	2,21998 1,95179	
4453	0,80186	121,3908		77,94459	125,90089		
		124,4832	81,72564			1,91423	
4454	1,01416	-	81,3885	77,94459	126,00527	2,06019	
4455	1,22942	122,8667	82,08308	78,7567	126,00527	1,19557	
4456	1,42794	119,0756	78,56862	78,56862	119,07561 119,07561	1,4287	
4457	1,58779	120,2078	76,83601	76,83601		1,6226	
4458 4459	2,43535	119,5035	76,86416	76,83601	119,07561	1,91496	
	2,12255	120,6252	77,51885	76,83601	122,86666	2,36587	
4460	1,21299	109,0656	70,96381	70,96381	120,62524	4,1725	
4461	1,63573	130,6181	68,74362	77,51885	130,61813	2,47721	
4462	1,43271	130,4559	71,16839	77,51885	130,61813	2,56533	
4463	1,57625	114,0555	79,37092	79,37092	130,61813	2,20384	
4464	1,84974	101,9062	87,23325	87,23325	130,61813	2,39541	
4465	0,94921	97,99069	79,48317	87,23325	130,61813	4,06757	
4466	0,85821	100,7854	72,55148	87,23325	130,45592	3,33562	
4467	0,83277	102,4742	72,23658	87,23325	114,05546	2,3703	
4468	0,89977	100,1608	71,4089	87,23325	102,47421	1,82025	
4469	0,93311	101,5303	72,17247	71,4089	97,990692	0,95075	
4470	1,71805	100,2656	79,1419	79,1419	100,16081	1,71124	
4471	1,70404	107,5724	76,34543	79,1419	107,57243	2,12701	
4472	1,66162	125,159	69,56134	79,1419	125,15904	3,78711	
4473	0,93581	95,78028	79,48284	79,48284	125,15904	4,00077	
4474	1,51068	94,92616	76,88618	79,48284	125,15904	1,89219	
4475	1,17963	114,1452	66,41925	79,48284	125,15904	2,15519	
4476	1,33813	114,586	60,04901	79,48284	125,15904	1,58071	
4477	2,35637	107,6874	63,77199	60,04901	94,926163	5,57935	
4478		99,06771	71,3313	60,04901		2,83568	
4479	1,71874	99,0966	68,84279	60,04901	99,067711	3,11222	
4480	1,06222	100,1528	71,0325	60,04901	99,067711	6,73446	
4481	1,69784	100,1242	70,13465	63,77199	99,067711	4,65324	
4482	1,4344	100,3062	73,33028	68,84279	100,30616	1,91396	
4483	0,93757	100,3317	73,15556	68,84279	99,096596	1,72119	
4484	0,85418	91,68185	74,44011	70,13465	100,33167	1,43534	
4485	0,66811	85,51272	88,20916	70,13465	100,33167	1,34685	
4486	1,37745	98,43719	88,39235	88,39235	100,33167	1,45709	
4487	1,08336	106,3146	89,18047	89,18047	106,31458	1,2627	
4488	0,49899	100,805	86,23955	89,18047	106,31458	0,96389	
4489	0,42019	95,30096	88,37848	89,18047	106,31458	1,12227	
4490	0,51136	92,23388	86,11381	89,18047	106,31458	1,12306	
4491	1,4667	93,05256	84,22551	84,22551	106,31458	1,93083	
4492	1,44177	92,95699	84,91968	84,22551	92,233879	1,42227	
4493	0,83706	90,71875	87,94359	84,22551	90,71875	1,64277	

4494	1,12295	117,6876	72,07955	72,07955	90,71875	1,45677
4495	1,34784	116,2849	79,40659	72,07955	117,68758	1,26697
4496	1,69491	109,9728	75,08728	72,07955	90,71875	1,44873
4497	1,72117	115,3461	65,06944	65,06944	117,68758	1,70776
4498	2,19873	115,3159	61,51073	61,51073	109,97281	2,58648
4499	2,16042	115,9389	62,58383	61,51073	109,97281	2,39068
4500	0,81295	112,4768	69,04965	61,51073	109,97281	2,03936
4501	0,87982	101	80,2458	61,51073	101	6,77665

Outil n° 4:

Tvd	Rop	Rpm	wob	wob opt	Rpm opt	Rop opt	formation
(m)	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	(m/hr)	
4502	1,65967	98,75518	43,6545	77,3784	106,98304	3,011477	
4503	1,95652	106,983	46,41706	77,3784	106,98304	3,011477	
4504	3,37679	102,2139	60,76534	77,3784	106,98304	3,011477	
4505	2,79147	101,8667	76,96576	77,3784	106,98304	3,011477	
4506	2,463	102,8393	77,3784	77,3784	106,98304	3,011477	
4507	2,90531	102,0295	72,95525	46,41706	101,86673	4,526164	
4508	2,87976	101,703	75,71459	60,76534	101,703011	3,598293	
4509	2,08757	102,5915	78,2049	72,95525	101,703011	3,13115	
4510	2,36019	101,079	75,78469	72,95525	102,83931	3,090443	
4511	1,42912	105,2329	74,20508	72,95525	101,079033	3,196022	
4512	1,43116	106,483	72,93355	72,93355	101,079033	2,818043	
4513	1,1301	95,50851	73,88359	78,2049	106,482956	2,5615	
4514	0,86434	102,2501	76,25145	72,93355	106,482956	1,446137	S .
4515	0,7107	95,08181	74,67466	72,93355	106,482956	1,593504	6
4516	1,01381	114,8298	71,94844	71,94844	114,829788	1,213935	ge
4517	0,92107	115,4741	71,3343	71,3343	95,08181	1,021939	enien
4518	0,87138	117,0762	72,67543	76,25145	117,076187	1,009001	ie
4519	2,41888	115,9167	73,89189	74,67466	117,076187	2,568541	T
4520	1,02532	116,3629	74,31863	74,31863	114,829788	2,134296	
4521	0,68066	108,828	74,51946	74,51946	117,076187	1,552066	
4522	0,75985	110	73,0845	74,51946	117,076187	1,563758	
4523	0,72777	92,49123	76,74358	76,74358	116,362907	2,257156	
4524	0,84354	86,11776	71,04898	71,04898	116,362907	0,909371	
4525	1,06931	86,98003	77,48922	77,48922	86,1177597	0,931989	
4526	0,64083	82,61598	92,29706	71,04898	82,6159821	0,970276	
4527	0,75925	99,73178	85,2701	71,04898	82,6159821	0,919188	
4528	0,99933	89,67702	79,61523	71,04898	99,731781	1,05375	
4529	0,82291	89,59654	80,006	77,48922	82,6159821	1,044069	
4530	0,70869	85,30854	90,61952	79,61523	82,6159821	0,929651	
4531	0,66666	88,31556	84,69065	79,61523	85,3085403	0,884005	

Outil n° 5:

Tvd (m)	Rop	Rpm	wob	wob opt	Rpm opt	Rop opt	formation
	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	(m/hr)	
4532	1,38972	92,7084	53,24201	53,24201	120,05871	2,387236	
4533	1,69864	118,4638	59,56729	53,24201	120,05871	2,387236	
4534	2,17903	120,0275	72,29255	53,24201	120,05871	2,387236	
4535	0,85291	120,0587	77,94626	53,24201	120,05871	2,387236	
4536	0,76391	97,0102	79,68563	53,24201	120,05871	2,387236	
4537	0,7292	126,6168	73,95001	59,56729	126,61684	1,930165	
4538	0,88428	135,5546	70,70608	70,70608	97,010201	3,091329	
4539	0,64598	110,473	84,1035	70,70608	97,010201	0,928263	
4540	0,74638	92,98102	91,0798	70,70608	92,981018	0,917496	
4541	1,01375	112,988	94,65114	94,65114	135,5546	1,28425	
4542	1,22346	112,6774	66,24582	66,24582	135,5546	1,027863	
4543	1,76551	114,4805	67,75171	66,24582	114,48051	1,40466	
4544	1,14731	130,2472	70,7796	66,24582	130,24718	1,484053	
4545	0,65356	128,8191	76,66051	66,24582	112,67744	1,533988	
4546	1,06501	93,5038	76,76979	66,24582	93,503799	1,934831	
4547	1,24792	92,37249	80,16132	67,75171	92,37249	2,610764	Si
4548	1,11817	92,07635	82,48578	70,7796	92,076347	1,821761	
4549	1,20156	91,86555	80,2546	82,48578	91,865555	1,19101	gí
4550	1,44781	97,65085	77,18796	82,48578	97,650848	1,624146	én
4551	1,33425	122,2581	75,63657	75,63657	91,865555	1,620108	ie
4552	1,47606	121,7174	78,15987	75,63657	122,25806	1,466826	en
4553	1,5151	120,9209	77,36321	75,63657	122,25806	1,467705	
4554	1,81974	105,9603	73,10977	73,10977	97,650848	1,739012	
4555	1,12583	90,83784	75,145	73,10977	122,25806	1,891157	
4556	1,15113	106,9935	70,81679	78,15987	121,71739	1,544695	
4557	1,40579	107,9035	67,98278	77,36321	120,92093	1,59911	
4558	1,34239	110,5984	66,19154	75,145	110,59837	1,925969	
4559	1,27177	117,1472	65,89737	65,89737	90,837845	1,786435	
4560	1,4572	109,9093	65,05228	65,05228	106,99354	1,550879	
4561	1,16755	110,271	68,14903	65,05228	107,90355	1,52596	
4562	1,16539	105,8706	73,22913	65,05228	105,87061	1,496735	
4563	1,24707	102,4281	76,31026	65,05228	102,42809	1,589024	
4564	1,65729	103,8087	80,87339	80,87339	110,27099	1,697939	
4565	2,05644	99,20945	79,11182	80,87339	99,20945	1,812295	
4566	12,585	108,0944	65,93195	65,93195	99,20945	12,73992	
4567	10,1095	124,0829	70,37357	65,93195	124,08292	18,3572	

Outil n° 6:

Tvd	Rop	Rpm	wob	wob opt	Rpm opt	Rop opt	formation
(m)	(m/hr)	(rpm)	(KN)	(KN)	(rpm)	(m/hr)	
4579	5,2	83	51,012	51,012	117,19723	10,07487	
4580	7,5183	101,73062	73,75449	51,012	117,19723	10,07487	
4581	7,97549	117,19723	78,23954	51,012	117,19723	10,07487	
4582	7,9788	114,55077	78,27202	51,012	117,19723	10,07487	
4583	8,3299	104,58261	81,71628	51,012	117,19723	10,07487	
4584	8,68958	103,60536	85,24476	73,75449	101,73062	2,680684	
4585	8,49463	103,17709	83,33228	85,24476	117,19723	2,065912	
4586	8,57687	102,9045	84,13908	85,24476	114,55077	2,15891	
4587	8,41484	103,30463	82,54957	81,71628	102,9045	1,504245	70
4588	9,07511	103,12759	89,02682	82,54957	102,9045	1,497005	Si
4589	8,37745	102,82971	82,18278	82,18278	103,30463	1,386003	eg
4590	8,83062	104,56391	86,62841	82,18278	102,82971	1,310351	g
4591	8,11093	103,51509	79,56824	79,56824	102,82971	1,512352	én
4592	8,28622	104,35193	81,2878	79,56824	102,82971	1,492941	— •
4593	8,6487	104,50904	84,84372	79,56824	104,56391	1,939477	en
4594	8,84428	104,1522	86,76243	79,56824	103,51509	1,726113	
4595	8,28533	103,51435	81,27908	79,56824	103,51435	1,543309	
4596	8,21109	110,26434	80,55079	80,55079	103,51435	1,481499	
4597	8,22678	105,45623	80,70468	86,76243	103,51435	1,439912	
4598	7,85124	104,06444	77,02062	86,76243	103,51435	1,409439	
4599	7,13598	111,23827	70,00399	70,00399	103,51435	1,631852	
4600	6,78512	113,79519	66,56201	66,56201	113,79519	1,928677	
4601	7,6849	100,03725	75,38883	66,56201	113,79519	1,933045	
4602	8,03201	100,71579	78,79404	66,56201	113,79519	1,875445	

Outil n° 7:

Tvd	Rop (m/hr)	Rpm	wob	wob opt	Rpm opt	Rop	formation
(m)		(rpm)	(KN)	(KN)	(rpm)	opt	
						(m/hr)	
4603	3,056812	102,46	49,34676	47,17492	120,11971	5,00474	
4604	3,283626	120,1197	47,41466	47,17492	120,11971	5,00474	S
4605	3,847755	119,8087	48,58715	47,17492	120,11971	5,00474	ie
4606	5,918733	119,0991	47,88941	47,17492	120,11971	5,00474	60
4607	5,873841	119,2299	47,17492	47,17492	120,11971	5,00474	(e)
4608	4,686035	116,1294	50,2538	47,17492	116,12942	10,6343	2.
4609	9,063172	134,8982	54,0237	47,17492	134,89819	9,8536	e
4610	19,50532	132,5051	50,06793	47,17492	134,89819	24,1817	n
4611	23,16578	132,8275	49,82626	47,17492	134,89819	33,6044	

							•
4612	5,461593	137,4935	58,10456	49,82626	137,49348	31,3906	
4613	6,651368	138,6657	56,58947	49,82626	138,66571	24,6022	
4614	3,669726	138,7496	57,65966	49,82626	132,50511	22,1121	
4615	6,175056	139,1012	55,95472	49,82626	132,82751	23,6742	
4616	5,933068	139,1621	54,41723	54,41723	137,49348	10,28	
4617	8,33091	138,7562	48,19408	48,19408	139,16206	8,97614	
4618	8,056627	133,2046	57,02025	48,19408	133,20459	14,4496	
4619	5,158579	136,1209	57,94625	48,19408	133,20459	11,8354	
4620	4,513416	136,252	60,69651	48,19408	133,20459	14,0865	
4621	1,831898	136,1916	66,9317	48,19408	133,20459	21,6641	
4622	2,241252	126,4042	68,54983	57,02025	126,4042	10,0709	
4623	4,655763	123,1141	70,76464	57,94625	123,11411	15,8145	
4624	1,906873	117,3941	73,8861	60,69651	117,39407	14,0291	
4625	1,774359	117,0116	64,41491	73,8861	136,19159	2,93409	
4626	1,876632	125,5219	64,82208	73,8861	126,4042	3,45188	
4627	7,600461	128,2797	59,61868	73,8861	128,27971	5,37872	
4628	2,149892	120,8094	65,39706	59,61868	128,27971	4,80568	
4629	25,85729	129,6878	55,50508	55,50508	129,68784	24,7046	
4630	26,4604	129,1914	60,86668	55,50508	129,68784	28,3626	
4631	28,71684	134,1245	62,60657	55,50508	134,12451	53,109	
4632	4,760317	127,4324	66,00225	55,50508	134,12451	69,8477	
4633	4,2377	126,2959	65,14574	55,50508	134,12451	79,7867	
4634	2,119785	124,4301	68,32155	60,86668	134,12451	45,7759	
4635	1,607501	116,7168	71,06341	62,60657	134,12451	17,477	
4636	1,760463	103,5664	76,43006	65,14574	103,56643	41,3738	
4637	1,961512	105,7186	77,98435	65,14574	103,56643	8,91976	
4638	44,74032	116,3955	70,66262	68,32155	103,56643	238,181	
4639	13,66763		67,59553		118,15567	15,9859	
4640	19,24369	118,7501	66,19008	77,98435	118,75012	170,927	
4641	2,238073	116,8937	70,82883	66,19008	105,71858	21,5002	
4642	4,877643	115,1584	75,52331	66,19008	115,15837	21,5002	
4643	2,726227	111,45	79,64051	66,19008	111,45	76,5062	
4644	4,854835		84,37516	66,19008	118,75012	8,53085	
4645	4,159166		84,06497	84,37516	116,89372	5,60789	
4646	4,749048	118,6445	71,64977	84,37516	118,64447	6,42754	
4647	4,089181	118	73,575	84,37516	118,64447	6,48397	
4648	9,768043	118	73,6731	71,64977	110,85812	7,15398	
4649	2,724354	117,9941	78,27487	71,64977	114,21073	24,5495	
4650	2,336016	104,1291	74,82466	71,64977	118,64447	6,40564	
4651	7,328493	116,5227	49,39559	49,39559	118	8,45804	
4652	2,742274	117,7996	64,35892	49,39559	118	6,74315	
4653	7,676702	117,362	51,40538	49,39559	117,99413	7,37809	
4654	2,126338	113,9804	64,62162	49,39559	104,12909	13,303	
4655	1,208943	112,2229	60,36874	49,39559	117,79955	9,16855	

4656	1,572396	107,7764	56,58383	51,40538	117,79955	7,74965	
4657	2,016475		52,50739	51,40538		7,41567	
4658	1,191519		61,59293	64,62162	107,20948	2,04063	
4659	1,285236		80,84148	52,50739	107,20948	1,73773	
4660	1,575146		80,43651	52,50739		1,84208	
4661	1,363307	109,4693	80,57179	52,50739	107,20948	2,01335	
4662	1,145469		81,15383	81,15383	108,9618	1,34912	
4663	0,59988		82,38215	80,43651	114,61574	1,55836	
4664	0,892802			80,43651	107,91784	1,55836	
4665	0,929814			80,57179	109,46933	1,21815	
4666	2,769445		71,97552	71,97552	107,69159	3,15085	
4667	1,24658		77,95111	71,97552	118,08648	2,70021	
4668	0,892605		79,21933	71,97552	118,08648	2,62223	
4669	1,951048		77,00535	71,97552	118,08648	2,82465	
4670	1,217919			71,97552	118,08648	2,91807	
4671	0,671042			77,00535		1,80513	
4672	0,933866		73,69938	73,69938	110,45664	1,52039	
4673	1,841045		67,14159	67,14159	112,5158	2,44459	
4674	2,145767		77,8681	67,14159		1,83884	
4675	2,563381	112,6457	82,44172	67,14159		2,31769	
4676	4,699132	118,9049	82,56628	82,56628	118,90494	3,0417	
4677	2,780382		83,33751	83,33751	120,53319	3,53375	
4678	1,873327		80,24166	83,33751	112,6457	3,26679	
4679	1,653774		71,27988	83,33751	122,4394	3,10103	
4680	3,868141	120,9785	67,72218	67,72218	118,90494	9,20859	
4681	1,521772	121,4468	76,29141	67,72218		4,82437	
4682	4,69204	121,1465	71,67865	67,72218	120,97192	4,80571	
4683	4,565354	122,2965	81,11712	81,11712	120,9785	4,56083	
4684	4,568141	122,8912	81,55178	67,72218	122,8912	26,7514	
4685	5,077475	119,1845	81,52787	81,55178	119,18455	4,59347	
4686	2,54548	120,6253	93,04284	71,67865	119,18455	5,73409	
4687	4,615524	120,2399	74,08947	74,08947	122,8912	5,65533	
4688	4,320332	120,2572	80,93954	74,08947	119,18455	5,49747	Ma Ma
4689	4,2702	120,4812	77,01055	74,08947	119,18455	6,3766	eć.
4690	5,269385	120,2509	70,48989	70,48989	120,23994	5,38157	
4691	3,917662	120,122	77,67314	70,48989	120,48116	5,1985	ini
4692	5,18139	119,8849	83,98105	70,48989	119,88486	5,65891	
4693	5,210988	120,116	74,12681	70,48989	119,88486	5,90327	en
4694	6,151158	119,9551	74,18232	70,48989	119,88486	5,90327	
4695	0,881007	112,0155	71,75434	71,75434	120,12196	5,36358	
4696	0,651084	108,0855	73,50298	83,98105	120,11597	5,73542	
4697	0,646523	101,2591	74,93708	74,93708	120,11597	7,50626	
4698	0,865989	97,11372	75,89371	75,89371	119,95515	12,5306	
4699	0,805938	96,15819	86,8267	86,8267	112,01553	0,80077	

4700	0,76916	96,87737	87,93949	73,50298	96,158188	0,83507
4701	0,841641	99,16845	88,3545		96,158188	
4702	1,258257	108,1868	83,1933	75,89371	108,1868	1,32336
4703	3,200635	98,63235	78,44365		96,158188	3,16193
4704	1,852938	110,913	79,2792	78,44365	96,877373	3,2542
4705	3,615258		79,13456		98,632347	3,70471
4706	4,032699	103,1641	79,51271	78,44365	98,632347	4,26089
4707	2,401373	102,9282	75,56551	79,51271	98,632347	4,45801
4708	2,020873	102,3247	74,86231	79,51271	102,32475	4,54873
4709	2,006425	102,8468	78,28278	79,51271	104,34885	3,87286
4710	1,488391	104,0451	80,57732		102,32475	4,60912
4711	1,797862	105,0368	81,02025	74,86231	105,03677	2,77376
4712	1,81116	105,2169	81,46927	74,86231	105,21695	2,43124
4713	1,987212	102,7492	85,33446	85,33446	102,74921	1,94861
4714	2,223655	100,8177	79,50418	85,33446	100,81771	2,24178
4715	2,448087	97,81403	80,2671	79,50418	97,814026	2,48373
4716	2,874155	101,9793	78,26946	78,26946	97,814026	2,75532
4717	3,328172	108,4889	75,76556	75,76556	108,48888	3,30602
4718	4,089117	109,7121	72,43987	72,43987	97,814026	4,32368
4719	4,983159	109,7101	71,46285	71,46285	97,814026	5,2644
4720	6,15746	109,9196	71,24577	71,24577	101,97929	6,75461
4721	5,520133	109,326	74,00183	75,76556	109,91963	6,93894
4722	4,117536	107,7824	74,93137	74,93137	109,91963	5,29929
4723	3,591764	101,5167	76,33628	71,24577	109,91963	5,65394
4724	2,726141	107,3673	76,7736	71,24577	101,51669	7,45503
4725	6,431307	107,2167	77,89955	77,89955	109,32603	4,97131
4726	6,826536	108,5714	74,70434	74,70434	108,57139	5,01036
4727	4,370238	104,4353	72,0249	72,0249	108,57139	5,77025
4728	12,88938	111,5015	65,61439	65,61439	111,5015	12,9238
4729	6,175015	95,81517	81,41291	65,61439	111,5015	9,62161
4730	10,9061	99,35212	79,33952	65,61439	111,5015	9,19978
4731	5,760443	116,2934	71,90839	65,61439	95,81517	13,3649
4732	3,698261	123,1386	74,31442	65,61439	95,81517	28,852
4733	4,392506	113,6427	64,08002	81,41291	95,81517	8,50864
4734	2,779226	122,3611	61,92809	79,33952	99,352119	11,4654
4735	3,906612	123,0393	63,11004	74,31442	113,64268	5,97858
4736	1,768054	121,2086	66,9467	74,31442	113,64268	4,18173
4737	1,470116	117,3838	70,09758	61,92809	113,64268	5,76985
4738	1,427091	118,6076	70,23595	61,92809	123,03928	3,33877