KASDI- MERBAH OUARGLA UNIVERSITY

FACULTY OF APPLIED SCIENCES MECHANICAL ENGINEERING DEPARTMENT

Dissertation

Presented to obtain a diploma of

Master

Specialty: Mechanical Engineerring

Option: Energetic

Presented by:

Bennouna Chahir

Theme:

Techno-economic study of Ethanol production from low grade dates

Publicly supported on:

08/06/2015

In front of the jury:

Dr. Belazizia Abd Ennacer M.C.B. University of KM Ouargla President

Dr. Dokkar Boubakeur M.C. B University of KM Ouargla Reporter

M^r. Kouras Sid Ali M.A.A University of KM Ouargla Examiner

Academic year 2014/2015

Summaries

Gratitude	I
Dedication	II
Summaries	III
Figure list	V
Table list	VI
Abstract	VII
General introduction	VIII
Chapter I: general description	
1. history and origin	02
2. The dates palm	02
3. Geographical area and importance	03
4. Geographical location of the study area	03
5. Administrative situation	05
6. The superficies and dates production	06
6.1. Characteristics of the main varieties in Algeria	08
6.2. Other varieties	08
7. Classification and valuation varietal.	09
7.1. Classification of varieties of dates	09
7.1.1. The consistency	09
7.1.2. Date processing	09
a) Four culinary use	09
b) Other uses	09
8. Development of dates scrap.	09
a) Biomass and derived proteins unicellular	10
b) Alcohol	10
c) Vinegar	10
d) Cattle feed	10
9. Bibliography analyses	11
10.Bioethanol	13
a) Wet ethanol	13
b) Dry ethanol	13
10.1. Physical and chemical properties	13
a) Physical properties	13
b) Chemical properties	13
10.2. Raw materials used for bioethanol production	14
10.3. process of ethanol production	14
10.3.1. Materials and methods	15
a) Vegetal material	15
b) Biological materials	15

10.4.2. methodology	15
a) Alcoholic fermentation	15
b) Preparation of fermentation wine	15
c) Realization of alcoholic fermentation	15
d) Distillation	15
Chapter II: Natural resources	
2.1. Water resources	18
2.1.1. The continental Intercalaire CI (Albian)	18
2.1.2. The complex Terminal (CT)	20
2.1.3. Ground water (phreatique nappe)	21
2.2. Texture and structure of soil	21
2.3. Geographical information on Ouargla region	21
2.3.1. Methodology	22
2.3.2. Results and discussions	24
a) Soil map	24
b) Plain lands map	24
2.3.3. Precipitation map	25
2.3.4. Wells and groundwater map	26
2.3.5. Suitable location for palm cultivation	26
2.3.6. Solar potential	27
2.3.7. Photovoltaic pumping	27
2.4. Conclusion	28
Chapitre III: Ethanol production	
3.1. Introduction	30
3.2. Dates production	30
3.3. Ethanol production	31
3.3.1 Ethanol Feedback	31
3.3.2. Bioethanol extraction	31
3.4. Results and expectations	32
3.4.1. Exploiting surface	32
3.4.2. Dates production	32
3.4.3. Extraction ethanol	33
3.4.4. Economic payback	34
3.5. Conclusion	35
General conclusion	36
Bibliography	38
Annex	41

Figures list

Figure.1.1 Date palm	02
Figure.1.2 Geographical location	04
Figure 1.3 Administrative situation of Touggourt	04
Figure.1.4 Palms surfaces contours (Google Earth)	04
Figure.1.5 Geo-referenced map surfaces (Arcgis)	05
Figure.1.6 Administrative Decoupage of Touggourt region	05
Figure.1.7 Most coming varieties dates in the study region	08
Figure.1.8 Fermentation diagram process	13
Figure.2.1Map of groundwater resources (Continental Intercalaire and Complexe Termina	al.)18
Figure.2.2 Hydro-geological cross section showing the potentiometric surface of the CI	19
Figure.2.3 Hydro-geological terminal complex in Touggourt region	21
Figure.2.4 Different soil types (Google Earth)	22
Figure.2.5 Attributes of soil types data	22
Figure.2.6 Soil map preparing	23
Figure.2.7 Exclusion step	23
Figure.2.8 Classification of soil types	24
Figure.2.9 Plain lands map	25
Figure.2.10 Precipitation distribution's map	25
Figure.2.11water depth distribution in Ouargla	26
Figure.2.12 Suitable location for palm cultivation	26
Figure.2.13 Solar irradiation distribution	27
Figure.2.14 Photovoltaic system connected to the water tank	27
Figure.3.1 Dates production in 2014	30
Figure.3.2 Extract ethanol from low grade dates 2014	31
Figure.3.3 Evolution of exploiting surface 2019-2064	32
Figure.3.4 Dates production progressing 2019-2064	33

Figure 3.5 Ethanol production evolution	34
Tables list	
Table 1.1 Population and surface by commune	06
Table 1.2 Superficies and dates production in Touggourt (DSA Ouargla 2013-2014)	07
Table 1.3 Characteristics of the main varieties dates in Algeria	08
Table 1.4 Physical properties of ethanol	13
Table 1.5 Raw materials used for bioethanol production	14
Table 2.1 Annual precipitations in Ouargla 2014	22
Table 3.1 Dates production + low grade. DSA Ouargla 2014	30
Table 3.2 Bio-ethanol feedback	31
Table 3.3 Extraction ethanol from low grade date 2014	31
Table 3.4 Expecting dates production 2019-2064	33
Table 3.5 Expecting of exploiting surface and ethanol production revolution (2019-2064)	35

1. History and origin

The date palm is one of the formerly widely grown fruit trees. The oldest documents in Mesopotamia (now Iraq) show that its culture is practiced since 3500 BC in the same time date palms were cultivated in Western Iraq, through Saudi and up the North Africa. It is in the middle of the 19th century that the plantations were established in the hot California valleys and the southern Arizona [5].

2. The date palm:

We do not know this species in the wild. It is typically grown in the Saharan oases. There are over 2,600 species of palms. One might think that it is a tree, well it is not: it is a monocot which contains no wood! While a tree has a trunk palm has a trunk. In addition, there are male and female palm. Palm is called a dioeciously plant. This plant usually measures between 15 and 25 meters and can sometimes reach 30 meters high, its life can exceed 100 years [4]. The figure below show the main parts of palm tree.

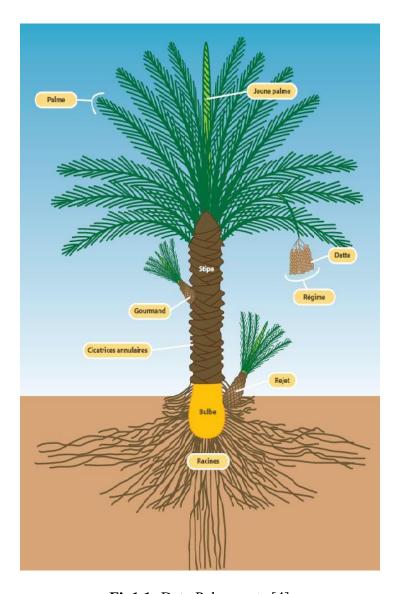


Fig1.1: Date Palm parts [4]

3. Geographical area and importance

The origin of the Date Palm in Algeria comes from the "Arabian Peninsula"; through traders who propagated the palm around the Mediterranean, it was introduced especially in places with water in the Sahara. Thus, it appeared the first palm of Oued Righ and Ziban through the nomadic Bedouin Arab, from the East to trade [3].

The National Heritage phoenicicole focused in all the regions in the Saharan Atlas in the north east and center of the Algerian Sahara concentrated mainly in the south-east. Among these potential areas, namely: Souf, Ziban, Oued Righ, Ouargla Bowl, Zab, El-Golea, Tamanrasset and Illizi Tindouf [3]. Algeria is a major phoenicicoles country worldwide. It is ranked fifth worldwide with a workforce that is around 15 million date palms in an area of over 350,000 hectares; including 11 million productive[6]. For a given country, domestic production may reach 500,000 tons, 240,000 tons representing approximately 47% of Deglet Nour, considered the best variety of commercial dates, allow Algeria to climb the world leader's perspective qualitative; while almost 2600.000 tons or 53% are called the common varieties of these, only 120,000 tons are marketable and more than 14,000 tons are very low marketability [7]. The evolution of surfaces progresses from one year to another; but the production does not follow the evolution of these surfaces. Indeed, tree yields ranges from 19.1 kg to 69.6 kg per region and a national average of 47 kg / tree (DSA 2008) [6].

4. Geographical location of the study area

The valley of the Oued Righ is a specific economic entity comprised of nearly 50 oasis located northeast of the Grand Erg Oriental Sahara and south of the Massif des Aures It extends over a north-south axis of about 150 km between northern latitudes 32 ° 54 'and 34 ° 9' and covers about 15000ha palm groves; the valley of the Oued Righ often simply called Oued Righ begins in the north to Oum El Tiour over 500 km south of Algiers and ends 150 km further south of the palm of El Goug. The Touggourt region that occupies the southern half of the valley along an axis of 70 km starting a commune BlidetAmor south to the town of Sidi Slimane North[2]. The figures below present the geographic location and distribution of palm surface in the study area.

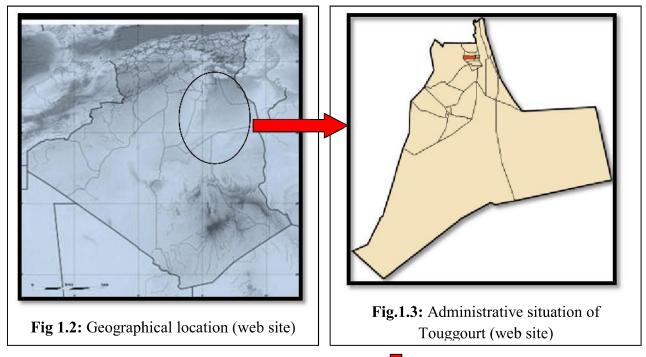


Fig .1.4: Palms surfaces contours (Google Earth)

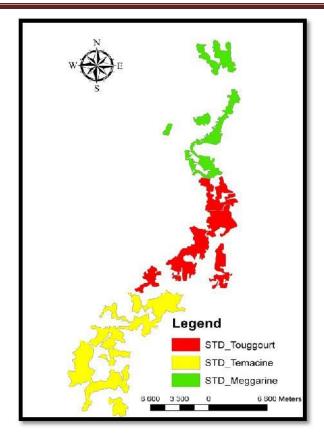
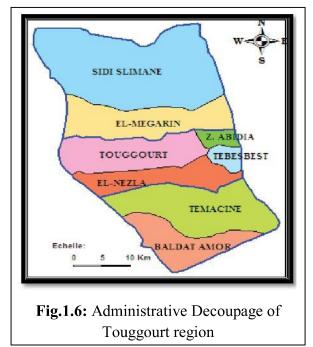



Fig.1.5: Geo-referenced map surfaces (Arcgis)

5. Administrative situation

The city of Touggourt is an oasis of northern Algerian Sahara located in the state of Ouargla; it is divided between three Daïras and eight towns [2] with an area of 216 km². The study area is located 160 km north-east of Ouargla, 225 km south of Biskra and 600 km South-east of Algeria. Touggourt is the largest city in the region of Oued Righ; its territory covers the following territorial consistencies: Tebesbest, Nezla Zaouia Al Abidia and

Touggourt [8].

Commune	Population	Surface in Km ²
TOUGGOURT	37237	172,17
Z. SIDI EL ABED	16200	23,72
TEBESBEST	30597	26,45
NEZLA	42477	120,18
TEMACINE	15802	231,98
BELIDAT AMAR	12345	126,2
MEGARIN	11452	186,78
SIDI SLIMAN	7152	447,13
Total	173262	1334,61

Tab.1.1: Population and surface by commune [8]

6. The superficies and dates production

Touggourt have an area of 9998.17 hectare that is occupied by palm trees, the total production of this area is about 631154 quintal. Comparing with the other zones in Ouargla (Annex 1) province some date types are produced highly like Deglet Beida which reaches a production of 55772 quintals. The number of palm trees, the superficies occupied and dates productions by zones in Touggourt are classified in the tableau below.

Total	S-T-D Temacine	Baldet Omar Temacine	Temacine	S-T-D Meggarine	Sidi Slimane	Meggarine	S-T-D Z	Zaouia El- Tebesbest abidia		Nezla	Touggourt	column	Zone	
9998.17	3253.69	1398.8	1854.89	3361	1706	1655	3383.48	930	932.13	1404.69	116.66	-	Dates masses 2 area occupied	a occupied
792041	260653	137612	123041	236961	115194	121767	294427	79378	76456	130190	8403	7	Deglet Nour	Number of existing
174367	54346	17973	36373	50626	24529	26097	69395	15229	34469	17712	1985	8	Gharse	palm (number)
92698	43623	14358	29265	49075	15743	33332	48182	13200	11662	19998	3322	4	Deglet Beida	
81752	30981	10285	20696	20207	7480	12721	30564	9617	13018	7819	110	w	Other Varieties	
1189040	389603	180228	209375	356869	162946	193923	442568	117424	135605	175719	13820	6=2+ 3+4+ 5	Total	
660244	8/1861	111607	1/598	223224	103403	178611	238842	65276	62405	107024	4137	7	Deglet Nour	Number of palm trees
133356	34579	17020	17559	40648	19594	21054	58129	12594	29125	15493	917	∞	Gharse	in report (number)
107485	30316	11676	18640	40698	13984	26714	36471	9925	9402	16048	1096	6	Deglet Beida	
74295	29030	10235	18795	16358	4246	12112	28907	9313	12220	7324	50	01	Other Varieties	
975380	292103	150538	141565	320928	141227	102611	362349	97108	113152	145889	6200	11=7 +8+9 +10	Total	
452266	120022	08089	51942	133935	62042	71893	198309	55485	51796	87760	3268	12	Deglet Nour	Production dates(OX)
81799	17629	8850	6228	32518	15675	16843	31652	6927	15727	8521	477	13	Gharse	
55772	17583	6772	11801	20349	2669	13357	17840	5359	4701	7221	655	14	Deglet Beida	
41317	15966	5629	10337	2668	2335	7999	16354	5308	6843	4175	28	15	Other Varieties	
631154	171200	89331	81869	195799	87044	108755	264155	73079	79067	107677	4332	16=1 2+13 +14+	Total	

Tab.1.2: Superficies and dates production in Touggourt (DSA Ouargla 2013-2014)

6.1. Characteristics of the main varieties in Algeria

There are currently a large number of varieties of date palms scattered on different potential areas phoenicicoles. The list of varieties or cultivars is quite long, that's why we limit the characterization of the main varieties. Deglet-Nour, Deglet-Beida and Ghars are the most important dates produced in Touggourt and are species that underpin this study. For example Deglet-Beida is one of the dry dates kind, it have a spinning shape and a Brown-Blond to beige color, and it contains 74% sugar compared to the dry weight of the fruit. The price of Deglet −Beida is between 50 DA to 100 DA or 0.47 € and 0.95 € for Kg, but the price of low grade one do not exceed 15 DA. Because of the dry consistence of this date, it was not consumed locally and it export mainly to the African Sahel countries (Chad, Niger, Senegal...) where it enters in many transformation and Agro-Alimentary industries.

Fig.1.7: Most coming varieties dates in the study region

6.2. Other varieties

The table below summarizes the main varieties of date palms with some morphological and physicochemical characteristics of dates.

Variety	Consistency and form	Color	Length / diameter (cm)	Maturation	Weight medium (g)	Total sugars (%) MS
Deglet Nour	Semi-soft, tapered to Ovoid	Roux clear yellowish	6/1,8	October - November	12	71,37
Ghars	Very soft	Dark brown yellow	4/1,8	August- September	9	85,28
Mech Degla	Dry, sub Cylindrical	Orange yellow	3,5/1,8	October	6,5	80,07
Degla Beïda	Dry, tapered	Yellow-brown clear Beige	4,5/2	October	7	74
Hamraye	Soft-ovoid	Rouge-noire avec des reflets rougeâtres	4/1,6	October	8	9,02
Tafezouine	Soft, cylindrical, Lying	Jaune-ambrée marron	4,2/2	October	10,6	56,90
Tanteboucht	Soft, rounded	Abricot – ambrée	3	October	10	56,20
Arrechti	Semi-soft, oblong	Jaune orangé, brun	4/2	October	12	66,70
Bent Kbala	Soft, ovoid	Jaune – ambrée	-	August- October	-	10,75

Fig.1.3: Characteristics of the main varieties dates in Algeria

7. Classification and valuation varietal

7.1. Classification of varieties of dates

The varieties of dates are very numerous, but a few are commercially important. Recognition of varieties of date palms and their classifications is delicate it is based on the observation of the whole of the plant including fruit characters which differ by the flavor, texture, shape, color, weight, and dimensions ... etc. Besides are the only stable enough characters for classification of varieties. Currently, we classify the dates according to:

7.1.1 The consistency

Dates are grouped into three categories according to their consistency, this classification was established by the US is valuable for the varieties of Algeria.

- Soft Dates: Ahmar (Mauritania), and Kashram Miskani (Egypt, Arabie- Saoudite),
 Ghars (Algeria).
- Semi-soft Dates: Deglet Nour (Tunisia, Algeria) Mejhoul (Mauritania), Sifri and Zahidi (Saudi Arabia)
- Dried dates consistency lasts: Degla-Beida and Mech-Degla (Tunisia and Algeria) Amersi (Mauritania) [3].

7.1.2 Date processing

For transformation of dates, the different products which can be obtained by the use of dates all varieties are included are:

a) For culinary use

In addition to its direct consumption, dates are stuffed after coring, with marzipan or peanuts, but that during religious celebrations or weddings. In the kitchen, according to the varieties there are several types of products made from these varieties:

- For soft dates: Dates are crushed and added to sauces, especially the couscous sauce; For the manufacture of biscuits, cakes, juice, date paste, jam, as well as alcoholic beverages such varieties Ghars Tantbouchet. As well, to obtain honey, syrup (rob) and caramel, unreleased soft varieties are used that store well: Ghars Litima (honey), Ammari (syrup). Indeed, these products (syrup, creams, juices and jams) are also made from healthy dates because it is important to avoid fermentation aftertaste.
- For dry to semi-dry dates: They are likely after drying in the manufacture of yogurt and flour.

b) Other Uses

It goes into the manufacture of liquid sugar can be achieved with all varieties.

8. Development of dates scrap

Damaged dates and low-value can be used because of their high sugar content for the production of:

a) Biomass and derived proteins unicellular:

The analysis of the produced biomass shows their protein at 32 to 40% dry weight. Thus, the manufactures of yeast, all unreleased varieties are generally used.

b) Alcohol:

Dates are a substrate of choice for the production of ethyl alcohol that was produced in the laboratory with a yield of 87%.

c) Vinegar:

Dates can be used for the development of vinegar produced by culturing the yeast *Saccharomyces uvarum* on an extract of dates, stadium mainly used in blah dry varieties semi dry and also soft dates.

d) Cattle feed:

Scrap and date stones are interesting by-products for animal feed. Flour dates cores may be incorporated with a rate of 10% in chicken feed without adversely affecting their performance.

As we see above, date fruits enter in many industrials, especially ethanol production which is the most substitute of gasoline. Next, the main studies done in this sense are setout.

9. Bibliography Analyses

The date palm is one of the oldest cultivated fruit trees, where the earliest records show that Iraq's culture has been practiced for 3500 years BC. In desert environment, palm creates a micro-climate conducive to life and their wood can be used as construction materials. Palm fruit (date) is a bay consisting of a single seed, it is usually oval or spherical shape attached to the pedicels) by the perianths, it has varying colors depending on the cultivar and growing conditions. This fruit is considered not only a food base, but its poor quality is used as pet's food. In Algeria, many date species are slightly exploited except Deglet Nour, Ghers and Degla Beida. These rich sugar resources are important substrates to produce many substances such as ethanol. The bio-ethanol, as alternative source, is the most used vehicle fuel in the world and its promotion has significant ecological interests. Indeed, it burns more cleanly than gasoline or diesel. [10]

In Pakistan, A. A. Noor et al. [14] activated strains ASN-3 and HA-4 used them for ethanol fermentation by the bioconversion of sugar from dates. The results revealed that both strains are actively involved in fermentation process but it is concluded that strain HA-4 resulted higher cellular mass when inoculated in Malt yeast extract Peptone Glucose medium supplemented with fructose and yeast nitrogen base and higher yield of ethanol was observed when the activated strain where inoculated in dates syrup as substrate at 120 rpm, having pH 4,5 at 30 °C at 600 nm after 72 h post incubation.

In India, N. Gupta et al. [15] Evaluated various indigenous strains isolated from date palm sap for ethanol production. Isolate strain SCP-1 was found superior showing 12,5% ethanol production, high ADH enzyme activity (4,38 units/ml) and higher alcohol tolerance maintaining cell viability at 12% ethanol in YPD medium up to 48 h.

In Gabes (Tunisa), B. Louhichi et al. [16] studied the bio-ethanol production from three date's varieties (Kunta, Eguoua and Bouhatem). Their all tests showed ethanol production with a concentration around 25% (V/V), moreover the yeast used in the fermentation process is capable of producing alcohol even at a pH of 3.8.

In Saudi Arabia, M. H. Gaily et al. [17] examined ethanol production from date's extract. For obtaining 75 and 90% fructose in sugar, the respective losses in fructose exceeded 39 and 63% and the ethanol yield was at 63% of the theoretical one.

In the same country, A. K. Sulieman et al. [18] studied ethanol production from low-quality dates. The average ethanol yield for all experiments was greater than 71% of its theoretical value. Fermentation at 30°C and 120 rpm gave ethanol yields of 91.3%, 68.7% and 54.8 % for the 10, 15 and 20% initial sugar concentrations, respectively.

In Ouargla (Algeria) B. Dokkar [10] et al presented an overview on the development of ethanol industry using waste dates. Reducing cost of palms agriculture, in particular irrigation is treated. Photovoltaic energy seems to be the most favorable candidate to provide reasonable power for long period with short payback. They found out comparison with 2013 where the bio-ethanol extraction from only three date varieties (Ghars, Deglet-Nour and Deglet-Beida) was estimated about 23,500 liters, can reach 148,500 and 648,500 liters in 2018 and 2038 respectively by using a trend model.

In Adrar (Algeria), A. Boulal et al. [19] Conducted many tests to optimize alcoholic fermentation of three date varieties (Hmira, Tinacer and Kaciene). The comparison of crude alcohol degree of dates showed that for the three varieties are respectively 22°, 19° and 18°.

In El-Oued (Algeria) K. Oussif [1] carried o;ut experimental tests for three date species (Ghers, Bouchaira and Tenessine), they obtained for each specie the following rate of ethanol production: 1.560, 1.1875 and 0.605 ml/g respectively.

Fermentation is the industrial process used to transforming dates to bio-ethanol as mention in the previous studies. This process pass by many steps which will be demonstrate in the next part, in addition to bio-ethanol definition, its generation and its main utilization.

10. Bioethanol

.The bioethanol is made of Segar with big quantities by fermentation and distillation, during this process the glucose transformed to ethanol and carbon dioxide CO₂. Ethanol burning reaction is same just like hydro-carbonate burning in Benzene; where ethanol is interacts with oxygen to produce carbon dioxide, water and caloric. The bio-ethanol, as alternative source, is the most vehicle fuel after mixing with gasoline with deferent percentage used in the world, and its promotion has significant ecological interests. Indeed, it burns more cleanly than gasoline or diesel [10]. Its most used kinds are:

- E10 (10% Ethanol and 90% Benzene).
- E85 (85% Ethanol and 15% Benzene).

The bioethanol can be producing in tow forms which are:

- a) Wet ethanol: It produced by distillation from the fermentation of the biomass, it contained 95% ethanol and it's suitable as fuel when it mixes with 15% of petrol fuel.
- **b) Dry ethanol:** By drying wet ethanol, high-purity 100% ethanol is obtained on its dry form and it can be used unique as fuel [20].

10.1. Physical and chemical properties

Ethanol has many physical and chemical properties and the most are:

a) Physical properties: The table below classifies the mainly physical properties.

Calories	27.3 MJ/kg
Dynamic viscosity	1.2 Pa.s
Density	794 kg/m ³
Boiling point	78.5 °C
Octane number RON	98.0
Specific weight 15.5 °C	0.79
Dissolution	Mix with water and benzene

Tab1.4: Physical properties of ethanol [20]

b) Chemical properties: Ethanol burn in presence of oxygen fallowing the chemical reaction:

$$C_2H_5OH(1) + 3O_2(g) \longrightarrow 2CO_2 + 3H_2O$$

In presence of an oxidant ethanol interacts according the reaction:

$$C_2H_5OH + [OX] \longrightarrow CH_3COOH + H_2O$$

Note: Cars motors need some modification and additions in order to be able for work with ethanol. In this sense, cars companies particularly Fourd (USA) and Volvo (Swedish) are working to invent a special model of cars capable to work either with bioethanol and benzene by supply it with motors which can detects the fuel type [20].

10.2 Raw materials used for bioethanol production

As it is clarify in the table below, dates have an advantage in bioethanol production comparing with sugar cane, corn and sugar beet.

Raw materiel	Ethanol extract from 1 tone (Liter)
Sugar cane (seasonal product)	60
Sugar beet (seasonal product)	116
Corn (seasonal product)	375
Dates (perennial product)	280

Table.1.5: Raw materials used for bioethanol production [21].

10.3 Process of ethanol production

The production of ethanol from waste dates includes the following steps:

- Washing of dates.
- Soaking in hot water (extraction).
- Separating the nuclei of the pulp which is crushed and turned into wine that is sent to fermentation.
- Adding dilution water, acid and yeast,
- Distillation.

The diagram in figure.1, shows various stages of ethanol manufacturing [11].

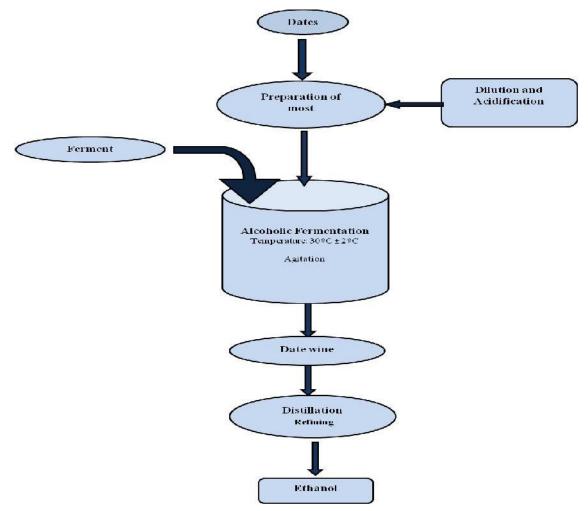


Fig.1.8: Fermentation diagram process

10.3.1 Materials and methods

- a) Vegetal material: The substrate used for the production of alcohol consists of waste dates and certain varieties of common dates.
- **b) Biological materials:** The yeast *saccharomyces pastorianus* or *cerevisiae* are used for the production of alcohol. These strains are isolated locally [11].

10.3.2. Methodology

a) Alcoholic fermentation: The alcoholic fermentation is to transform the fermentable sugars anaerobically by yeast into alcohol and carbon dioxide with release of calories according to the following reaction:

Sugars + yeast
$$==>$$
 Ethanol + CO_2 + Energy

Saccharomyces strains generally tolerate high concentrations of ethanol but however are sensitive to glucose effect. It should also be noted that these strains have the peculiarity to settle in the milieu at the end of fermentation. This phenomenon of flocculation is a positive element for the separation of yeast.

When the alcoholic fermentation, can be observed:

- A release of carbon dioxide.
- An increase in the temperature of the environment.
- An accentuation of the color.
- A change in smell and flavor, in the beginning the liquid is sweet and as fermentation, it becomes more and more alcoholic and acidic.
- A decrease in density due to the transformation of sugars into alcohol.
- An increase of volume, due to the increase in temperature and carbon dioxide escaping.
- **b) Preparation of fermentation wine:** Fermentation wine must not exceed a concentration sugar greater than 300 g/l. On the other hand, the milieu must be supplemented by salts minerals (ammonium salts) and other growth factors for ensure an optimal progression for yeast. The initial concentration of fermentable sugars is very important because it affects the rate of alcohol at the end of fermentation [11].

c) Realization of alcoholic fermentation

Prior the fermentation, the inoculums is obtained by seeding dates juice sterilized by autoclaving at 110 $^{\circ}$ C for 20 minutes by the *Saccharomyces pastorianus* or *cerevisiae* strain. Fermentation is conducted into the fermenter filled 2/3 of its capacity (terms of asphyxiation). The intermediate culture is enriched with ammonium phosphate (2.5 g/l). The pH of the medium is adjusted between 4.2 and 4.5. The temperature is maintained at 30 \pm 2 $^{\circ}$ c. Fermentation is conduct anaerobic for 72 hours.

d) Distillation

At the end of fermentation, we will be in the presence of wine from dates that need distiller to make the purity of ethanol higher. The distillation temperature is on the order of 78 ° C [11] Distillation is one of the steps of the purifications, which is used to separate two liquid utilizing their different boiling points. However, to achieve high purification, several distillations are required. This is because all materials have intermolecular interactions with each other, and two materials will co-distill during distillation. This means that proportion

between two materials, in this case ethanol and water can be changed, still, there are two materials in both layers, the liquid and the vapor layers [13]. Rectification of raw alcohol (phlegm) requires a second distillation [11].

3.1. Introduction

In 2014, the total of palm trees in Ouargla province is 2562268 trees with 21515 hectares of area planted by date palms and an annual dates production of 1252163 quintals which is divided as 54.43% of Deglet Nour, 30.68% of Ghars, 5% of Degla Beida and 9.89 % of other varieties (this last date kind is not included in this study). Specific productivities of these palm species are respectively 61.8 kg/tree, 67.3 kg/tree and 42.3 kg/tree.

Low grad dates obtained from palms are non-consumable fruits and traditionally intended to livestock. They are composed by different categories, represented primarily by dried dates (H'chef) and unmated dates (Sich). In this study those low grade dates are used to estimate extract ethanol and its progressive production among 50 years.

3.2. Dates production

The production of varieties dates (Deglet-Nour, Ghars and Deglet-Beida) of the actual data 2014 in addition to the production of the low grad dates; where we take an average value of 20% from the total production as low grade dates represented primarily by dried dates (H'chef) and unmated dates (Sich) and the percentage of each variety is presented in the table below.

Varieties	Deglet-Nour	Ghars	Deglet-Beida	Total
Total production (kg)	68164000	38410500	6248400	125216300
Low grade (kg)	13632800	7682100	1249680	25043260
Percentage	54.43%	30.68%	5%	100%

Tab 3.1: Dates production + low grade. (DSA Ouargla 2014)

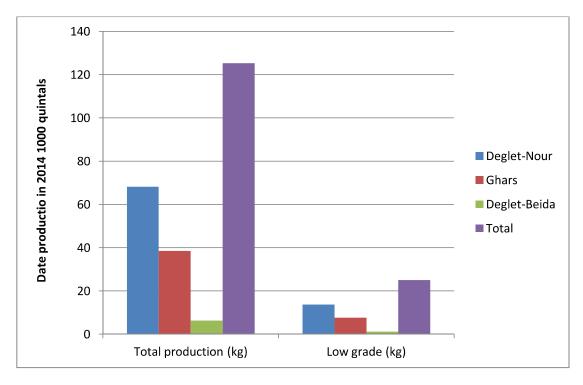


Fig.3.1: Dates production in 2014

Note: the total production contained in addition the other varieties of dates that represented the 9.89% left.

3.3. Ethanol production

3.3.1. Ethanol feedback

Basing on the results of the study done by K.Oucif, the production of bio-ethanol is calculated taking an average value of 50% from the good quality dates feedback. The table 3.2 presents the rate of each variety.

Varieties	Deglet-Nour	Ghars	Deglet-Beida
bio-ethanol feedback (Good quality ml/g)	0.600	0.624	0.300
bio-ethanol feedback (low grade ml/g)	0.3	0.312	0.150

Tab3.2: Bio-ethanol feedback

3.3.2. Bioethanol extraction

For an actual surface of 21515 hectare and waste dates mass evaluated at 225645,8 the total production of the three varieties is about 6,657×10⁶ Liters divided on percentage to 61,29% from Deglet-Nour, 35,9% extract from Ghars and 2,81% from Deglet-Beida, the table below show the ethanol extract and mass of existing dates.

Varieties	Deglet-Nour	Ghars	Deglet-Beida	Total
Total mass(kg)	68164000	38410500	6248400	112822900
Low grade dates mass (kg)	13632800	7682100	1249680	22564580
Extraction ethanol(l)	4,08×10 ⁶	$2,39 \times 10^6$	1,87×10 ⁵	6,657×10 ⁵

Tab.3.3: Extraction ethanol from low grade date 2014

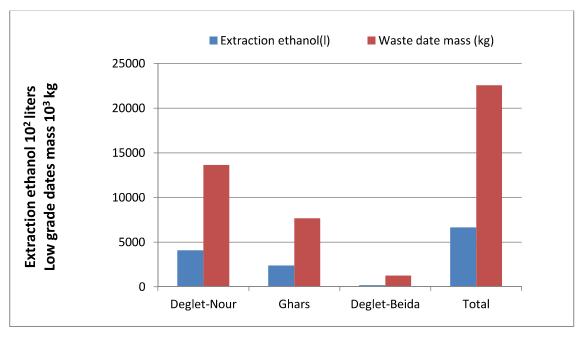


Fig.3.2: Extract ethanol from low grade dates 2014

3.4. Results and expectations

The investigate by using Arcgis software show that the able surface for palm cultivation is 3250398.98 hectare, this surface is divided on an investment of 50 years and ethanol production is calculated adopting a period of 5 years for palm tree to reach an acceptable date production. By using two models:

- Trend model (production of 20%).
- Voluntary module (production of 80%).

3.4.1. Exploiting surface

The figure 3.3 shows the progress of exploiting surface via the tow difference models among the period 2019-2064.

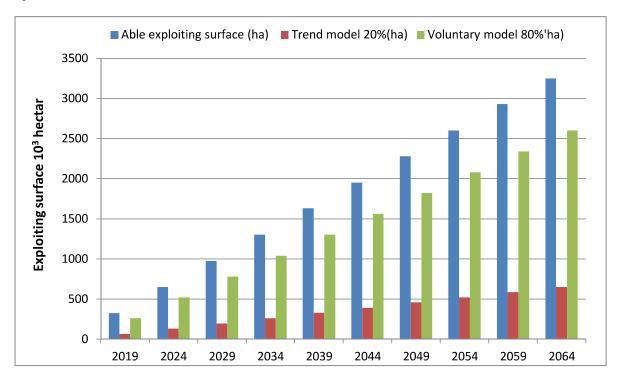


Fig.3.3: Evolution of exploiting surface 2019-2064

3.4.2. Dates production

In reality, dates productions didn't follow the same progressing of exploiting surface, because palm tree need a period of about 5 years to reach an acceptable date production. In figure 3.4 the expecting production by trend and voluntary model of dates and its low quality during the period 2019-2064 is presented.

years	2019	2024	2029	2034	2039
production total(Qx) 20%	3782970	7565939,577	11348909,37	15131879,15	18973048,48
low grade(Qx)20%	681691,2	1363382,306	2045073,47	276044,623	3418943,34
TOTAL PRODUCTION					
80%(Qx)	15131879	30263758,31	45395637,46	60527516,62	75892193,91
low grade (Qx) 80%	2726765	5453529,25	8180293,87	10907058,5	13675773,3

years	2044	2049	2054	2059	2064
production total(Qx)				34104927,6	
20%	22697818,73	26538988,05	30263758,31	3	37829697,89
low grade(Qx)20%	4090146,94	4782325,65	5453529,25	6145707,96	6816911,56
TOTAL					
PRODUCTION				136186912,	
80%(Qx)	90791274,92	105923154,1	121055033,2	4	151318791,5
low grade (Qx) 80%	16360587,7	1908735,24	21814117	24540882,3	27267646,2

■ Total (20%) ■ Low grade (20%) ■ Total (80%) ■ Low grade (80%) Dates Production 10³ quintels

Tab.3.4: Expecting dates production 2019-2064

Fig 3.4: Dates production progressing 2019-2064

3.4.3. Extraction ethanol

By using the trend model the results expects an ethanol production of $2,12\times10^7$ liters in 2019 for 65000 hectare and $2,01\times10^8$ liters in 2064 for $6,5\times10^5$ hectare. Where the results of the voluntary model expect an production of $8,15\times10^7$ liters and $8,04\times10^8$ liters in 2019 and 2064 for a surface of $2,6\times10^5$ hectare and $2,6\times10^6$ hectare respectively. The figure 3.2 shows the increase of ethanol production by the trend and voluntary models during the coming 50 years.

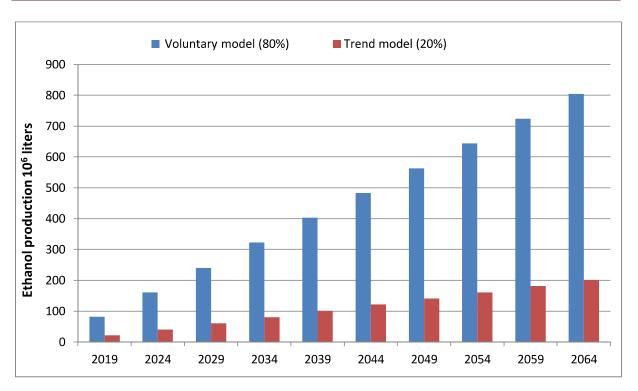


Fig 3.5: Ethanol production evolution

3.4.4. Economic payback

In our calculation the same proportions of existing palms by surface of Deglet-Nour, Ghars and Deglet-Beida and the same productivities by tree of these variety are respected which are respectively 61.8 kg/tree, 67.3 kg/tree and 42.3 kg/tree [10]. In the table 3.5 the whole results are presented.

Dates variety of Deglet-Nour, Ghars and Deglet-Beida are largely marketable and consumable. Although, their price in the Algerian market is between 50 and 100 DA or between 0.47 and 0.95 \in , the prices of the low grade ones do not exceed 15 DA (0.12 \in). The cost of ethanol production from dates is about 60DA (0.57 \in) per 1kg of date (electricity, reagents, raw material, labor etc). The average yield of the three varieties is 253 ml/kg, the price of ethanol 95 $^{\circ}$ in the world market is 10.6 \in (1113DA), so the price of 1 kg of these dates when converted into bioethanol is about 3.6 \in instead of 0.12 \in without transformation. It means a profit of about 3.48 \in per 1 kg of this variety of dates [1].

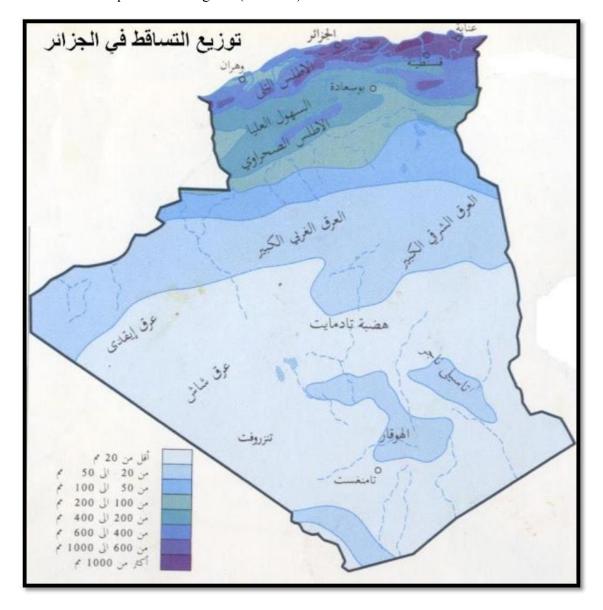
Years	2019	2024	2029	2034	2039
Able exploiting surface (ha)					
	325×10^3	65×10^4	975×10^{3}	13×10 ⁵	163×10 ⁴
Surface (ha) (trend model 20%)	2		2		
	65×10^3	13×10^4	195×10^3	26×10 ⁴	326×10^3
Surface (ha) (voluntary model 80%)	26×10 ⁴	52×10 ⁴	78×10 ⁴	104×10 ⁴	130×10 ⁴
Ethanol production (liter) (trend model 20%)	212×10 ⁵	402×10 ⁵	603×10 ⁵	804×10 ⁵	101×10 ⁶
Ethanol production (liter)					
(Voluntary model 80%)	815×10^{5}	161×10^6	24×10^7	322×10^6	403×10^6
Years	2019	2024	2029	2034	2039
Able exploiting surface (ha)	325×10^{3}	65×10 ⁴	975×10 ³	13×10 ⁵	163×10 ⁴
Surface (ha) (trend model 20%)	65×10 ³	13×10 ⁴	195×10 ³	26×10 ⁴	326×10 ³
Surface (ha) (voluntary model 80%)	26×10 ⁴	52×10 ⁴	78×10 ⁴	104×10 ⁴	130×10 ⁴
Ethanol production (liter) (trend model	212 105	105 105	502 105	004 405	101 106
20%)	212×10 ⁵	402×10 ⁵	603×10^5	804×10^5	101×10 ⁶
Ethanol production (liter) (Voluntary model 80%)	815×10 ⁵	161×10 ⁶	24×10 ⁷	322×10 ⁶	403×10 ⁶

Tab3.5: Expecting of exploiting surface and ethanol production revolution (2019-2064)

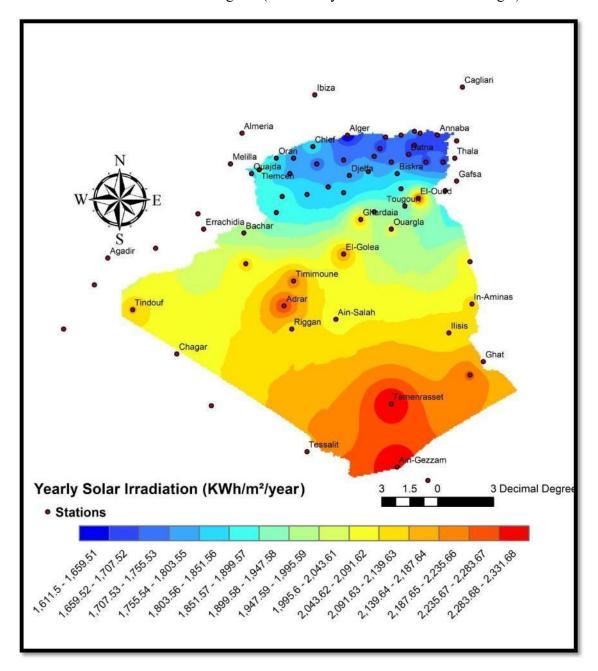
3.5. Conclusion

In this study, we opted to the wastes of date as row material to produce ethanol. In this production process, we choose three varieties of the most dominant dates (Ghars, Deglet Nour, and Deglet-Beida) in the region of Ouargla. Basing on the characteristics of date species studied by K. Oussif those are big similarity to dates produced in Ouargla region. By choosing the mean value of losses (20%), ethanol production rates become 0.624, 0.60 and 0.30 ml/g for Ghars, Deglet Nour and Degla Beida respectively. For 2014, waste dates mass is evaluated at 225645.8 quintals which can give 6657000 liters of ethanol. So in 2019 ethanol production by the trend model of 20% can reach 212×10^5 liters, from a waste dates mass of 681709.37 quintals. In case of promoting this industry, an optimistic rate of 80% can be taken where the ethanol production will be so significant and it continues increasing over 50 years (se figure 3.4).

Annex 1: Statistic of dates production and occupied superficies in Ouargla, DSA 2014.


	TOTAL WILAYA 21857,45 1	S/T/D.Taibet 1107			1	- 10	FI-Hadiira 1	436	4	S/T/D.Temacine 3253,69	Baldet Omar 1398,8	Temacine 1854,89	S/T/D.Meggarine 3361	Sidi Slimane 1706	Meggarine 1655	S/T/D.Touggourt 3383,48	Zaoua El-Abidia 930	Tebesbest 932,13	Nezla 1404,69	Touggourt 116,66	S/T/D.EI-Borma 0	E-Borna	S/T/D.H.Messaoud 472,23	H.Messaoud 432,63	-	oussa	1732,32	4399,98	dellah	_	88	STID Quarda 2960		Quardla 1999	Colonne	Superficie Occupée (nombre)	SECTEURS masses	en	DATTES NO	TABLEAU : A - 2 PALMIERS DATTIERS (Superficie occupée, nombre de palmiers existants et production)
	1394940	66133	32820	14325	10900	40000	64622	33347	31275	260653	137612	123041	236961	115194	121767	294427	79378	76456	130190	8403	0		36437	33676	2761	70517	70517	256276	121625	114476	20175	108914	48761	60153	2		Non	Deglet	MBREDE	TTIERS (
	756580	26480	14160	5336	0904	6084	74129	17054	57075	54346	17973	36373	50626	24529	26097	69395	15229	34469	17712	1985	0		21912	20624	1288	93178	93178	133950	48702	60633	24615	232564	60285	172279	ω	(nombre) (nombre		Ghars	NOMBREDE PALMIERS EXISTANTS	Superficie
	169430	6850	3250	1300	2000	2000	7540	1710	5830	43623	14358	29265	49075	15743	33332	48182	13200	11662	19998	3322	0		11410	10658	752	0	0	2750	1450	1300	0	0	0	. 0	4	(nombre)	Deide	Deglet	SEXISTA	occupée,
	241318	4428	2360	000	0101	1518	6049	2314	3735	30981	10285	20696	20207	7480	12727	30564	9617	13018	7819	110	0		12105	9089	3016	10558	10558	54013	4540	40262	9211	72413	9606	62807	5		(nombre)	AU I RES	NIS	nombre d
	2562268	103891	52590	21511	04/87	20700	152340	54425	97915	389603	180228	209375	356869	162946	193923	442568	117424	135605	175719	13820	0	0	81864	74047	7817	174253	174253	446989	176317	216671	54001	413891	118652	295239	=2+3+4+	(nombre) 28422	TOTAL			e palmiers
	1062938	55480		Г		Г		1		198178	111607	86571	223224	103403	119821	238842	65276	62405	107024	4137	0		8358	5597	2761	47396			34630	86250	11540		46822	58178	7	(nombre)		Nour	NOWBRE	existants
	625842	22390	12340	4500	0000	00000	20025	15495	51500	34579	17020	17559	40648	19594	21054	58129	12594	29125	15493	917	0		6416	5128	1288	77055	77055	88630			20250	N	59736	171264	8	nombre (nombre)		Olidio	Charac	et produc
10000	120601	4780	2480	800	1500	4500	2002	1545	3550	30316	11676	18640	40698	13984	26714	36471	9925	9402	16048	1096	0		2191	1439	752	0	0	1050	600	450	0	0	0	0	9	(nombre)		beida	Deglet	tion)
740017	215542	4300	2300	500	1500	CLOC	5645	2175	3440	29030	10235	18795	16358	4246	12112	28907	9313	12220	7324	50	0		3305	289	3016	7917	7917	48310	500	39460	8350	71800	9350	62450	10			Varietes	ALITRES	existants et production)
2024923	SCOVCOC	86950	43720	18180	25050	131/45	404745	47505	84240	292103	150538	141565	320928	141227	179701	362349	97108	113152	145889	6200	0	0	20270	12453	7817	132368	132368	270410	51260	179010	4C140	407800	115908	291892	1=7+8+9+1	(inditions)	TOTAL		17.	RT
081640	004040	33288	15960	7428	9900	22276	0//11	10000	10506	120022	68080	51942	133935	62042	71893	198309	55485	51796	87760	3268	0		4600	3080	1520	26067,8	26067,8	78042,03	24248,1	47450,25	6343,68	65100	29030	36070	12	(QX)		Nour	Deglet	PRODUCTION EN DATTES
384105						48397	L		П		8850	8779	32518	15675	16843	31652							3850			408	40839,2	59425	10622	1		-		2		(QX)			Ghars	ON EN D
62484	T		4		750	3508	1	1	Т				20349		13357	17840	5359	4701	7221	559	0		438	Q-288		di	0	37		0					14	(QX)		beida	Deglet	ATTES (C
123934	0007	0000	1380	300	900	4649	1709	2940	2000	15966	5629	10337	8997	2335	6662	16354	5308	6843	4175	28	0		1983	173	1810	4275,18	42/5,18	29640	309	241/0,/	0,0010	39490	20100	5143	==		(nombre)	Varietes	AUTRES	(QX)
1252163	49453	1000	2775	10378	14325	78830	24940	53890	171200	171200	89331	81869	195799	87044	108755	264155	73079	79067	107677	4332	0	0	1/801	6618	4253	71182,13	/1182,13	16/483	35384,1	703/45	10		040400	70015	473476	49+13+14	(0X)	TOTAL		

Annex


Annex2: Superficies des terres utilises par l'agriculture in Algeria. DSA 2014

WILAYA	Plantati arbres f		TOTAL S.	A. U	Pacages parcours		Terres improducti	ves	TOTAL S.A	т.
	ha	%	ha	%	ha	%	ha	%	ha	%
1 ADRAR	27 804	7,6	35 806	9,8	315 819	86,3	14 452	3,9	366 077	100
2 CHLEF 3 LAGHOUAT	14 368 6 340	5,5	203 230	77,4	25 714	9,8	33 567	12,8	262 511	100
4 O.E.BOUAGHI	2 012	0,4	73 013	4,6	1 529 559	95,4	0	0,0	1 602 572	100
5 BATNA	18 468	2,5	360 885 422 677	70,0	122 565 237 426	23,8	32 032	6,2	515 482 744 026	100
6 BEJAIA	68 081	41,3	130 348	79,1	30 859	31,9 18,7	83 923 3 587	11,3	164 794	100
7 BISKRA	50 954	3,1	185 473	11,2	1 399 746	84.7	67 532	4,1	1 652 751	100
8 BECHAR	17 088	1,2	35 167	2.5	1 319 234	92,6	69 834	4,9	1 424 235	100
9 BLIDA	28 761	42,6	56 730	84,1	8 864	13,1	1 880	2,8	67 474	100
10 BOUIRA	37 931	12,9	189 960	64,7	76 686	26,1	26 899	9,2	293 545	100
11 TAMANRASSET	8 221	0,9	11 387	1,3	816 100	92,6	53 888	6,1	881 375	100
12 TEBESSA 13 TLEMCEN	10 011	1,2	312 175	38,1	434 088	53,0	72 094	8,8	818 357	0
14 TIARET	26 987 21 018	5,0	350 821	65,2	154 271	28,7	32 721	6,1	537 813	100
15 TIZI-OUZOU	21 018 45 477	1,9 31,7	705 650 98 842	62,6	395 387	35,1	26 921	2,4	1 127 958	100
16 ALGER	9 655	25,9	32 496	69,0 87,3	25 370 2 994	17,7	19 040 1 719	13,3	143 252 37 209	100
17 DJELFA	17 054	0,7	378 665	15,1	2 122 428	84,9	0	0,0	2 501 093	100
18 JIJEL	15 810	16,0	43 705	44,3	40 428	41,0	14 511	14.7	98 644	100
19 SETIF	29 506		363 272	79.0	55 492	12,1	41 084	8.9	459 848	100
20 SAIDA	5 536	1,1	308 206	60,3	159 664	31,2	43 479	8,5	511 349	100
21 SKIKDA	20 747	10,7	131 880	68,3	42 977	22,2	18 323	9,5	193 180	100
22 S.B.ABBES	12 971	3,4	363 191	94,0	3 723	1,0	19 640	5,1	386 554	100
23 ANNABA	1 898	3,2	48 177	82,3	7 585	13,0	2 786	4,8	58 548	100
24 GUELMA	11 093	4,2	187 338	70,8	50 875	19,2	26 405	10,0	264 618	100
25 CONSTANTINE 26 MEDEA	2 109 21 918	1,2 3,5	131 096 338 359	71,9 53,6	51 290 292 507	28,1 46,4	117	0,0	182 386	100
27 MOSTAGANEM	20 118		132 268	91.4	5 110	3,5	7 400	5.1	630 983 144 778	100
28 M'SILA	19 533	1.5	277 211	21,2	1 029 945	78.8	7 400	0.0	1 307 156	100
29 MASCARA	23 444	5,4	312 787	72,0	104 228	24,0	17 118	3,9	434 133	100
30 OUARGLA	. 21 742	0,4	39 737	0,8	4 7.50 000	90,6	452 842	8,6	5 242 579	100
31 ORAN	9 693	10,0	88 460	91,2	1 823	1,9	6 735	6,9	97 018	100
32 EL-BAYADH	11 423	0,2	71 702	1,2	5 693 495	98,7	550	0,0	5 765 747	100
33 ILLIZI	1 550	13,3	2 208	19,0	6 000	51,6	3 424	29,4	11 632	100
34 B.B.ARRERIDJ	28 513	11,5	187 847	76,1	48 598	19,7	10 556	4,3	247 001	100
35 BOUMERDES	14 029		65 010	65,8	18 591	18,8	15 263	15,4	98 864	100
36 EL-TARF	8 189 491	9,7	74 173 872	88,3	8 518 6 000 000		1 340		84 031	100
37 TINDOUF 38 TISSEMSILT	12 643	X-017/15/9	145 456	76,7	21 997	11,6	1 628 22 297	0,0	6 002 500 189 750	100
39 EL-OUED	39 723	2,5	76 410	4,8	1 444 181		71 278	11,8	1 591 869	100
10 KHENCHELA	20 355	2,6	232 690	30,0	466 648	2500 25000	75 373	9,7	774 711	100
1 SOUK-AHRAS	7 417	2,4	253 606	81,4	49 340	15,8	8 546	2,7	311 492	100
2 TIPAZA	14 797	20,4	64 311	88,7	8 157	11,3	32	0,0	72 500	100
3 MILA	10 987	4,0	237 557	86,1	21 956	8,0	16 444	6,0	275 957	100
4 AIN-DEFLA	19 917	8,5	181 676	77,1	38 078	16,2	15 857	6,7	235 611	100
5 NAAMA	5 953	0,3	24 441	1,1	2 178 959	98,9	60	0,0	2 203 460	100
6 A.TEMOUCHEN	10 907	5,4	180 184	88,5	8 104	4,0	15 296	751127020	203 584	100
7 GHARDAIA	14 095	1,0	32 745	2,4	1 337 994	1 1000 0000	172		1 370 911	100
8 RELIZANE	17 809	6,0	281 875	94,8	6 062	2,0	9 450	3,2	297 387	100
OTAL ALGERIE	865 146	2,0	8 461 775	19,7	32 969 435	76.9	1 458 095	3,4	42 889 305	100

Annex3: Precipitation in Algeria (web site).

Annex 4: Solar irradiation in Algeria (realized by Master student with Arcgis).

Annex

Annex5: Liste des forages NARH 2014. (Échantillon).

Nom du point d'eau	Xdeg	Ydeg	Z(m)	Profd (m)	Année	Nappe	Usage	Etat
Kharfi D47 F26	6° 00' 37"	32° 53' 30	105		1997	Mio-plio	IRRI	
Kharfi Houcine D47 F23	6° 00' 17"	32° 54' 08"	90	84	1993	Mio-plio	IRRI	
Kharfi C185Slimane D47 F17	6° 00' 15"	32° 54' 12"	84,8	82,5	1963	Mio-plio	IRRI	Bon
Chaâb D47 F18	6° 00' 17"	32 54 14	86	90	1964	Mio-plio	IRRI	
Shan (Badidja) D47 F20	6° 00' 21"	32° 54' 26"	84,2	84,7	1969	Mio-plio	IRRI	Bon
AEP Château D47 F24	6° 00' 26"	32° 54' 06"	97	75	1994	Mio-plio	IRRI	
Ftimi Slimane D47 F25	5° 59' 32"	32° 54' 12"	85	93	1995	Mio-plio	IRRI	Mauv
Kharfi Med Laid D47 F22	5° 59' 30"	32° 54' 23"	87	93	1989	Mio-plio	IRRI	Bon
Cheraga D47 F19	5° 59' 37"	32° 54' 32"	87	80	1969	Mio-plio	IRRI	Bon
Badidja Ali D47 F21	5° 59' 38"	32° 55' 56"	87	83	1989	Mio-plio	IRRI	Bon
Bennour GuebliaD46 F65	5° 59' 43"	32° 55' 45"	86,2	75	1954	Mio-plio	IRRI	Bon
Bennour D46 F81	5° 59' 32"	32° 55' 43"	83,51	85	1985	Mio-plio	IRRI	Bon
Nouha Hmida D46 F85	5° 59' 17"	32° 55' 44"	85,7	85	1987	Mio-plio	IRRI	Bon
Sayhi Abd El kader D46 F74	5° 59' 14"	32° 55' 46"	88	80	1962	Mio-plio	IRRI	•
Bouya Sayah D46 F66	5° 59' 05"	32° 55' 47"	87	76	1959	Mio-plio	IRRI	Bon
Sassi Barkia D46 F44	5° 59' 03"	32° 55' 46"	85	60	1919	Mio-plio	IRRI	Bon
Nouha Tayeb D46 F86	5° 59' 00"	32° 55' 40"	103	85	1988	Mio-plio	IRRI	Bon
Ferroudj D46 F79	5° 58' 48"	32° 55' 41"	85,8	70,22	1969	Mio-plio	IRRI	Bon
Maktoub 1 D46 F69	5° 58' 37"	32° 55' 36"	84,5	70,6	1960	Mio-plio	IRRI	Bon
Chaïb Lakhdar D46 F100	5° 58' 33"	32° 55' 29"	89	79	1992	Mio-plio	IRRI	Bon
Maktoub 2 D46 F90	5° 58' 24"	32° 55' 28"	89	79	1989	Mio-plio	IRRI	Bon
Puits communal D46 F80	5° 58' 20"	32° 56' 12"	82,9	75	1977	Mio-plio	IRRI	Bon
Chaïb Salah D46 F91	5° 58' 27"	32° 56' 07"	82,7	69	1989	Mio-plio	IRRI	
Kadi Tahar D46 F94	5° 58' 23"	32° 56' 07"	87	135	1989	Mio-plio	IRRI	Bon
Mahboub D46 F75	5° 58' 20"	32° 56' 07"	82,6	70,6	1968	Mio-plio	IRRI	Bon
Kora Djédida D46 F73	5° 58' 14"	32° 56' 15"	81	134	1962	Mio-plio	IRRI	Bon
Bassaci D46 F96	5° 58' 12"	32° 56' 21"	80	65	1989	Mio-plio	IRRI	Bon
Zgag Djédida D46 F51	5° 58' 11"	32° 56' 30"	80	76	1962	Mio-plio	IRRI	Bon
Bouhréra H. D46 F101	5° 58' 19"	32° 56' 38"	79	79,82	1993	Mio-plio	IRRI	Bon
Cheraga D46 F78	5° 57' 59"	32° 56' 55"	80,7	130	1968	Mio-plio	IRRI	Bon
Bouhnik 1 D46 F93	5° 57' 59"	32° 55' 55"	90	131	1989	Mio-plio	IRRI	Bon
Bouhnik 2 D46 F87	5° 57' 50"	32° 55' 45"	87	69	1988	Mio-plio	IRRI	Bon
Naga D46 F77	5° 57' 49"	32° 55' 33"	84	49,88	1968	Mio-plio	IRRI	Bon
Bouhréra Med D46 F99	5° 57' 48"	32° 55' 27"	83	62	1992	Mio-plio	IRRI	Bon
Naga 2 D46 F82	5° 57' 51"	32° 55' 12"	84	65	1985	Mio-plio	IRRI	Bon
Naga1(m.en V.) D46 F84	5° 57' 45"	32° 54' 52"	91,5	90	1986	Mio-plio	IRRI	Bon
Naga 2 (m.en V.)D46 F92	5° 57' 43"	32° 54' 15"	86	84	1989	Mio-plio	IRRI	
Dar Messaoud D46 F53	5° 58' 14"	32° 55' 58"	82,6	40	1965	Mio-plio	IRRI	Bon
Badidja Ali D46 F95	5° 59' 56"	32° 55' 52"	83	87,42	1989	Mio-plio	IRRI	Bon
Ftimi Slimane D46 F98	6° 00' 15"	32° 55' 38"	83	93	1990	Mio-plio	IRRI	Bon
Bennour El Gaïd D46 F83	6° 00' 05"	32° 56' 27"	82	100	1986	Mio-plio	IRRI	Bon

Annex

Annex 6: Donnees climatologique de la region d'Ouargla periode 2011 - 2013

	Mois	Moyenne de T MIN EN 1/10 °C	Moyenne de T MAX EN 1/10 °C	Moyenne HUMIDITE MIN EN %	Moyenne HUMIDITE MAX EN %	FORCE DU VENT Max EN KM/H	Cumul PRECIPITATI ONS EN 1/10 MM	Cumul EVAPORATIO N EN 1/10 MM	Cumul INSOLATION EN 1/10 H	
	Janvier	48	205	40	80	14	0	810	2612	
	Fevrier	56	205	33	72	17	0	800	2571	
	Mars	97	239	30	76	21	111	1596	2655	
	Avril	148	307	24	62	30	17	2152	3062	
	Mai	186	337	24	55	16	0	2625	3328	
2011	Juin	232	383	23	51	16	0	3477	2445	
2011	Juillet	277	440	18	45	13	0	4385	3197	
	Aout	263	423	20	44	13	0	3864	3577	
	Septembre	251	403	21	49	15	1	2452	2701	
	Octobre	151	291	37	78	12	50	1259	2651	
	Novembre	102	243	36	80	21	0	1058	2591	
	Décembre	52	197	47	90	11	0	624	2298	
	Janvier	35	180	44	86	20	162	616	2490	
	Fevrier	34	173	38	79	20	55	808	2730	
	Mars	88	245	33	74	13	10	1324	2528	
	Avril	145	304	24	59	20	35	2091	2934	
	Mai	196	355	19	47	20	0	3123	3281	
2012	Juin	274	432	17	43	14	0	3536	2315	
2012	Juillet	286	448	15	37	32	13	3823	3208	
	Aout	270	431	15	41	15	3	3123 3536 3823 3676	3492	
	Septembre	217	382	18	48	15	46	3329	2855	
	Octobre	182	334	22	55	12	0	2783	2589	
	Novembre	119	263	33	74	14	0	1468	2362	
	Décembre	37	199	35	80	12	0	906	2397	
	Janvier	49	202	35	80	25	36	1009	2466	
	Fevrier	53	212	30	70	14	0	1129	2675	
	Mars	119	286	29	70	19	2	1669	2773	
	Avril	154	309	21	58	22	63	1918	2682	
	Mai	191	355	11	39	22	0	2278	3307	
2013	Juin	234	398	11	35	22	0	3173	2261	
	Juillet	278	435	10	30	16	0	4144	3159	
	Aout	261	407	13	36	18	24	3191	3408	
	Septembre	232	383	16	47	18	0	2871	2794	
	Octobre	195	358	16	44	11	0	2767	2685	
	Novembre	100	234	26	66	13	46	1475	2459	
	Décembre	63	173	47	92	14	245	559	2050	

Références

- [1] K.Oucif, L Segni. 28 August 2014, Production of bioethanol from varieties of dates of poor quality. Laboratory process Engineering, Kasdi Merbah University Ouargla, Algeria [2] A. Mohammed, D. Youcef. 06/2014 Réutilisation des eaux usées en irrigation:
- Step de Touggourt, Kasdi Merbah University Ouargla, Algeria
- [3] A. Rima 2012-2013, Mémoire de Magister thèse : Analyse de la diversité variétale du Palmier Dattier (Phoenix dactylifera L.): Cas des Ziban (Région de Sidi Okba)., universite Biskra. Universite Mohamed Khider Biskra
- [4] Le palmier Dattier. Réalisation : Relais d'sciences.
- [5]http://www.elwatan.com/regions/sud/ouargla/ouargla-la-production-de-dattes-en-hausse-28-01-2015-286108_259.php consulté le 29/01/2015_23:30
- [6] S. Babahani, 3/05/2010, La recherche sur le palmier dattier au département des sciences agronomiques de Ouargla : situation et perspectives, Workshop sur l'Agriculture Saharienne : Enjeux et Perspectives Université Kasdi Merbah Ouargla
- [7] O. Mohamed Did et all, Décembre 2012, Etude comparative de la production d'éthanol brut à partir de trois variétés de dattes communes (Degla Beida, Tacherwit et Hamraya) reparties dans les différentes classes de dattes (molle, demi-molle et sèche) de la cuvette de Ouargla (Sahara septentrional Est algérien) Algerian journal of arid environment: 78-87.
- [8] KHADRAOUI A., 2013. Chapitre IV: L'hydrogéologie, p 49-68
- [9] B. Mohamed Salah, 2009, mémoire Magister géologie. Theme: Hydrogéologie et hydrochimie de la nappe superficielle dans la région de l'Oued Righ et l'évaluation de sa vulnérabilité. Université Badji Mokhtar-Annaba
- [10] B. Dokkar et all, 2014. Integration of solar energy in the development of palms irrigation system and long-term bio-ethanol production in the south of Algeria. Laboratoire de valorisation et promotion des ressources sahariennes, University of Kasdi Merbah, Ouargla Algeria
- [11] F. Kaidi et A. Touzi, 2001, Production de Bioalcool à Partir des Déchets de Dattes. Laboratoire de Biomasse, Centre de Développement des Energies Renouvelables Bouzaréah, Alger. P 75-78
- [12] A. K. Sulieman, et all. Production of bioethanol fuel from low-grade-date extract. International Journal of Chemical Engineering and Applications, Vol. 4, No. 3, June 2013 [13] S. Onuki, Bioethanol: Industrial production process and recent studies.
- [14] A. Noor, A. Hameed, K. Bhatt, S. Tunio, Bio-ethenol fermrntation by bioconversion of sugar dates by Saccharomyces cerevisiae strains ASN-3 and HA-4, Bioenergy 2 (2003) 8-17.
- [15] N. Gupta, A. Dubey, L. Tewari, High efficiency alcohol tolerant Sachoromyces isolates of Phonix dactylifera for bioconversion of sugarcane juice into bioethanol, J. of scientific and industrial research 68 (2009) 401-405.
- [16] B. Louhichi*, J. Belgaib, H. benamor, N. Hajji, Production of bio-ethanol from three varieties of dates, Renewable Energy 51 (2013) 170-174.
- [17] M. H. Gaily, A.K. Sulieman, M.A. Zeinelabdeen, S. M. Al-Zahrani, H. K. Atiyeh, A. E. Abasaeed, The effects of activation time on the production of fructose and bioethanol from date extract, African J. of Biotechnology 1 (2012) 8212-8217.

Bibliography

- [18] A. K. Sulieman, M. H. Gaily, M. A. Zeinelabdeen, M. D. Putra, A. E. Abasaeed, Production of Bioethanol Fuel from Low-Grade-Date Extract, Inter. J. of Chemical Engineering and Applications. 4 (2013) 140-143.
- [19] A. Boulal, B. Benali, M. Moulai, A. Touzi, Transformation des déchets de dattes de la région d'Adrar en bioéthanol, Revue des Energies Renouvelables 13 (2010) 455-463.
- [20] www.wahatalrobatab.com/vb/uploaded/760 01260989601.doc.
- إنتاج الوقود الحيوي من التمور. الدكتور رعد البصام رئيس وحدة التخمرات / شركة الواحات. [21]
- DSA. Direction des Services Agricoles /Ouargla2013/2014.

Abstract: This work presents a valuation of bioethanol production from date palm in Ouargla region. The natural resources are investigated by using Arcgis software. The potential in Ouargla basin is important; it has huge underground water with high flow rates and low depths. In addition to vast wide plain area allows large agriculture expansion, therefore the dates production can promote this activity. The low grade date is used to develop a profitable bio-ethanol industry. In 2014, the bio-ethanol extraction from only three date varieties (Ghars, Deglet-Nour and Deglet-Beida) is estimates about 145466.22 liters for an area of 21515 hectares. The results show that the possible surfaces for palms cultivation extension is about 62% from the total surface of Ouargla Provence. The investment on 50 years by using a trend model with an exploiting rate of 20% from the new area, show that ethanol extract from low grade dates can reach 212×10⁵ liters for an area of 65000 hectares and 201×10⁶ liters for 650000 hectares in 2019 and 2064 respectively. The estimation by a voluntary model by taking into account an exploitation rate as 80% of agriculture land, forecasting bio-ethanol production can be at least quadruple.

Key words: palm trees, Arcgis, Low grade dates, Bioethanol, prospection.

الملخص: هذا العمل دراسة تقيمية لإمكانيات إنتاج الإيثانول الحيوي من تمور النخيل في ولاية ورقلة. الموارد الطبيعية تمت معالجتها و تثمينها باستخدام برنامجArcgis ،هذه الموارد تتمثل في مخزونً هائل من المياه الجوفية بتدفق عالي و على عمق معتبر ،اضافة الى مساحة سهلية كبيرة تسمح بالتوسع في زراعة النخيل و بالتالي الرفع من انتاج التمور وتعزيز هذا النشاط، التمور ذات النوعية الرديئة تستخدم في تطوير صناعة مربحة للإيثانول الحيوي. في سنة 2014 قدر حجم الإيثانول المستخرج من ثلاث أنواع فقط (دقل نور ، غرس و دقلة بيضا) بـ 145466.22 لتر بمساحة قدرها 21515 هكتار. قدرت الدراسة المساحة الممكنة للتوسع في زراعة النخيل بـ 62 % من المساحة ولاية ورقلة. بتقسيم هذه المساحة على استثمار خلال 50 سنة و بإتباع نموذج مقيد بنسبة استغلال 20 % من المساحة الجديدة الممكنة فإن الإيثانول المستخرج من الأنواع الرديئة يمكن أن يبلغ 21.2 مليون لتر بمساحة 650000 هكتار و 201 مليون لتر بمساحة 1650000 هكتار في سنتي 2019 و 2064 على التوالي. التوقعات بإتباع نموذج تفاؤلي بنسبة استغلال 80 % من المساحة الجديدة أظهرت إنتاجا معتبرا جدا وبينت إمكانية تضاعفه مرتين.

الكلمات المفتاحية: النخيل، Arcgis ، التمور الرديئة، الإيثانول الحيوى، توقعات.

Résumé: Ce travail présente une évaluation de la production de bioéthanol de palmiers dattiers dans la région d'Ouargla. Les ressources naturelles sont étudiées à l'aide du logiciel Arcgis. Le potentiel dans le bassin d'Ouargla est important ; Il a des eaux souterraines énormes avec des débits élevés et de faibles profondeurs. En plus de la vaste plaine large permet l'expansion importante de l'agriculture, donc la production des dates qui peut promouvoir cette activité. Les dates de bas grade sont utilisées pour développer une industrie rentable de bioéthanol. En 2014, l'extraction de bioéthanol seulement de trois variétés de date (Ghars, Deglet-Nour et Deglet-Beida) est estimé environ 145466,22 litres pour une superficie de 21515 hectares. Les résultats montrent que la surface possible pour l'extension dans la culture de palmiers est environ 62% de la surface totale de la Provence de Ouargla. L'investissement sur 50 ans en utilisant un modèle tendance avec un taux d'exploitation de 20% par rapport la zone possible montrer que l'éthanol extrait de dates de bas grade peut atteindre 21.2 million litres pour une superficie de 65000 hectares et 201 million litres pour 650000 hectares en 2019 et 2064 respectivement. L'estimation par un modèle volontaire en prenant en compte un taux d'exploitation de 80 % des terres agricoles, la production de bioéthanol de prévision peut être au moins quadruple.

Mots clés : Palmes, Arcgis, dates de bas grade, bioéthanol, Prospection.