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Automatic control has played a vital role in the advance of engineering and science. 

In addition to its extreme importance in space-vehicle systems, missile-guidance systems, 

robotic systems, and the like, automatic control has become an important and integral part 

of modern manufacturing and industrial processes. For example, automatic control is 

essential in the numerical control of machine tools in the manufacturing industries, in the 

design of autopilot systems in the aerospace industries, and in the design of cars and trucks 

in the automobile industries And so on. Since advances in the theory and practice of 

automatic control provide the means for attaining optimal performance of dynamic systems, 

improving productivity, relieving the drudgery of many routine repetitive manual operations, 

and more, most engineers and scientists must now have a good understanding of this field.[15 ]  

So, what is control system? We use the word control to referrer to the act of producing a 

desired result [1.]. 

From that definition, the main purpose of control system is to develop a control law 

that provides a physical process of desired properties. To check the performance of 

developed control law, a first approach is to test the validity of the latter on the process itself. 

This technique can be dangerous and sometimes even impossible to implement, such as in 

the case of spatial structures, nuclear, etc. so the solution of that is to design an accurate 

mathematical model that describes a system completely, in order to analyze a dynamic 

system or the simulation of performance obtained in closed loop. The derivation of this 

model base upon the fact that the dynamic system can be completely described by known 

differential equations or by experimental test data. The ability to analyze the system and 

determine its performance depends on how well the characteristics can be expressed 

mathematically [4.].  

In general, real systems are essentially nonlinear uncertain and are subject to external 

disturbances, and structured and unstructured dynamical uncertainties, and external 

disturbances, are among the typical challenges to be faced. The modeling of these systems 

is very often. Thus the controller must be so robust in the sense that it will provide a low 

sensitivity to uncertainties on the parameters, their variations and disturbances. One of the 

well-known nonlinear control methods using differential geometry, is exact linearization by 

the control such that the feedback control state. The latter is sensitive to parametric 

variations, and also several studies have shown that failing to compensate for modeling 
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uncertainties in controlling flexible structures can have negative consequences, such as 

severe tracking errors, limit cycles, chattering, and excessive noise [14]. Like the helicopters 

are governed by complex dynamics and hence are inevitably subject to the ubiquitous 

presence of high, particularly unstructured, modeling nonlinearities, so that simula t ion 

model (TRMS), such as friction force and external disturbances, for instance. Thus, 

modeling the system’s dynamics based on presumably accurate mathematical models might 

lead to undesirable consequences in this case. This raises the urgency to consider alternative 

approaches for the control of this type of systems (e.g TRMS) to keep up with their 

increasingly demanding design requirements.[14] 

On another aspect, tools of computational intelligence, such as artificial neural 

networks and fuzzy logic controllers, have been credited in various applications as powerful 

tools capable of providing robust controllers for mathematically ill-defined systems that may 

be subjected to structured and unstructured uncertainties.[14] Despite the success witnessed 

by neural network-based control systems, they remain incapable of incorporating any 

human-like expertise already acquired about the dynamics of the system in hand, which is 

considered one of the main weaknesses of such soft computing methodologies. [4]  

Type-1 fuzzy logic systems (FLSs) are known for their ability to compensate for 

structured and unstructured uncertainties, to a certain degree. However, type-2 fuzzy engines 

have been credited to be more powerful in compensating for even higher degrees of 

uncertainties. [4 ] They are particularly suitable for time-variant systems with unknown time-

varying dynamics. They also allow for more flexibility to alleviate the problems associated 

to the uncertainties pertaining to the choice of the system’s fuzzy rules and fuzzy 

membership functions. 

The present work capitalizes on the merits and the latest developments of type-2 fuzzy logic 

theory to implement a type-2 FLC for the control of a helicopter flight simulator (Twin Rotor 

MIMO system), with uncertain dynamics.  

Since conventional type-1 fuzzy FLSs can be used to identify the behavior of this 

highly nonlinear system with various types of uncertainties but cannot fully capture the 

uncertainties in the system due to membership functions and knowledge base imprecis ion 

[4].and the computational complexity of operations on fuzzy sets increases with the 

increasing type of the fuzzy set. Therefore, we will use in the main of this work the interva l 

type-2 fuzzy sets for their simplicity and efficiency to capture the severe uncertainties and 

nonlinearities of TRMS. 
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The rest of the papers is organized as follows: Chapter-1 outlines the dynamica l 

model of TRMS simulator "Twin Rotor MIMO System". Chapter-2 since we cannot jump 

directly to T2FLC, Firstly, We have to illustrate conventional type-1 fuzzy logic controller 

and its theory. Chapter-3 T2FLC and IT2FLC with its basic theory.  Chapter-4 dedicated to 

use Matlab to design IT2FLC to control TRMS and simulation results are reported and 

discussed and compare with T1FLC result. Finally, we conclude with a general conclusion.     
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I.1- Introduction: 

Similar to most flight vehicles, the helicopter consists of several elastic parts such as rotor, 

engine and control surfaces. The nonlinear aerodynamic forces and gravity act on the vehicle, 

and flexible structures increase complexity and make a realistic analysis difficult. For control 

purpose, it is necessary to find a representative model that shows the same dynamic 

characteristics as the real aircraft. The behavior of a nonlinear TRMS (Figure I.1), in certain 

aspects resembles that of a helicopter. It can be well perceived as a static test rig for an air 

vehicle with formidable control challenges. This TRMS consists of a beam pivoted on its base 

in such a way that it can rotate freely in both its horizontal and vertical planes. There are two 

rotors (the main and tail rotors), driven by DC motors, at each end of the beam. If necessary, 

either or both axes of rotation can be locked by means of two locking screws provided for 

physically restricting the horizontal or vertical plane rotation. Thus, the system permits both 1 

and 2 degree-of-freedom (DOF) experiments. The two rotors are controlled by variable speed 

electric motors enabling the helicopter to rotate in a vertical and horizontal plane (pitch and 

yaw). The tail rotor could be rotated in either direction, allowing the helicopter to yaw right or 

left. The motion of the helicopter was damped by a pendulum, which hung from a central pivot 

point. In a typical helicopter, the aerodynamic force is controlled by changing the angle of attack 

of the blades. The mathematical model of the TRMS is developed under following two parts 

with its Figure I.1. [3]  

 

 

 

Figure I.1: The twin rotor MIMO system 
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I.2- 1 DOF TRMS modeling in vertical plane: 

The TRMS possesses two permanent magnet DC motors; one for the main and the other for 

the tail propelling. The motors are identical with different mechanical loads.  [4] So the 

mathematical model of the system in vertical plane is described in (I.1) to (I.4) (see Figure I.2). 

 

In (I.1) the first term denotes the torque of the propulsive force due to the main rotor, the 

second term refers to the torque of the friction force, and the torque of gravity force is shown in 

the third term. [4] 

𝐽𝑣

𝑑Ω𝑣

𝑑𝑡
 =  𝑙𝑚𝐹𝑣(𝑤𝑣) − 𝑇𝑓𝑟𝑖𝑐,𝑦  +  𝑔[(𝐴 − 𝐵) 𝑐𝑜𝑠 𝛼𝑣  −  𝐶 𝑠𝑖𝑛 𝛼𝑣]                                           (I. 1) 

  Where: 

𝐴  =  (
𝑚𝑡

2
 +  𝑚𝑡𝑟 +  𝑚𝑡𝑠) 𝑙𝑡 

𝐵 = ( 
𝑚𝑚

2
 +  𝑚𝑚𝑟 +  𝑚𝑚𝑠 )𝑙𝑚 

𝐶 = (
𝑚𝑏

2
𝑙𝑏  +  𝑚𝑐𝑏𝑙𝑐𝑏)  

𝑑𝛼𝑣

𝑑𝑡
=  Ω𝑣   

Figure I.2: Gravity forces and propulsive force in the vertical plane 
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The propulsive force Fv moving the joined beam in the vertical direction is describing 

by a nonlinear function of the angular velocitywv . [5] 

𝐹𝑣 (𝑤𝑣 ) =  −3.48 × 10− 12 𝑤𝑣
5  +   1.09 × 10− 9 𝑤𝑣

4 +   4.123 × 10− 6 𝑤𝑣
3 −  1.632 × 10− 4 𝑤𝑣

2   +  9.54410− 2 𝑤𝑣       (I.2) 

The angular velocity wv  of main propeller is a nonlinear function of a rotation angle of 

the DC motor describing by: [5]. 

𝑤𝑣 (𝑢𝑣𝑣 ) =  90.90𝑢𝑣𝑣
6  +  599.73𝑢𝑣𝑣

5  −  129.26𝑢𝑣𝑣
4  − 1238.64𝑢𝑣𝑣

3  +   63.45𝑢𝑣𝑣
2  +  1238.41𝑢𝑣𝑣                 (I.3) 

 The model of the motor-propeller dynamics is obtained by substituting the nonlinear 

system by a serial connection of a linear dynamics system. This can be expressed as: [5]    

𝑑𝑢𝑣𝑣

𝑑𝑡
  =  

1

𝑇𝑚𝑟
(−𝑢𝑣𝑣  +  𝑢𝑣)                                                                                                          (I. 4)                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.3: The relationship between the input voltage and the propulsive force for 

the main rotor 

 

𝒖𝒗 𝑲𝒎𝒓

𝑻𝒎𝒓𝒔 + 𝟏
 𝒘𝒎(𝒖𝒗𝒗) 𝑭𝒗(𝒘𝒎) 𝒖𝒗𝒗 𝒘𝒎 
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I.3- 1 DOF TRMS modeling in horizontal plane: 

As it has been mentioned before, the motors for horizontal and vertical movement are 

identical with different mechanical loads. So, all the related equations are same and, therefore, 

are not repeated here. The mathematical model of the remaining parts of the system in horizonta l 

plane is described in (I.3) to (I.5) (see Figure I.4). In (I.3) the first term is the torque of propulsive 

force due to the tail rotor, the second term implies the torque of the friction force, and the third 

term refers to the torque of the flat cable force that is completely nonlinear and can be obtained 

by point by point measurement. [4] 

 

 

 

 

 

Figure I.4: Propulsive force in the horizontal plane 

𝑑Ωℎ

𝑑𝑡
 =  

𝑙𝑡𝐹𝑣(𝑤ℎ) 𝑐𝑜𝑠 𝛼𝑣   − 𝑇𝑓𝑟𝑖𝑐,ℎ   −  𝑇𝑐𝑎𝑏𝑙𝑒(𝛼ℎ)  

𝐷𝑐𝑜𝑠2 𝛼𝑣  +  𝐸 𝑠𝑖𝑛2 𝛼𝑣 +  𝐹 
                                                                 (𝐼. 5) 

 Where: 
 

𝛼𝑣 =  𝑐𝑡𝑒                                          

𝐷 = ( 
𝑚𝑚

3
 +  𝑚𝑚𝑟 + 𝑚𝑚𝑠 )𝑙2

𝑚 +  ( 
𝑚𝑡

3
 + 𝑚𝑡𝑟 + 𝑚𝑡𝑠 )𝑙2

𝑡 

𝐸 =  
𝑚𝑏

3
𝑙2

𝑏  +  𝑚𝑐𝑏𝑙2
𝑐𝑏   

𝐹 =  
𝑚𝑡𝑠

2
𝑟2

𝑡𝑠  +  𝑚𝑚𝑠 𝑟2
𝑚𝑠   

𝑑𝛼ℎ

𝑑𝑡
 =  Ωℎ                                                                     

 

Also, the propulsive force Fh moving the joined beam in the Horizontal direction is 

describing by a nonlinear function of the angular velocity wh.[5] 

𝐹ℎ (𝑤ℎ) =  −3 × 10− 14 𝑤ℎ
5 +  1.595 × 10− 11 𝑤ℎ

4 +  2.511 × 10− 7 𝑤ℎ
3  −  1.808 × 10−4 𝑤ℎ

2  +  0.8080 𝑤ℎ    (𝐼. 6)  
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Also The angular velocity wv  of tail propeller is a nonlinear function of a rotation angle of 

the DC motor describing by: [5]  

𝑤ℎ(𝑢ℎℎ ) =  2020𝑢ℎℎ
5 +  194.69𝑢ℎℎ

4  −  4283.15𝑢ℎℎ
3  − 262.87𝑢ℎℎ

2  +  3796.83𝑢ℎℎ                                      (I.7) 

The model of the motor-propeller dynamics is obtained by substituting the nonlinear system 

by a serial connection of a linear dynamics system. This can be expressed as: [3] 

 
𝑑𝑢ℎℎ

𝑑𝑡
=  

1

𝑇𝑡𝑟
 (−𝑢ℎℎ  +  𝑢ℎ)                                                                                                                  (I.8)  

 

Figure I.5: The relationship between the input voltage and the propulsive force for the tail 

rotor 

         Where : 

Figure I.6: The torque of the friction force 

 Figure I.6 shows the torque of the friction force that covers viscous, coulomb and static 

frictions. It must be noted that there are differences between the input voltage levels in the 

MATLAB/Simulink environment and the motor terminal voltages, and the relationship between 

these two sets of values is nonlinear.[4] 

𝒖𝒗 𝑲𝒎𝒓

𝑻𝒎𝒓𝒔 + 𝟏
 𝒘𝒎(𝒖𝒗𝒗) 𝑭𝒗(𝒘𝒎) 𝒖𝒗 𝒘𝒎 
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The plant constants can be seen in Table I.1 

 

 

 

 

 

 

 

 

 

 

 

 

Table I.1: Parameter Definitions of the TRMS 

 

 

 

 

 

 

 

 

 

 

 

Parameter Numerical Value 

𝑚𝑡𝑟 0.206 [kg] 

𝑚𝑚𝑟 0.228[kg] 

𝑚𝑐𝑏 0.068 [kg] 

𝑚𝑡 0.0155 [kg] 

𝑚𝑚 0.0145 [kg] 

𝑚𝑏 0.022 [kg] 

𝑚𝑡𝑠 0.165 [kg] 

𝑚𝑚𝑠 0.225[kg] 

𝑙𝑡 0.25 [m] 

𝑙𝑚 0.25 [m] 

𝑙𝑏 0.26 [m] 

𝑙𝑐𝑏 0.13 [m] 

𝑟𝑚𝑠  0.155 [m] 

𝑟𝑡𝑠  0.10 [m] 

𝑇𝑚𝑟  1.432 sec 

𝑇𝑡𝑟 0.3842 sec 

𝐾𝑚𝑟  1 

𝐾𝑡𝑟  1 

        g 9.81 [𝒎 𝒔𝟐⁄ ] 
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I.4- Conclusion: 

In this chapter, we have illustrated the general overview of real bi-rotor helicopter, and we 

provided simulation model «TRMS», also through the analysis of that model, we showed that is 

multivariable, couple, has two degree-of-freedom (DOF), and nonlinear equation in the both vertical 

and horizontal planes, so that TRMS has uncertain dynamic, in addition, to the effect of The torque 

of the friction force which cause an addition uncertainty. So by that chapter the analytic model of 

simulation model is provided. 

With all that complexity its «TRMS» control by ordinary controller come more difficult, so 

for that raison in the next chapter we will use another intelligent controller based on fuzzy logic 

which can really cope with all that unstructured uncertainties  

 

 

 

 

 

 



 

 

 

 

 

 

 

  

 

Type 1 fuzzy logic 



Chapter 2: Type1 Fuzzy Logic 
 

11 | P a g e 
 

II.1- Introduction: 

Fuzzy sets originated in the year 1965 and this concept was proposed by Lofti A.Zadeh. 

Since then it has grown and is found in several application areas. According to Zadeh, The 

notion of a fuzzy set provides a convenient point of departure for the construction of a 

conceptual framework which parallels in many respects of the framework used in the case of 

ordinary sets, but is more general than the latter and potentially, may prove to have a much 

wider scope of applicability, specifically in the fields of pattern classification and information 

processing.” Fuzzy logics are multi-valued logics that form a suitable basis for logical systems 

reasoning under uncertainty or vagueness that allows intermediate values to be defined between 

conventional evaluations like true/false, yes/no, high/low, etc. These evaluations can be 

formulated mathematically and processed by computers, in order to apply a more human- like 

way of thinking in the programming of computers. Fuzzy logic provides an inference 

morphology that enables approximate human reasoning capabilities to be applied to knowledge -

based systems. The theory of fuzzy logic provides a mathematical strength to capture the 

uncertainties associated with human cognitive processes, such as thinking and reasoning. Fuzzy 

systems are suitable for uncertain or approximate reasoning, especially for the system with a 

mathematical model that is difficult to derive. Fuzzy logic allows decision making with 

estimated values under incomplete or uncertain information. [6] 
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II.2- Fuzzy Sets: 

In the classical set, its characteristic function assigns a value of either 1 or 0 to each 

individual in the universal set, there by discriminating between members and nonmembers of 

the crisp set under consideration. The values assigned to. [7] 

 

Figure II.1: Membership function of fuzzy set and crisp set 

The elements of the universal set fall within a specified range and indicate the 

membership grade of these elements in the set. Larger values denote higher degrees of set 

membership such a function is called a membership function and the set is defined by it is a 

fuzzy set. [7] 

A fuzzy set is thus a set containing elements that have varying degrees of membership 

in the set. This idea is in contrast with classical or crisp, set because members of a crisp set 

would not be members unless their membership was full or complete, in that set (i.e., their 

membership is assigned a value of 1). [7] Elements in a fuzzy set, because their membership need 

not be complete, can also be members of other fuzzy set on the same universe. Fuzzy set are 

denoted by a set symbol with a tilde under strike. Fuzzy set is mapped to a real numbered value 

in the interval 0 to 1. If an element of universe, say x, is a member of fuzzy set A, then the 

mapping is given by μA (x) ∈ [0, 1]. So fuzzy set A fuzzy set on 

U is defined as 

μA(x) : U → [0, 1]                                                                                                                  (II.1) 

Here μA is known as the membership function, and μA(x) is known as the membership 

grade of x. Membership function is the degree of truth or degree of compatibility. The 

μ (x) 

1 
μ(x) 

1 
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membership function is the crucial component of a fuzzy set. Therefore all the operations on 

fuzzy sets are defined based on their membership functions. [6] 

II.3- Fuzzy Set Operations: 

Fuzzy sets are used for the systematic manipulation of vague and imprecise concepts 

using fuzzy set operations performed by manipulating the membership functions. Let A and B 

be two point-valued fuzzy sets in universe of discourse U with membership functions µA(u) and 

µB (u)respectively. 

Equality µA(u)= µB (u)for all u ∈ U.     

Sets A and B are equal if they are defined on the same universe and the membership function 

is the same for both. 

in the TableII.1 below illustrate fuzzy set operations 

 

TableII.1: summarize of Fuzzy Set Operations 

      Note: If A and A are complements, their intersection need not be empty set. Likewise, 

their union is   not necessarily equal to the universe  

 

II.4- Linguistic Variables: 

Just like an algebraic variable takes numbers as values, a linguistic variable takes words 

or sentences as values. The set of values that it can take is called its term set. Each value in the 

term set is a fuzzy variable defined over a base variable. The base variable defines the universe 

of discourse for all the fuzzy variables in the term set. In short, the hierarchy is as follows: 

linguistic variable −→ fuzzy variable −→ base variable.[6] 

Operation Fuzzy logic form 

Complement µ𝐴
(𝑢)  = 1 − µ𝐴(𝑢) 

Union µ𝐴∪ 𝐵(𝑢) =  𝑚𝑎𝑥(µ𝐴(𝑢), µ𝐵(𝑢))              𝑢 ∈ 𝑈 

Intersection µ𝐴∩𝐵 (𝑢) = min(µ𝐴(𝑢), µ𝐵(𝑢))                µ ∈ 𝑈 

Produit cartesien 

µ𝐴1 ×…….×𝐴𝑛
(µ1, … , µ𝑛) =  min (µ𝐴1

(𝑢1), … , µ𝐴𝑛
(𝑢𝑛)) 

ou 

µ𝐴1 ×….×𝐴𝑛
(𝑢1, … , 𝑢𝑛) = µ𝐴1

(𝑢1) × … × µ𝐴𝑛
(𝑢𝑛) 

Fuzzy Relation 𝑅𝑈1,…..,𝑈𝑛 = [((𝑈1, … . . 𝑈𝑛), µ𝑅(µ1 … . µ𝑛))(µ1, . . , µ𝑛)𝜖𝑈1 × … × 𝑈𝑛] 
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Illustration: 

Let x be a linguistic variable with the label “Age”. Terms of this linguistic variable, 

which are fuzzy sets, could be “old”, “young”, “very young” from the term set.  

T = Old, Very Old, Not So Old, More or Less Young, Quite Young, Very Young Each term is 

a fuzzy variable defined on the base variable, which might be the scale from 0 to 100 years. [4] 

A linguistic variable is represented by triplet (x, T(x),U)     

x : Is the name of the linguistic variable (position, speed, angle error …….)  

T(x) : Is the set of the fuzzy sets, which is used to define x     U:  is the universe of discourse 

which related to linguistic variable x  

For example, if the angle is linguistic variable and defined in universe of discourse U= 

[-1, 1], its fuzzy labels can be : 

Negative Big, (NB), Negative Small (NS), Zero (ZR), Positive Small (PS), positive Big (PB) 

So the fuzzy sets are: 

T (error) = {Negative Big, (NB), Negative Small (NS), Zero (ZR), Positive Small (PS), positive 

Big (PB)}  

The Figure II.2: below depicts these conceptions    

 

Figure II.2: depicts linguisticts variable ‘error’ and its fuzzy sets 
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II.5- Membership Functions:  

The membership function μA(x) describes the membership of the element x of the base 

set X in the fuzzy set A, whereby for μA(x) a large class of functions can be taken. Reasonable 

functions are often piecewise linear functions, such as triangular or trapezoidal functions. The 

grade of membership μA(xo) of a membership function μA(x) describes for the special element 

x=xo, to which grade it belongs to the fuzzy set A. This value is in the unit interval [0,1]. Of 

course, xo can simultaneously belong to another fuzzy set B, such that μB(xo) characterizes the 

grade of membership of xo to B. This case is shown in Figure II.3. [6] 

 

Figure II.3: Membership Grades of x0 in the Sets A and B: 

µ𝑨(𝒙𝟎) = 𝟎.𝟕𝟓 and  µ𝑩(𝒙𝟎) = 𝟎.𝟐𝟓 

The membership for a 50-year old in the set “young” depends on one’s own view. The 

grade of membership is a precise, but subjective measure that depends on the context. A fuzzy 

membership function is different from a statistical probability distribution. This is illustrated 

following egg-eating example. [6] 

II.5.1- Types of Membership Functions: 

In principle any function of the form A: X→ [0 , 1] describes a membership function 

associated with a fuzzy set A that depends not only on the concept to be represented, but also 

on the context in which it is used. The graphs of the functions may have different shapes and 

may have specific properties. Whether a particular shape is suitable can be determined only in 

the application context. In certain cases, however, the meaning semantics captured by fuzzy sets 

is not too sensitive to variations in the shape, and simple functions are convenient. In many 

practical instances fuzzy sets can be represented explicitly by families of parameterized 

functions, the most common being the following: [6] 
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1. Triangular Function 

2. Generalized bell Function 

4. Trapezoidal Function 

5. Gaussian Function 

 

Function Algebraic form   Graphic form  

Triangular   

Function 

 

 
it is defined by three parameters {𝑎, 𝑏, 𝑐}  

 

µ(𝒙) = 𝒎𝒂𝒙 (𝒎𝒊𝒏(
𝒙 − 𝒂

𝒃 − 𝒂
,
𝒄 − 𝒙

𝒄 − 𝒃
)  , 𝟎) 

 

Trapezoidal 

Function 

              

it is defined by four parameters {𝑎, 𝑏, 𝑐, 𝑑}    
 

µ(𝒙) = 𝒎𝒂𝒙 (𝒎𝒊 𝒏 (
𝒙 − 𝒂

𝒃 − 𝒂
, 𝟏,

𝒅 − 𝒙

𝒅 − 𝒄
)  , 𝟎) 

 

 

Gaussian 

Function 

It is defined by two parameters {𝑚,} 

 

µ(𝒙) = 𝒆𝒙𝒑 (−
(𝒙 − 𝒎)𝟐

𝟐𝝈𝟐
) 

 

Sigmoïdal 

Function 

It defined by two parameters {𝑎, 𝑐} 

 

µ(𝒙) =
𝟏

𝟏 + 𝒆𝒙𝒑(−𝒂(𝒙 − 𝒄))
 

 
 

 
 

 

Table II.2: Types of Membership Functions 
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II.6- Fuzzy Controllers 

Fuzzy logic controllers are based on the combination of Fuzzy set theory and fuzzy logic. 

Systems are controlled by fuzzy logic controllers based on rules instead of equations. This 

collection of rules is known as the rule base usually in the form of IF-THEN-ELSE statements. 

Here the IF part is known as the antecedent and the THEN part is the consequent. The 

antecedents are connected with simple Boolean functions like AND, OR, NOT etc., Figure II.4 

outlines a simple architecture for a fuzzy logic controller. The outputs from a system are 

converted into a suitable form by the fuzzification block. Once all the rules have been defined 

based on the application, the control process starts with the computation of the rule 

consequences. The computation of the rule consequences takes place within the computationa l 

unit. Finally, the fuzzy set is defuzzified into one crisp control action using the defuzzifica t ion 

module. The decision parameters of the fuzzy logic controller are as follows: [6] 

 

Figure II.4: Fuzzy Controller Architecture 

Input Unit: Factors to be considered are the number of input signals and scaling of the input 

signal. 

 

II.6.1- Fuzzification: 

The process by which the input values from sensors are scaled and mapped to the domain 

of fuzzy variables is known as fuzzification. The fuzzy variables also known as linguis t ic 

variables are determined based on intuition (from knowledge) or inference (known facts). These 

linguistic variables can be either continuous or discrete theoretically, but in practice it should be 

discrete. Fuzzification is a two step process: Assign fuzzy labels and Assign numerical meaning 

to each label.[6] 
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a- Assign fuzzy label:  
Each crisp input is assigned a fuzzy label in the universe of discourse. For example for 

the input parameter height fuzzy labels can be “tall”, “short”, “Normal”, “Very Tall”, and “Very 

short”. Every crisp input can be assigned multiple labels. As the number of labels increases the 

resolution of the process is better. In some cases, assigning large number of labels leads to a 

large computational time and thus making the fuzzy system unstable. Therefore in general the 

number of labels for a system is limited to an odd number in the range [3 , 9], such that the 

surface is balanced and symmetric.[6] 

b- Assign numerical meaning: 
Here membership functions are formed to assign a numerical meaning to each label. The 

range of the input value that corresponds to a specific label can be identified by the membership 

function. Though there are different membership function shapes, triangular and trapezoidal 

membership functions are commonly used to avoid time and space complexity. For each fuzzy 

set and for each linguistic variable, the grade of membership of a crisp measure in each fuzzy 

set is ascertained.[6] To illustrate this process assume the input variable e which can be swing 

angle of inverted pendulum is linguistic variable and its range or in another word universe of 

discourse is [-a , a]. Assume further that the following seven linguistic values (fuzzy labels) are 

selected: [6] 

 

NL ---negative large       NM ---negative medium            NS ---negative small   

PL ---positive large          PM ---positive medium            PS ---positive small                                       

AZ ---approximately zero  

Representing, for example, these linguistic variables by triangular-shape fuzzy numbers 

that are equally spread over each range, we obtain the fuzzy quantization exemplified for 

variable e in Figure II.5. 

 

Figure II.5: Possible fuzzy quantization of the range [-a , a] bytriangular-shaped fuzzy 

numbers. 
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It is important to realize that the fuzzy quantization defined in figure 12 for range [-a , 

a] and the seven given linguistic labels are only reasonable example so other shapes of 

membership functions might be preferable to the triangular shapes. The shapes need not to be 

symmetric and need not be equally spraed over the given ranges.[8]  

II.6.2- Fuzzy Rule Base  

For any fuzzy logic operation, the output is obtained from the crisp input by the process 

of fuzzification and defuzzification. These processes involve the usage of rules, which form the 

basis to obtain the fuzzy output. A fuzzy if-then rule is also known as fuzzy rule, or fuzzy 

conditional statement or fuzzy implication. It is generally of the form: [6] 

IF antecedent THEN consequent 

IF (x is A) THEN (z is Z) 

where x, z etc. represent the variables and A, Z are the linguistic values in the universe  

of discourse. Here the IF part is referred to as the antecedent or premise and the THEN part is 

referred to as consequent or conclusion. Fuzzy rules are most commonly applied to control 

systems. The common types of fuzzy rules applied to control systems are the Mamdani fuzzy 

rules and Takagi–Sugeno (TS) fuzzy rules.[6] 

Most of the practical applications do not involve rules like the above mentioned with 

one antecedent part. These applications involve a compound rule structure. Such rules can be 

disintegrated into smaller rules and from which simple canonical rules can be formed. These 

rules have more than one antecedent part connected by conjunction and disjunction connectives. 

Conjunction connective uses intersection operation involving the “AND” connective as 

follows.[6] 

IF antecedent1 AND antecedent2 AND ......AND antecedentn THEN consequent 

Similarly the disjunction connective uses union operation involving the “OR” 

connective as follows 

IF antecedent1 OR antecedent2 OR ...........OR antecedentn THEN consequent 

Likewise complex rules can be broken into simpler forms and connected using the 

“AND” or “OR” connectives as shown in the following rule. [6] 

IF X1 = A1 and X2 = A2 THEN Y = B 

IF X1 = A1 and X2 = A3THAN Y = B 
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Note: (Number of Control Rules), If the number of fuzzy sets or predicates for each input 

variable is m and the number of system input variables is n, then there are mn different rules 

required for a completeness in a conventional system. FLC rule base typically uses a small 

number of rules to attain completeness. [9] 

II.6.3- Aggregation of Rules: 

The rule based system involves several rules and each rule provides an output or 

consequent. The consequent part also known as conclusion is unique for every rule that has been 

executed based on the input parameters. An overall conclusion has to be obtained from the 

individual consequents. This method of obtaining the overall conclusion from the set of rules is 

referred to as aggregation of rules. Fuzzy rules can be aggregated by using the “AND” or “OR” 

connectives. The process of aggregating the rules using “AND” connective is known as 

conjunctive aggregation and the process of aggregating the rules using “OR” connective is 

known as disjunctive aggregation. [6] 

Conjunctive aggregation: 

Consequent = Consequent1 AND Consequent2 AND ... AND Consequentr 

Disjunctive aggregation: 

Consequent = Consequent1 OR Consequent2 OR ... OR Consequentr 

Using these operators a final decision is made on the output of the fuzzy set. 

II.6.4- Fuzzy Inference Methods: 

The most commonly used fuzzy inference methods are Mamdani’s inference method, 

Takagi–Sugeno (TS) inference method and the Tsukamoto inference method. All these methods 

are similar to each other but differ only in their consequents. Mamdani fuzzy inference metho d 

uses fuzzy sets as the rule consequent while TS method uses functions of input variables as the 

rule consequent and the Tsukamoto inference method uses fuzzy set with a monotonica l ly 

membership function as the rule consequent. [6] 

a- Mamdani’s Fuzzy Inference Method: 
Among the above mentioned inference methods, the Mamdani model is the commonly 

used method due to its simple min-max structure. The model was proposed by Mamdani (1975), 

The fuzzy rules are of the form: [7]     

IF (input1 is Linguistic variable1) AND OR (input2 is Linguistic variable2) AND OR 

..................THEN (output is Linguistic variablen) [7] 
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Example : 

If x is A1 and y is B1 then z is C1 

If x is A2 and y is B2 then z is C2 

For this example as a Mamdani inference system is shown in Figure II.6. 

Figure II.6: Example of Mamdani inference system (MAX-MIN) 

b- Takagi–Sugeno Fuzzy Inference Method: 

The Takagi–Sugeno model also known as TS method was proposed by Takagi and 

Michio Sugeno in 1985 in order to develop a systematic approach to generate fuzzy rules. The 

Sugeno type fuzzy inference is similar to the Mamdani inference, they differ from each other in 

their rule consequent as we mentioned  

The general form of a TS rule is [4] 

        IF antecedent1 AND antecedent2 THEN output = f(x,y) 

Here output = f (x,y) is a crisp function in the consequent. This mathematical function 

can either be linear or nonlinear. Most commonly linear functions are used and adaptive 

techniques are used for nonlinear equations. The membership function of the rule consequent is 

a single spike or a singleton in the TS method. [6] 

A few examples of the TS method of inference are 

IF x is small THEN y = 3x−2 

IF x is large THEN y = x + y + 5 

A zero order Sugeno fuzzy model uses the rules of the form, 

IF antecedent1 AND antecedent2 THEN output z = k 

where k is a constant. 

 Aggregation 

results 

 
Combination 

of antecedent 
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In such as case the output of each fuzzy rule will be a constant. The evaluation of fuzzy 

rules using Sugeno method is shown in Figure II.7. 

Figure II.7: The Scheme of Sugeno Inference Method 

c- Tsukamoto Fuzzy Inference Method 

In the Tsukamoto fuzzy model, the rule consequent is represented with a monotonica l ly 

membership function. The general form of a Tsukamoto [6] 

     IF antecedent1 AND antecedent2 THEN output = membership function 

This method also differs from the Mamdani and Sugeno in terms of its rule consequent. 

The Tsukamoto method of fuzzy inference in shown in Figure II.8. The output of each rule is 

defined as a crisp value induced by the firing strength of the rule. The Tsukamoto model also 

aggregates each of the rule’s output using weighted average method of defuzzification thereby 

reducing the time consumed for the process of defuzzification. [8] 

Figure II.8: The Scheme of Tsukamoto Inference Model 
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II.6.5- Defuzzification 

As a result of applying the previous steps, one obtains a fuzzy set from the reasoning 

process that describes, for each possible value u, how reasonable it is to use this particular value. 

In other words, for every possible value u, one gets a grade of membership that describes to 

what extent this value u is reasonable to use. Using a fuzzy system as a controller, one wants to 

transform this fuzzy information into a single value u’ that will actually be applied. This 

transformation from a fuzzy set to a crisp number is called a defuzzification. The fuzzy results 

generated cannot be used as such to the applications, hence it is necessary to convert the fuzzy 

quantities into crisp quantities for further processing. This can be achieved by using 

defuzzification process by using the methods as follows: [6] 

a- Max-Membership principle 

- The max membership principle method finds the defuzzified value at which the 

membership function is a Maximum [6] 

- This method of defuzzification is also referred to as the height method. 

- The defuzzified value can be determined from the following expression  

   μA( Z∗ ) ≥ μA(Z) 

- Computes the defuzzified value at a very fast rate 

- Very accurate only for peaked output membership functions 

- Graphical representation of max-membership defuzzification shown in Figure II.9 

Figure II.9: Max membership method 

b- Center of gravity method (COG) 

- The COG method of defuzzification was developed by Sugeno in 1985 

- This method is also known as center of area or centroid method 

Most commonly used method 

- Defined as z* = where z*   
∫ 𝛍𝐀(𝐳)𝐳𝐝𝐳

∫ 𝛍𝐀(𝐳)𝐳𝐝𝐳
   is the defuzzified output, μA(z) is the aggregated  
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membership function and z is the output variable 

- Capable of producing very accurate results 

- Major disadvantage - computationally difficult for complex membership functions 

- Graphical representation of COG method is shown in Figure II.10 

Figure II.10: Centroid defuzzification method 

c- Weighted Average method 

- In the weighted average method, the output is obtained by the weighted average of the each 

membership function output of the system. [6] 

- This method can be applied only for symmetrical output membership functions 

- Each membership function is weighted by its largest membership function- Defined as 

where z* 
∑ 𝛍𝐀(𝐳)𝐳

∑ 𝛍𝐀(𝐳)
 is the defuzzified output, A(z) is the aggregated membership function z and 

is the weight associated with the membership function. 

- The defuzzified value obtained in this method is very close to that obtained by COG 

method 

- Overcomes the disadvantage of COG method - Less computationally intensive 

- Graphical representation of Weighted Average method is shown in Figure II.11 

 

Figure II.11: Weighted Average method 
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II.8- Conclusions 
 

In this chapter. we have illustrated the basic theory of fuzzy logic controller that is fuzzy 

sets and fuzzy logic which can be understood as an extension of ordinary sets, and we also 

explained different method of rule base, inference engine, and deffuzzification to obtain 

numerical output of the controller, as well as notions of linguistic variables and fuzzy values the 

inherent of membership function and its types for the antecedent and consequent, and all of that 

are used in the framework of tye-1 fuzzy logic controller. 

T1FLC is powerful to handle the uncertainties more then the classical controller because 

of the uncertainty in the rule based due to linguistic variable which is based just on intuition of 

the experts, but it must  has well-defined membership function so that causes some of difficulty, 

for that raison in the next chapter we will use another intelligent controller more powerful than 

type-1 fuzzy logic controller so-called type-2 fuzzy logic controller. 
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III.1- Introduction to Type-2 Fuzzy Logic Control: 

The Uncertainty is an inherent part of intelligent systems used in real-world 

applications [10]. The use of new methods for handling incomplete information is of 

fundamental importance [10]. And as Type-1 fuzzy controllers, like the ones mentioned above, 

whose membership functions are type-1 fuzzy sets, are unable to directly handle such 

uncertainties [10]. we will describe new method for building intelligent controller “type-2 fuzzy 

logic controller” using type-2 fuzzy logic in which the antecedent or consequent membership 

functions are type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves 

are type-1 fuzzy sets; they are very useful in circumstances where it is difficult to determine 

an exact membership function for a fuzzy set [10]. As well as Type-2 fuzzy sets that are used in 

type-2 fuzzy systems can handle such uncertainties in a better way because they provide us 

with more parameters [10].so we will describe in this chapter the design of intelligent controller 

using interval type-2 fuzzy logic for minimizing the effects of uncertainty produced by the 

instrumentation elements, environmental noise, etc.  
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III.2- Type-2 Fuzzy logic: 

 
The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets [10], so type-2 

fuzzy set, the concept of a type-2 fuzzy set, was introduced by Zadeh [10] as an extension of the 

concept of an ordinary fuzzy set (henceforth called a “type-1 fuzzy set”). A type-2 fuzzy set is 

characterized by a fuzzy membership function, i.e., the membership grade for each element of 

this set is a fuzzy set in [0,1], unlike a type-1 set where the membership grade is a crisp number 

in [0,1]. Such sets can be used in situations where there is uncertainty about the membership 

grades themselves, e.g., an uncertainty in the shape of the membership function or in some of 

its parameters. Consider the transition from ordinary sets to fuzzy sets. When we cannot 

determine the membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. 

Similarly, when the situation is so fuzzy that we have trouble determining the membership 

grade even as a crisp number in [0, 1], we use fuzzy sets of type-2. This does not mean that we 

need to have extremely fuzzy situations to use type- 2 fuzzy sets [8]. There are many real-world 

problems where we can not determine the exact form of the membership functions, e.g., in 

time series prediction because of noise in the data. Another way of viewing this is to consider 

type-1 fuzzy sets as a first order approximation to the uncertainty in the real-world. Then     

type-2 fuzzy sets can be considered as a second order approximation. Of course, it is possible 

to consider fuzzy sets of higher types but the complexity of the fuzzy system increases very 

rapidly [10].  

 

III.3- general Type-2 Fuzzy Set: 

A general type-2 fuzzy set, Ã, may be represented as [9] [10]: 

𝜇𝐴(x,u) : X →[0, 1]                                                                                                                       (III.1) 

𝐴 = {((𝑥, 𝑢), 𝜇𝐴 (𝑥, 𝑢))|     ∀𝑥 ∈ 𝑋    ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1] }                                                      (III.2)  

Where 𝜇𝐴(𝑥,𝑢)  is the type-2 fuzzy membership function in which 0 < 𝜇𝐴(𝑥,𝑢) > 1. 

𝐴  can also be defined as [2]:  

𝐴 = ∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

𝜇𝐴 (𝑥, 𝑢) ⁄ (𝑥, 𝑢)                     𝐽𝑥 ⊆ [0,1]                                                            (III.3) 

Where ∫   ∫   denotes union over all admissible x and u [11], For discrete universes of 

discourse  ∫  is replaced by Σ. 
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𝐽𝑥 is called primary membership of x [11]. Additionally, there is a secondary membership 

value corresponding to each primary membership value that defines the possibility for primary 

memberships [11]. Whereas the secondary membership functions can take values in the interva l 

of [0,1] in generalized T2FLSs [11], so, type-2 fuzzy set is one in which the membership grade 

of every domain point is a Gaussian type-1 set contained in [0,1].as depicted in Figure III.1.[10] 

 

 
Figure III.1: A type-2 fuzzy set in which the membership grade of every domain point is a 

Gaussian type-1 set. 

Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a bounded 

region that we call the “footprint of uncertainty” (FOU), (black region in Figure III.1). 

Mathematically, it is the union of all primary membership functions. [10]                                                      

 𝐹𝑂𝑈 ( 𝐴 ) =  ⋃ 𝑢 ∈  𝐽𝑋𝑥 ∈𝑋                                                                                                 (III.1)                       

An “upper membership function” and a “lower membership functions” (Figure III.2) 

are two type-1 membership functions that are bounds for the FOU of a type-2 fuzzy set Ã. The 

upper membership function is associated with the upper bound of FOU (Ã) [10] is denoted  

𝑢𝐴(𝑥).[11]. and The lower membership function is associated with the lower bound of FOU 

(Ã) [10] and is denoted 𝑢𝐴(𝑥) [13]:                  

𝑢𝐴(𝑥) = 𝐹𝑂𝑈(𝐴 )̅̅ ̅̅̅ ̅̅ ̅̅̅  ̅ ∀𝑥 ∈ 𝑋  
                                                                                                                                              (III.5) 

𝑢𝐴(𝑥) = 𝐹𝑂𝑈(𝐴 )  ∀𝑥 ∈ 𝑋 
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Figure III.2: A Gaussian type-2 fuzzy membership function (FOU), upper and lower 

membership function  

Another way of viewing type-2 membership functions is in a three-dimensiona l 

fashion, in which we can better appreciate the idea of type-2 fuzziness. In Figure III.3 we have 

a three-dimensional view of a type-2 Gaussian membership function [10]. 

  

Figure III.3: Three-dimensional view of a type-2 membership function 
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III.4- Interval Type-2 Fuzzy Sets: 

The operations of type-2 fuzzy systems are typically more computationally involved 

than type-1 systems. This has urged researchers to search for ways to alleviate this high 

computational burden if type-2 FLCs are to find their way to real-world applications. For this 

purpose, interval fuzzy sets were introduced [13]. This type of fuzzy sets provides a simplif ied 

and efficient alternative to easily compute the input and antecedent operations for FLSs and 

offers a balanced trade off between performance and complexity [15]. 

when all secondary membership 𝜇Ã(x,u) of Ã are equal to 1, then Ã is Interval Type-2 

Fuzzy Set, the special case of Equation (III.6) , might be defined for the Interval Type-2 Fuzzy 

Set as [11]: 

𝐴 = ∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

1⁄(𝑥,𝑢)               𝐽𝑥 ⊆ [0, 1]                                                                 (III.6) 

 

Both, the general and interval type-2 fuzzy membership functions are three-

dimensional (Figure III.4), in this dissertation, the research activities are focused on the 

interval type-2 membership function. 

 

 Figure III.4: Three-dimensional representation of interval type-2 fuzzy membership 

functions. 
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III.5- Operations of Type-2 Fuzzy Sets: 

Our goal now is describing the set theoretic operations of type-2 fuzzy sets. We are 

interested in the case of type-2 fuzzy sets, 𝐴i (i = 1,…, r), whose secondary membership 

functions are type-1 fuzzy sets. To compute the union, intersection, and complement of        

type-2 fuzzy sets, we need to extend the binary operations of minimum (or product) and 

maximum, and the unary operation of negation, from crisp numbers to type-1 fuzzy sets, 

because at each x, 𝑢Ãi
(x,u) is a function (unlike the type-1 case, where   uÃi

(x) is a crisp 

number). The tool for computing the union, intersection, and complement of type-2 fuzzy sets 

is Zadeh’s extension principle [11].                                        

𝐴̃1  = ∫
x 

𝑢Ã1
(x)                                                                                                                 (III.7) 

𝐴̃2  = ∫
x 

𝑢Ã2
(x)                                                                                                                 (III.8)        

we focus our attention on set theoretic operations for such general type-2 fuzzy sets. 

III.5.1- Union of type-2 fuzzy sets : 

The union of Ã1 and Ã2  is another type-2 fuzzy set, just as the union of type-1 fuzzy 

sets A1 and A2 is another type-1 fuzzy set. More formally, we have the following expression [11]: 

𝐴̃1 ∪ 𝐴̃2 = ∫
x∈X 

𝑢Ã1∪Ã2
(x) /x                                                                                             (III.9)                                                                                       

      
We can explain Equation (III.9) by the “join” operation. Basically, the join between 

two secondary membership functions must be performed between every possible pair of 

primary memberships. If more than one combination of pairs gives the same point, then in the 

join we keep the one with maximum membership grade. We will consider a simple example 

to illustrate the union operation. In Figure 5 we plot two type-2 Gaussian membership 

functions, and the union is shown in Figure III. 6. [11] 

III.5.2- Intersection of type-2 fuzzy sets                                                                                      

The intersection of Ã1  and Ã2   is another type-2 fuzzy set, just as the intersection of 

type-1 fuzzy sets A1 and A2  is another type-1 fuzzy set. More formally, we have the following 

expression [11]: 

𝐴1 ∩ 𝐴2 = ∫
x∈X 

𝑢Ã1∩Ã2
(x) /x                                                                                             (III.10)  
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We illustrate the intersection of two type-2 Gaussian membership functions in         

Figure III.5, We can explain Equation (III.10) by the “meet” operation. Basically, the meet 

between two secondary membership functions must be performed between every possible pair 

of primary memberships. If more than one combination of pairs gives the same point, then in 

the meet we keep the one with maximum membership grade [11]. 

 
Figure.III.5: Two sample type-2 Gaussian membership functions 

Figure III.6: Union of the two Gaussian membership functions. 
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Figure III.7: Intersection of two type-2 Gaussian membership functions 

III.5.3- Complement of a type-2 fuzzy set 

The complement of set 𝐴 is another type-2 fuzzy set, just as the complement of type-1 

fuzzy set A is another type-1 fuzzy set. More formally we have [11] 

𝐴 = ∫
x 

𝑢Ã1
(x)                                                                                                                     (III.11) 

To-date, because of the computational complexity of using a general T2 FS, most 

people only use interval T2 FSs in a T2 FLS, the result being an interval T2 FLS (IT2 FLS)[14]. 

The computations associated with interval T2 FSs are very manageable, which makes an         

IT2 FLS quite practical [14]. 

𝐴1 ∪ 𝐴2 = 1/[ 𝑢𝐴1
(𝑥) 𝜈 𝑢𝐴2

(𝑥), 𝑢 𝐴1
(𝑥) ν 𝑢𝐴2

(𝑥) ]         ∀𝑥 ∈ 𝑋                                       (III.12) 

𝐴1 ∩ 𝐴2 = 1/[ 𝑢𝐴1
(𝑥) 𝛬  𝑢𝐴2

(𝑥), 𝑢𝐴1
(𝑥) 𝛬  𝑢𝐴2

(𝑥)]       ∀𝑥 ∈ 𝑋                                       (III.13) 

𝐴 = 1/[1- 𝑢𝐴1
(𝑥) , 1-𝑢𝐴1

(𝑥) ]                                          ∀𝑥 ∈ 𝑋                                       (III.14) 
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III.6- Design of Interval Type-2 Fuzzy Logic Controllers 

In fact, a type-2 fuzzy logic system or controller uses the same familiar notions as used 

in a type-1 fuzzy logic controller as membership functions, rules, t-norms operations, 

fuzzification, inference, defuzzification [13], but Since a higher type changes the nature of the 

membership functions, the operations that depend on the membership functions used in 

inference change; however, the basic principles of fuzzy logic are independent of the nature of 

membership functions and hence, do not change [10]. A type-2 fuzzy logic system is very similar 

to type-1, where it follows the same methodology, but the only difference is in the third block 

where we no longer speak of only defuzzification but we speak about a type reducer and 

defuzzification parts that constitute both the output processing block. This difference is mainly 

associated with the nature of the membership functions, where type-reducer is needed due to 

the added degree in the kind of fuzzy sets. Figure III.8 presents a type-2 fuzzy logic system [11].  

Today, the two most popular fuzzy logic systems used by engineers in control are the 

Mamdani and TSK(Takagi–Sugeno) systems [11]. 

 

 
Figure III.8: Type-2 fuzzy logic controller 
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III.6.1- Mamdani Type-2 Fuzzy Logic Controller: 

a- Fuzzification  

In this part, we must first define the fuzzy sets of crisp input vector with p elements      

x = (𝑥1,…, 𝑥𝑝)𝑇 in the universe of discourse X1 × X2 ….. × Xp. those memberships can contain 

one or several type-2 fuzzy sets. Second, the fuzzifier maps those inputs into the associated 

fuzzy sets to determine the degree of membership of each input variable. The type-2 

fuzzification process is schematically depicted in Figure III.31. For each point of the universe 

of discourse, the upper and lower membership functions are computed. We consider only 

singleton fuzzification for which the inputs are crisp values [13], [15]. 

b- 3.1.2 Type-2 Rule Base 

The structure of the rules of a type-2 FLC is similar to that of type-1[15]. A type-2 fuzzy 

logic with p inputs and x1 ∈ X1,… xp ∈ Xp and one output y ∈ Y and with M rules. The lth 

rule has the following form [13]:   

Rl : IF x1 is F̃1
l   and ….. and  xp is F̃p

l  THEN y  is  G̃l   l = 1.….M 

Where  F̃p
l  and  G̃l are input and output fuzzy labels, respectively. And  Xp are universe 

of discourse   

c- Inference  

his block expresses the relationship that exists between the input variables (expressed 

as linguistic variables) and the output variables (also expressed as linguistic variables)[11]. It 

aggregates the if-then rules stored in the knowledge base with the fuzzy sets generated by the 

fuzzifier to form an overall output fuzzy set. Similarly, a type-2 fuzzy inference engine 

provides a mapping from the input type-2 fuzzy sets to the output ones. The intersection of 

multiple rule antecedents is computed using a t-norm operator while the union of multiple rules 

is computed through a t-conorm operation [15]. 

1 .The firing strength of the ith  rule is as in (III.15). The result of the input and 

antecedent operations is an interval type-1 set. [13] [15]. 

F i (x′ ) = [𝑓 𝑖   (𝑥 ′ ) ; 𝑓 𝑖  (𝑥 ′ )] ≡  [𝑓 𝑖   ;  𝑓 𝑖 ] = [𝑢𝐹1
𝑖 (𝑥1

′ ) ∗ … .∗ 𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ )  ;  𝑢𝐹1
𝑖 (𝑥1

′ ) ∗ … .∗ 𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ )]               (III.15) 

Where  𝑢𝐹̃𝑝
𝑖 (𝑥𝑝

′ )  and   𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ ) designed respectively upper and lower membership 

grades of  𝑢𝐹̃𝑖(𝑥) and  

𝑓 𝑖  = 𝑢𝐹̃1
𝑖(𝑥1

′ ) ∗ … .∗ 𝑢𝐹̃𝑝
𝑖 (𝑥𝑝

′ )   ,     𝑓 𝑖 =  𝑢𝐹1
𝑖 (𝑥1

′) ∗ … .∗ 𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ )                                      (III.16)                                                                             
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The fired output consequent set of the l rule is a type-1 fuzzy set characterized by a 

membership function 

𝑢𝐵̃𝑙 (𝑦) = ∫
𝑏 ∈[ 𝑓𝑙∗ 𝑢

𝐺̃𝑙(𝑦) 𝑓1∗ 𝑢
𝐺̃1(𝑦)  ]

1/𝑏𝑙                                                                            (III.17) 

If  N out of a total of L fuzzy rules in the FLS fire, where N ≤ L, then the overall 

aggregated output fuzzy set is defined by a type-1 membership function µB̃ (y) obtained by 

combining the fired output consequent sets into one. In other words µB̃ (y) = ⋃ 𝑢B̃𝑙(y)𝑁
𝑙=1    

where [15] : 

𝑢𝐵̃𝑙 (𝑦) = ∫
𝑏 ∈[[  𝑓1∗ 𝑢

𝐺̃1(𝑦)]𝑉….𝑉[  𝑓𝑁∗ 𝑢
𝐺̃𝑁(𝑦)] ,[𝑓1 ∗ 𝑢

𝐺̃1(𝑦)𝑉….𝑉[𝑓𝑁 ∗ 𝑢
𝐺̃𝑁(𝑦)] ]

1/𝑏𝑙   ∀ y ∈ Y      (III.17) 

 
with the t-norm operator denoted by “*”, and t-conorm operator denoted by “V” 

Since generally we use the meet operation under product or minimum t-norm. So, at 

each value of x the intersection and union operations are referred to as the meet and join 

operations, respectively [13].  

Example of firing strength of one rule with two antecedent and one consequent (two 

input and one output) using t-norm operator is depicted in FigureIII.9. 

Figure III.9: Interval type-2 inference process 
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d- Type Reducer and Defuzzification: 

In a type-2 fuzzy logic, since this kind of system deal with type-2 sets, then it is 

necessary to have a type reducer block to map a T2 FS into a T1 FS, and then defuzzificat ion, 

as usual, maps that T1 FS into a crisp number. We can consider that the defuzzification block 

of a type-1 fuzzy logic is replaced by the output processing block in a type-2 fuzzy logic. That 

block consists of type-reducer followed by defuzzification. In fact, type Reducer was proposed 

by Karnik and Mendel [13]. For now, there are five different type-reduction methods (such as 

the center-of-sums, the height, the modified height and the center-of-sets, for example). In this 

dissertation, we will consider the center-of-sets type reduction technique thanks to its 

computational [15]. Karnik and Mendel defined the centroid of an IT2 FS which is an IT1 FS 

that is ensured using the Extension Principle.                  

This IT1 FS is characterized by its left and right end points   𝑦𝑙  and  𝑦𝑟 which can be 

written in the following equation (III.18) [13]: 

[ 𝑦𝑙 ,𝑦𝑟] = ∫
𝑦1 ∈[𝑦𝑙

1,  𝑦𝑟
1  ]

… ∫
𝑦𝑀 ∈[𝑦𝑙

𝑀 , 𝑦𝑟
𝑀  ]

∫
𝑓1∈[𝑓1 ,   𝑓1]

… ∫
𝑓𝑀∈[𝑓𝑀 ,   𝑓𝑀]  

1/  
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖

            (III.18) 

this interval set is determined by its two end points, yl  and  yr which corresponds to 

the centroid of the type-2 interval consequent set  G̃i [10].                                                                                                                           

III.6.2- Interval Type-2 TSK Fuzzy Logic Controller : 

The differences between a type-2 TSK fuzzy logic controller and a Mamdani T2 fuzzy 

logic consist essentially of the definition of outputs and then on the consequent part of rules. 

Consider we have a type-2 TSK fuzzy logic with p inputs  x ∈ X1,… xp ∈ Xp and one output 

y ∈ Y , and with M rules. The lth rule can be expressed as [10]:   

    𝑅𝑙 : IF 𝑥1 is 𝐹̃1
𝑙  and ….. and  𝑥𝑝 is 𝐹̃𝑝

𝑙 THEN 𝑦𝑙 = 𝑐0
𝑙  + 𝑐1

𝑙 𝑥1 + ……+ 𝑐𝑝
𝑙 𝑥𝑝                (III.19) 

 

A type-2 TSK fuzzy logic controller or system (T2 TSK fuzzy logic) was firstly 

introduced by Liang and Mendel [13]. Although TSK type-1 fuzzy systems have received a lot 

attention, the literature on TSK type-2 fuzzy systems is few. Liang and Mendel applied type-2 

TSK systems in channel equalization of channels [13]. Where, according to them, there are three 

models of T2 TSK fuzzy logics depending on the kind of the antecedent and consequent part 

of rules, to have: T2 TSK- Model I, T2 TSK-Model II and T2 TSK-Model III. We can see in 

Table III.4 and 2 the difference between those models. Where  𝑐𝑖
𝑙 , 𝐶𝑖

𝑙 are the consequent 
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parameters, 𝑦𝑙 and 𝑌 𝑙 are the outputs of the lth rule,  𝐹̃𝑗
𝑙 ( j ,…, p) are type-2 fuzzy sets and      

𝐹𝑗
𝑙( j ,…, p) are type-1 fuzzy sets. The firing strength of the ith   rule 𝑊i(x) with meet operation 

under product or minimum t-norm is an interval type-1 set expressed as follows [11]: 

𝑊𝑖(𝑥) = [𝑤 𝑖  (𝑥) ;  𝑤 𝑖(𝑥)]                                                                                             (III.20) 

𝑤 i  (𝑥) = 𝑢𝐹1
𝑖 (𝑥1

′) ∗ … .∗ 𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ )          ,            𝑤 i(𝑥) = 𝑢𝐹1
𝑖 (𝑥1

′ ) ∗ … .∗ 𝑢𝐹𝑝
𝑖 (𝑥𝑝

′ ) 

Model Antecedents Consequents 
Model I 

 

Type-2 fuzzy sets 

 

type-1 fuzzy sets 

 

Model II 
 

Type-2 fuzzy sets 
 

crisp numbers 
 

Model III 
 

Type-1 fuzzy sets 
 

type-1 fuzzy sets 
 

Table III.1: Models of T2 TSK FLS 

TSK FLS Rules  𝑹𝒍
 

Type-1 IF 𝑥1 is 𝐹1
𝑙  and ….. and  𝑥𝑝 is 𝐹𝑝

𝑙 THEN 𝑦𝑙 = 𝑐0
𝑙  + 𝑐1

𝑙 𝑥1 + ……+ 𝑐𝑝
𝑙 𝑥𝑝 

T2 Model I IF 𝑥1 is 𝐹̃1
𝑙  and ….. and  𝑥𝑝 is 𝐹̃𝑝

𝑙 THEN 𝑦𝑙 = 𝑐0
𝑙  + 𝑐1

𝑙 𝑥1 + ……+ 𝑐𝑝
𝑙 𝑥𝑝 

T2 Model II IF 𝑥1 is 𝐹̃1
𝑙  and ….. and  𝑥𝑝 is 𝐹̃𝑝

𝑙 THEN 𝑦𝑙 = 𝑐0
𝑙  + 𝑐1

𝑙 𝑥1 + ……+ 𝑐𝑝
𝑙 𝑥𝑝 

T2 Model III IF 𝑥1 is 𝐹1
𝑙  and ….. and  𝑥𝑝 is 𝐹𝑝

𝑙 THEN 𝑦𝑙 = 𝑐0
𝑙  + 𝑐1

𝑙 𝑥1 + ……+ 𝑐𝑝
𝑙 𝑥𝑝 

Table III.2: Rules of T2 TSK FLS. 

The final output is also an interval type-1 set and is calculated as follows [13]: 

 𝑌(𝑌1 ,… . , 𝑌 𝑀 , 𝑊 1 ,… . , 𝑊 𝑀 ) = [𝑦𝑙 , 𝑦𝑟]  = ∫
𝑦1 … ∫

𝑦𝑀 ∫
𝑤1   

… ∫
𝑤𝑀  

1/  
∑ 𝑤𝑖 𝑦𝑖𝑀

𝑖=1

∑ 𝑤𝑖𝑀
𝑖

                    (III.21) 

Where 𝑦𝑖 ∈ 𝑌 𝑖, and 𝑌 𝑖 = [𝑦𝑙 
𝑖 , 𝑦𝑟 

𝑖 ] , (i=1,…., M), thus for each rule we will obtain  𝑦𝑙  𝑎𝑛𝑑   𝑦𝑟 

Since all sets are crisp, the Equation (III.21) results to [13]: 

𝑦𝑙 =
∑ 𝑤𝑙

𝑖  𝑦𝑙 
𝑖𝑀

𝑖=1

∑ 𝑤𝑙
𝑖𝑀

𝑖

       ;         𝑦𝑟 =
∑ 𝑤𝑟

𝑖  𝑦𝑙 
𝑖𝑀

𝑖=1

∑ 𝑤𝑟
𝑖𝑀

𝑖

                                                                    (III.23) 

And the defuzzified output is:  

𝑦 =  (𝑦𝑙 , 𝑦𝑟)/2                                                                                                                  (III.24) 
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Conclusion  

In this chapter, we have explained another intelligent controller more powerful then 

type-1 fuzzy logic controller, so-called interval type-2 fuzzy logic controller based on interval 

type-2 fuzzy set since general type-2 FLC is more computation needed because the secondary 

membership of first is always equal to 1, as well as  we have seen its membership function has 

uncertainties known as FOU bonded by the upper and lower type-1 membership function 

means that the uncertainty is not just on the rules but also in MF, so that it (IT2FLC) can cope 

with all the kind of the uncertainty 

Produced by the instrumentation elements, environmental noise, etc. And we have also 

illustrated the operations that needed in the flowchart of design that IT2FLC of the two most 

popular fuzzy logic controller used by engineers in control are the Mamdani and TSK 

(Takagi–Sugeno) systems. 

After all that bunch of information about type-n fuzzy logic, the next chapter we will 

design IT2FLC to control the helicopter flight simulator TRMS (Twin Rotor MIMO system), 

and its simulation results will be given and compare with simulation results of type-1 fuzzy 

logic controller. 
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IV.1- Introduction: 

This part will apply the three following tools in order to control the TRMS system: 

- Using Type1 toolbox. 

- Using IT2FLC toolbox  

- Using MTLAB control algorithm of Type-2 

Our objective is reaching a good controller that can control elevation angle and azimuth 

angle, follow referential signal, and maintain system performance. 

This chapter is divided into two parts: simulation and experimental. The simulation part 

applied the three above tools Type1 toolbox, IT2FLC toolbox and Type-2 program, and the 

results will be mentioned later on. On the other hand, the experimental part applied Type1 

toolbox, IT2FLC toolbox tool, but it couldn't obtain the expected results. As for Type-2 

program, it was unable to apply it due to dis-correspondence of equipment, or due to the 

unsustainability of equipment as a result of the concentration of computation in this type.  

IV.2- The Control of TRMS  

The implementation of the fuzzy controller in terms of typt-1 and  type-2 fuzzy sets, has 

two input variables, which are the error e(t), the difference between the reference signal and the 

output of the process, as well as the error variation  ∆e(t) : 

e(t) r(t) y(t) 

∆e(t) e(t) e(t 1) 

so the control system can be represented as in Figure IV.1. 

 

Figure IV.1: System used for obtaining the Simulation and the Experimental results for control 
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In Figure IV.2 represented the two fuzzy controllers, used to control the TRMS system. 

These are independent of one another, the first is used to adjust the angle of elevation, and the 

second to set the azimuth angle. Each of these two controllers with two inputs characterizing 

the error and its variation and an output which characterizes the variation of the control. The 

sum of both commands generated by these two regulators, the overall shape control that 

stabilizes the system. 

Figure IV.2: Block diagram of the control scheme 

The inputs of both fuzzy controllers are beam angle error and the derivative of beam 

angle error.  

Given the two position errors 

𝑒𝜓 =  𝜓 − 𝜓𝑑         ,       𝑒𝜑 =  𝜑 −  𝜑𝑑 

The controllers have used in this work to obtain our latter results are: 

1- Using Type1 toolbox. (MathWork) 

2- Using IT2FLC. [18]  

- Introduction to IT2FLC toolbox: 

Fuzzy Logic Toolbox Version 2.0.1 (R11)  16-Sep-1998 

Generally the toolbox (MathWorks) of IT2FLC is used for understand the flow chart to 

design fuzzy logic controller, so they never uses to design practical controller. The IT2FLS 

Toolbox includes a series of program files (some of them in FigureIV.3) to do its role for 

example (fuzzy2.m) for display editor of IT2FLC ( Figure IV.4) and its function is fuzzy2, so 

fuzzy2 is both a directory and a function, (defuzz2.m) for defuzzification, and so on. And also 

The elevation 

angle regulator 

 The azimuth 

angle regulator 
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the toolkit supports the implementation of several types of fuzzy logic inference systems and 

has several aspects of its capabilities to allow the straightforward implementation of type-1 and 

interval type-2 fuzzy systems are: 

The Mamdani and Takagi-Sugeno-Kang (TSK) Interval Type-2 Fuzzy Inference Models , and 

the design of Interval Type-2 membership functions and operators are implemented in the 

IT2FLS Toolbox (Interval Type-2 Fuzzy Logic Systems) reused from the Matlab® commercia l 

Fuzzy Logic Toolbox. 

 

 

Figure IV.3: example of program files of IT2FLC toolbox 

 

Figure IV.4: IT2FIS editor of its toolbox 

3- Using MTLAB control algorithm of fuzzy_type2. [19] 

According to Ph.D. Hicham Chaoui. University of Ottawa, Ottawa, Ontario, Canada.  
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IV.3- Type-1 toolbox: 

In this work type-1 Mamdani method has been opted, and the AND method, OR method, 

implication, aggregation and defuzzifier are chosen to be min, max, min, max and centroid, 

respectively. also we have used a triangular membership functions. 

IV.3.1- Controller 1 for The elevation angle : 

 

 

 

 

 

 

Figure IV.5: Input e  or  𝐞̇ membership functions for Type 1.  

Figure IV.6: Output y membership functions for Type 1.  
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IV.3.2- Controller 2 for The azimuth angle: 

 

IV.3.3- Rule Base: 

These rules are chosen is such a way as to accomplish the following controller’s behavior: 

1- When the signals errors are far from zero, then the fuzzy logic controller output assumes a 

high value. 

2- When the inputs are approaching to the zero, the output is adjusted to a smaller value for a 

smoother approach. 

3- Once the inputs are zero, then the output is set to zero.  

The controller fuzzy rules are gathered in Table IV.7.  

 

.         e 

ė …… 
N Z P 

N NB NS Z 

Z NS Z PS 

P Z PS PB 

 

Table IV.1: Fuzzy rules for our Type1 

Figure IV.7: Input e  or  𝐞̇ membership 

functions for Type 1.  

Figure IV.8: Output y membership 

functions for Type 1.  
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IV.3.4- block diagram of Type1(toolbox): 

 

Figure IV.9: block diagram of Type1(toolbox) 

IV.4- IT2FLC (toolbox): 

In this work singleton type-2 Mamdani method has been opted, and the AND method, 

OR method, implication, aggregation, Type-Reduction and defuzzifier are chosen to be min,  

max, min, max, center-of-sets and centroid, respectively. also we have used a Gaussian 

membership functions. 

 

Figure IV.10: Input e  or  𝐞̇ membership functions for IT2FLC. 
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IV.4.1- Rules base: 

We use same Rules base as like as we had shown in Type 1 (toolbox) 

IV.4.2- block diagram of IT2FLC(toolbox): 

Figure IV.12: block diagram of IT2FLC(toolbox) 

 

 

 

Figure IV.11: Output y membership functions for IT2FLC.  
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IV.5- control algorithm of fuzzy_type2: 

IV.5.1- block diagram of Type2 ( program): 

 

Figure IV.13: block diagram of Type 2 (program) 

 

The parameter’s algorithm at first and after our change: 

 At first Our change 

Controller1 Gain =1 Gain = 1.5 

Controller2 Out1 Out1 – 0.36 

 Table IV.2: The parameter’s algorithm at first and after our change 
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IV.6- Part 1: Simulation 

- 2 Degree of freedom (DOF) rotor control: 

a- For :  Step pitch = 0.4  and Step yaw = 0.5 

  

 

 

 

 

 

 

 

 

Figure IV.14: pitch stabilization. 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.15: yaw stabilization 
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 Figure IV.16: stapilistion signal U1 and U2 of T1FLC for pitch and yaw respectively 

 

 

Figure IV.17: stapilistion signal U1 and U2 of Type-2 (program) for pitch and pitch 

respectively 

 

Figure IV.18: stapilistion signal U1 and U2 of IT2FLC(toolbox) for pitch and yaw respectively 
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b- For : Desird pitch = 0.4 and Desird yaw = 0.5 

 

 

 Figure IV.19: desired wave responses of pitch 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure IV.20: desired wave responses of yaw 
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Figure IV.21: desired trejectior signal U1 and U2 of T1FLC for pitch and yaw respectively 

  

Figure IV.22: desired trejectior signal U1 and U2 of Type-2 (program) for pitch and yaw 

respectively 

 

Figure IV.23: desired trejectior signal U1 and U2 of IT2FLC (toolbox) for pitch and yaw 

respectively 
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IV.5- Discussion the simulations results  
 

The simulation results of the TRMS attitude dynamics control are presented. The both 

of initial values of the pitch and yaw angles are taken 0 radians. The results obtained for the 

attitude stabilization of the TRMS are given in the Figure IV.44, IV.45 for the pitch and yaw 

angles respectively. It can be seen that, the Type-2 fuzzy logic controller ensures a good 

convergence, but for IT2FC(toolbox) is better then Type-2 (program).  and the yaw angle time 

response is relatively quick compared to the  pitch angle response for all the controllers . Also, 

as illustrated in Figure IV.44, the type-2 fuzzy logic controller provides a better performance 

than the type-1 fuzzy logic controller. Especially, the type-2 fuzzy logic controller presents fast 

step responses with small oscillations, as opposed to IT2FLC (toolbox). 

FigureIV.49 and Figure IV.50 show the trajectory tracking accuracy of the proposed 

control low. In the case of the type-2 fuzzy controller, the actual angles pitch and yaw of the 

helicopter converge, without oscillation, to their desired values, specially when 

IT2FLC(toolbox) is used,  While in the case of the type-1 fuzzy controller, oscillations with big 

amplitude are observed. 

From all the obtained results, it can clearly be seen that, in the case of the type 2 fuzzy 

controller, all outputs converge accurately to their desired values. A poor performance is 

obtained in the case of the type-1 fuzzy logic controller. Thus, the type1- fuzzy logic controller 

cannot be used in mathematically ill-defined systems that may be subjected to structured and 

unstructured uncertainties 
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IV.6- Conclusion:   

This chapter is the main part of our work; we have used different tools (toolboxes and 

program) to illustrate the powerful of IT2FLC than T1FLC that by simulation results of 

application with different tests (stabilization and desired wave) for controlling concrete system 

(TRMS). From that we can say it is better to use IT2FLC (not T1 or classical methods) to control 

like that kind of systems with mathematically ill-defined and that may be subjected to structured 

and unstructured uncertainties.      
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The goal of this work is to design control algorithm to control mathematically ill-defined 

(uncertain dynamic) system (TRMS) that may be subjected to structured and unstructured 

uncertainties and noisy environment. A new approach for the attitude stabilization for that kind 

of system “two degrees of freedom TRMS is presented. This approach is based on the type-2 

fuzzy logic controller. The main strength of the proposed control algorithm is more robust than 

previous control algorithm (type-1FLC) with respect to parametric uncertainties and noise 

measurement. The proposed approach has been successfully applied, in simulation and practical 

results, to the control of two degrees of freedom helicopter in the presence of parametric 

uncertainties and noise measurement. 
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Abstract: 

The TRMS is versatile platform, its dynamic includes nonlinearities, parametric 

uncertainties and is subject to unknown external disturbances. Such complicated dynamics 

involve designing sophisticated control algorithms that can deal with these difficulties. So In 

this dissertation, the type fuzzy logic controller, as opposed to interval type-2 fuzzy logic 

controller  is proposed for physical system TRMS (twin rotor MIMO system) control problem. 

That is firstly after an overview of type-1 fuzzy logic controller. And for interval type-2 fuzzy 

logic controller, Using Gaussian membership functions and based on a human operator 

experience, two controllers are designed to control the position of the pitch and yaw the angles 

of the TRMS. Simulation (MATLAB) results are given to illustrate the effectiveness of the 

proposed control scheme interval type-2 fuzzy logic controller  in comparison with type-1 fuzzy 

logic controller. 

Key words: • TRMS system • Nonlinear system  

Résume 

Le TRMS est plate-forme polyvalente, sa dynamique inclut les non-linéarités, des 

incertitudes paramétriques et est soumis à des perturbations externes inconnus. Ces dynamiques 

complexes impliquent la conception des algorithmes de contrôle sophistiqués qui peuvent faire 

face à ces difficultés. Donc Dans cette thèse, le contrôleur de logique floue type-2, par contre le 

contrôleur de logique floue intervalle type-2 est proposé pour TRMS de système physique 

(double système rotor MIMO) de problème de contrôle. Cela est tout d'abord après un aperçu 

de type-1 contrôleur de logique floue. Et pour le contrôleur de logique floue intervalle type-2, 

Utilisation de fonctions d'appartenance gaussiennes et basée sur une expérience de l'opérateur 

humain, deux contrôleurs sont conçus pour contrôler la position du tangage et lacet les angles 

de la TRMS. Simulation (MATLAB) les résultats sont donnés pour illustrer l'efficacité de la 

commande proposée régime le contrôleur de logique floue intervalle type-2  en comparaison 

avec le contrôleur de logique floue type-1. 

Les mot clé • système TRMS • système non linéaire  

 ملخص :

 TRMS ،له قاعدة بيانات متعددة الاستعمالات، تتضمن ديناميكيته نظام غير خطي، وخصائص غير محددة

وهو عرضة لاضطرابات خارجية غير معروفة. مثل هذه الديناميكيات المعقدة تشمل تصميم خوارزمية 

-المنطق الغامض النوع حاكم تحكم معقدة بإمكانها التعامل مع هذه الصعوبات. لذلك، فإن هذه المذكرة تقترح

وهذا بعد إلقاء نظرة  TRMSللتحكم بالنظام فيزيائي  2-المنطق الغامض مجال النوع حاكم أو بالاحرى  2

باستخدام    2-المنطق الغامض مجال النوع حاكم ، و 1-المنطق الغامض النوع حاكمعامة على النوع الأول 

ى الخبير . تم تصميم متحكمان للتحكم في وضعية زاوية إرتفاع وهذا إعتمادا عل Gussianدالة الإنتماء نوع 

. تم عرض نتائج المحاكاة في برنامج المتلاب لتوضيح فعالية نظام التحكم TRMSوزاوية إنعراج لي 

 .1-المنطق الغامض النوع حاكممقارنة مع   2-المنطق الغامض مجال النوع حاكمالمقترح 

  ، نظام غير خطينظام  TRMS     الكلمات الداله :


