Please use this identifier to cite or link to this item:
https://dspace.univ-ouargla.dz/jspui/handle/123456789/7833
Title: | Introducing The Semantics In Sentiment Analysis On Twitter Using WordNet |
Authors: | Ines Mostefai, Zakaria Elberrichi |
Keywords: | Sentiment analysis Machine Learning WordNet SVM Naïve Bayes |
Issue Date: | 18-Nov-2014 |
Series/Report no.: | 2014; |
Abstract: | Social networks are an excellent source of information, and opinion extraction. The present work shows the introducing of the semantics for sentiment analysis on Twitter using the Machine Learning Approach and WordNet lexical database. The best performance was obtained using the SVM classifier for the machine learning approach with a very good F- measure of 90.75%. |
Description: | 2émes journées internationales de chimie organométallique et catalyse jicoc’2014 |
URI: | http://dspace.univ-ouargla.dz/jspui/handle/123456789/7833 |
ISSN: | dmz |
Appears in Collections: | 1. Faculté des mathématiques et des sciences de la matière |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
icaiit2014_submission_32.pdf | 280,33 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.