Kasdi Merbah University Ouargla Repository >
6. Publications Scientifiques >
Publications Internationales >
2. Faculté des nouvelles technologies de l’information et de la communication >

Please use this identifier to cite or link to this item: http://dspace.univ-ouargla.dz/jspui/handle/123456789/20984

Titre: Image Classification Using Texture Features and Support Vector Machine (SVM)
Auteur(s): Khaldi, Belal
Aiadi, Oussama
KHERFI, Mohammed Lamine
Mots-clés: Image classification
Support Vector Machine
Texture Analysis
Image Feature
Feature Comparison
Issue Date: 4-Mar-2019
Editeur: Université Kasdi Merbah Ouargla
Collection/Numéro: 2019;
Résumé: Due to their efficiency, texture features are frequently used for describing visual content of images. In this paper, we compare six widely used texture features namely, Weber Local Descriptor (WLD), Local Binary Pattern (LBP), Gist and Gray- Level Co-occurrence Matrix (GLCM), in addition to two recent ones namely, Three-Dimensional Connectivity Index (TDCI) and Dense Micro-block Difference (DMD). Moreover, we have proposed an improvement of TDCI so it can capture local variation of motifs instead of the global. As a classifier, we have considered using Support vector Machine (SVM). After conducting a detailed evaluation on four well-known texture benchmarks which are Broadatz, Vistext, Outext and DTD, we have found out that WLD has, in average, the best performance compared to the other features.
Description: Le 2eme Conference Internationale sur intelligence Artificielle et les Technologies Information ICAIIT 2019
URI: http://dspace.univ-ouargla.dz/jspui/handle/123456789/20984
Appears in Collections:2. Faculté des nouvelles technologies de l’information et de la communication

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback